Surfaces with big anti-canonical divisors and some related problems

Rikito Ohta (Osaka University)
usamarotokame@gmail.com

1 Background

- \mathbf{k} : field of characteristic $p \geq 0$
- X : smooth projective surface over \mathbf{k} such that $-K_{X}$ is big

Theorem 1.1 (=[4, Theorem 1]).
If X is rational, X is a Mori dream space.
Question 1.2.
What if X is NOT rational?
$\Rightarrow \kappa(X)=-\infty$
$\Rightarrow X$ is obtained by repeatedly blowing up a geometrically ruled surface $\mathbb{P}_{C}(E) \rightarrow C$ with big anti-canonical line bundle.
(1) Classify geometrically ruled surfaces with big anti-canonical
bundle (Theorem 3.1).
(2) Apply (1) to show that the Picard group of (weak) del Pezzo
pairs (X, Δ) is finitely generated and torsion free (Corol-
lary 4.2). This is a version of the base point free theorem.

2 Stability of vector bundles on curves

C : smooth projective curve
E : vector bundle on C
$F: C \rightarrow C$: the Frobenius map

Definition 2.1.

E is strongly semi-stable if the vector bundle $\left(F^{e}\right)^{*} E$ over C is semi-stable for all $e \geq 0$.

Remark 2.2.

$\operatorname{char}(\mathbf{k})=0 \Rightarrow$ semi-stable $=$ strongly semi-stable.
We use the following standard facts.

Proposition 2.3.

(1) E : strongly semi-stable \Rightarrow the n-th symmetric power $S^{n}(E)$ is also strongly semi-stable.
(2) If $g(C) \leq 1$, semi-stable $=$ strongly semi-stable.

Proposition 2.4 (O-Okawa, [1]).
Suppose $g(C) \geq 1$, rank $E=2$. If $-K_{\mathbb{P}_{C}(E)}$ is big, then E is not strongly semi-stable.

3 Geometrically ruled surface with big anticanonical divisor

Theorem 3.1 (O-Okawa, [1], Main theorem I).
Suppose $g(C) \geq 1$, rank $E=2$, and E: unstable. Then $-K_{X}$ is big \Longleftrightarrow there are line bundles L and M such that $E \simeq L \oplus M$ and $\operatorname{deg} L-\operatorname{deg} M>2 g-2$.

Remark 3.2.

If $\operatorname{char}(\mathbf{k})=0$ or $g(C)=1$, we can omit the assumption that E is unstable by Proposition 2.3 and Proposition 2.4.

Corollary 3.3.

Suppose $g(C) \geq 1$ and rank $E=2$. If $-K_{\mathbb{P}_{C}(E)}$ is big, there exists an integer $e \geq 0$ and line bundles L^{\prime}, M^{\prime} such that $\left(F^{e}\right)^{*} E \simeq L^{\prime} \oplus M^{\prime}$ and $\operatorname{deg} L^{\prime}-\operatorname{deg} M^{\prime}>2 g-2$.
The question below remains open.

Question 3.4.

Is E itself unstable under the same assumption?

4 Picard group of log del Pezzo surfaces via Theorem 3.1

Theorem 4.1 (O-Okawa, [1]).
Let (X, Δ) be a pair of a normal projective surface and an effective \mathbb{R}-divisor such that $-\left(K_{X}+\Delta\right)$ is \mathbb{R}-Cartier. If either
$\bullet\lfloor\Delta\rfloor=0$ and $-\left(K_{X}+\Delta\right)$ is nef and big, or
$\bullet \Delta \leq 1$ and $-\left(K_{X}+\Delta\right)$ is ample,
then there is a positive integer $e=e(X)$ such that $L^{\otimes e} \simeq \mathcal{O}_{X}$ for any numerically trivial line bundle L on X.

Rough sketch of the proof
Take the minimal resolution $\widetilde{X} \rightarrow X$. One can easily check that $-K_{\tilde{X}}$ is big, so that there is a birational morphism $\varepsilon: \widetilde{X} \rightarrow$ $Y=\mathbb{P}_{C}(E)$ such that $-K_{Y}$ is also big. Then we can apply Corollary 3.3 to E and obtain the following diagram.

When \tilde{X} is not rational, consider the section C^{\prime} of π^{\prime} corresponding to $\left(F^{e}\right)^{*} E \rightarrow M^{\prime}$. It follows that $\varepsilon_{*}^{-1} f^{\prime}\left(C^{\prime}\right)$ is contracted by φ. One easily sees that $\varphi^{*} L \simeq \varepsilon^{*} \pi^{*} L_{C}$ for some line bundle L_{C} on C, but the contractibility implies that $\left.\left(\left(f^{\prime}\right)^{*} \pi^{*} L_{C}\right)\right|_{C^{\prime}} \simeq \mathcal{O}_{C^{\prime}}$. Hence $L^{\otimes p^{e}} \simeq \mathcal{O}_{X}$.
Corollary 4.2 (O-Okawa, [1], Main theorem II).
Let (X, Δ) be as in Theorem 4.1. Then $\operatorname{Pic}(X)$ is a free abelian group of finite rank.

Remark 4.3.

Corollary 4.2 is shown in [3, Corollary 3.6] when X has only rational singularities. In fact, the rest is covered by [2]. Our proof as an application of Theorem 3.1 is more straightforward.

Remark 4.4.

The assumptions of Theorem 4.1 are optimal. In fact, consider a smooth cubic curve $C \subset \mathbb{P}^{2}$ and $X=\mathbb{P}_{C}\left(\mathcal{O}_{C} \oplus \mathcal{O}_{C}(1)\right)$. The projective cone over C is obtained from X by contracting the negative section E. Then $(X, \Delta=E)$ is a pair such that $-\left(K_{X}+\Delta\right)$ is nef and big, but Pic (X) is not a free abelian group.

References

[1] R. Ohta and S. Okawa. On ruled surfaces with big anticanonical divisor and numerically trivial line bundle on weak log fano surfaces. in preparation.
[2] S. Schröer. Normal del Pezzo surfaces containing a nonrational singularity. Manuscripta Math., 104(2):257-274, 2001.
[3] H. Tanaka. The X-method for klt surfaces in positive characteristic. J. Algebraic Geom., 24(4):605-628, 2015.
[4] D. Testa, A. Várilly-Alvarado, and M. Velasco. Big rational surfaces. Math. Ann., 351(1):95107, 2011.

