Some Computations on Higher Nash Blowups of Toric Surfaces

Rin Toh-yama (Graduate School of Science, Hiroshima University)

1 Background

Let X be a variety over $k = \overline{k}$. The Nash blowup (X^*, π) of X was defined in [N]. For the Nash blowup, the following problem is suggested and studied: Is X^* (or its normalization) a resolution of singularities of X?

Recently Higher Nash blowups was defined by A. Oneto & E. Zetini [OZ], T. Yasuda [Y1] independently, and analogous questions are studied.

Definition. (Yasuda's construction [Y1])

Let n > 0 be an integer. Let $X_{\rm sm} := X \setminus \operatorname{Sing}(X)$ and $\gamma_n : X_{\rm sm} \to \operatorname{Hilb}(X), \ P \mapsto [P^{(n)}]$ where $P^{(n)}$ is the *n*-th fat point whose support is P, and its graph $\Gamma_n : X_{\rm sm} \to X \times \operatorname{Hilb}(X)$ with 1st projection $\pi_n : X \times \operatorname{Hilb}(X) \to X$.

Now let $\operatorname{Nash}_n(X) := (\text{the schematic closure of } \Gamma_n(X_{\operatorname{sm}}))$ and $\pi_n := \pi_n|_{\operatorname{Nash}_n(X)}$. Then $(\operatorname{Nash}_n(X), \pi_n)$ is called the *n*-th Nash blowup of X. It is isomorphic to the classical Nash blowup when n = 1.

Regarding resolution of singularities of X, Yasuda suggested the following problem in [Y1]:

Problem.

Is $\operatorname{Nash}_n(X)$ non-singular for all $n \gg 0$ when char k = 0?

Known Results. (T. Yasuda [Y1])

- 1. If char k = 2, 3, then there exists X such that $\operatorname{Nash}_n(X)$ is singular for all n > 0.
- 2. If char k = 0 and X is a curve, then the answer is YES.

2 <u>Main Result</u>

Let $k = \mathbb{C}$ in what follows. Yasuda stated in [Y2] that A_3 singularity is probably a counter example for the problem, and here is my main result:

Main Result.

Let $X := (z^4 - xy = 0) \subset \mathbb{A}^3$, which is a toric surface with an A_3 -singular point P = (0, 0, 0). Then $\operatorname{Nash}_n(X)$ is singular for all n > 0.

3 Gröbner Bases in Subalgebras

The proof of main result is roughly explained below.

Let X be an affine normal toric variety over \mathbb{C} . Then $X = \operatorname{Spec}(S)$ for some subalgebra $S = \mathbb{C}[x^{a_1}, \ldots, x^{a_s}] \subset \mathbb{C}[x_1, \ldots, x_n]$ where $x^{a_i} = x_1^{a_{i,1}} \cdots x_n^{a_{i,n}}$ is a monomial in $\mathbb{C}[x_1, \ldots, x_n]$ for $a_i = (a_{i,1}, \ldots, a_{i,n})$. A. Duarte showed the following theorem:

Theorem. (A. Duarte [D])

Let J_n be the ideal $\langle x^{a_1} - 1, \ldots, x^{a_s} - 1 \rangle^{n+1}$ in S. Then the normalization $\overline{\operatorname{Nash}_n(X)}$ of $\operatorname{Nash}_n(X)$ is the toric variety whose fan is given by $\operatorname{GF}(J_n)$, the Gröbner fan of J_n .

Note that $GF(J_n)$ is not a Gröbner fan of an ideal in the usual polynomial ring but monomial subalgebra S. Duarte [D] established a theory of Gröbner bases in monomial subalgebras, and an algorithm to compute a Gröbner basis of any ideal in S w. r. t. any monomial order on S.

Duarte's algorithm needs to be extended slightly in order to compute a reduced Gröbner basis and a Gröbner fan:

Proposition. (c.f. [D], Algorithm A.3.13.)

Let < be any monomial order on $S = \mathbb{C}[x^{a_1}, \ldots, x^{a_s}]$ and I be any ideal in S. Then there exists a matrix M (obtained from a_1, \ldots, a_s and < explicitly) such that the following steps give the reduced Gröbner bases of I w. r. t. <:

- 1. Take the ring map $T : \mathbb{C}[y_1, \ldots, y_s] \to S, y_i \mapsto x^{a_i}$ and fix any monomial order <' on $\mathbb{C}[y_1, \ldots, y_s]$.
- 2. Compute the reduced Gröbner basis G of $T^{-1}(I)$ w. r. t. *M*-weighted order $<'_M$.
- 3. $\widehat{G} := G \setminus \ker(T)$.
- 4. Take a subset \hat{G}_{\min} of \hat{G} satisfying the followings:
 - $\forall g \in \widehat{G}$, $\exists g' \in \widehat{G}_{\min}$; $\operatorname{Im}_{\leq}(T(g')) \mid \operatorname{Im}_{\leq}(T(g))$ in S.
 - $\forall \text{distinct } g', g'' \in \widehat{G}_{\min}, \, \lim_{\leq} (T(g')) \nmid \lim_{\leq} (T(g'')) \text{ in } S.$

5.
$$T\left(\widehat{G}_{\min}\right) = \left\{ T(g') \mid g' \in \widehat{G}_{\min} \right\}$$
 is the red. G. b. of *I*.

Using above algorithm, $\operatorname{GF}(J_n)$ was computed by Macaulay2 for $X = (z^4 - xy = 0) = \operatorname{Spec}(\mathbb{C}[u, u^3v^4, uv])$ and $n \leq 24$. Then certain regularity was observed, and the following proposition which Yasuda and Duarte suggested was proved by induction on n:

Proposition.

For $X = (z^4 - xy = 0)$, $GF(J_n)$ contains a non-regular cone for all n > 0.

Hence $\overline{\operatorname{Nash}_n(X)}$ is singular for all n > 0, and so is $\operatorname{Nash}_n(X)$.

References

- [D] A. Duarte; Higher Nash blowup on normal toric varieties, Journal of Algebra 418, 110-128, 2014.
- [N] A. Nobile; Some properties of the Nash blowing-up, Pacific Journal of Math. 60, 297-305, 1975.
- [OZ] A. Oneto, E. Zatini; *Remarks on Nash blowing-up*, Rend. Sem. Mat. Univ. Torino 49, 71-82, 1991.
- [Y1] T. Yasuda; *Higher Nash blowups*, Compositio Math. 143, 1493-1510, 2007.
- [Y2] T. Yasuda; Universal flattening of Frobenius, American Journal of Math. 134, No. 2, 349-378, 2012.