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Abstract 

When particles are transported in pipelines, they acquire electrostatic charges as they 

come into contact with the pipe wall. Charged particles can cause problems such as 

particle agglomeration, blockage, and explosion. Understanding the particle charge can 

help to prevent these issues. This study investigates a technique for predicting the particle 

charge in a straight pipe of any given length, as well as the pipe length at which 

electrostatic equilibrium occurs, through experimentation in a short 1m pipe section. 

Experimentation with five different types of particles and four pipe wall materials at 

longer pipe lengths were used to validate the technique. This predictive technique is 

applicable to a range of particle shapes and sizes under the restriction that charge transfer 

is due to impact charging. 

 

Heading: 

Particle technology and fluidization 

 

Keywords: 

Electrostatics, Tribocharging, Contact electrification, Pneumatic conveying 



	 2

Introduction 

Particle charging is a common phenomenon that occurs naturally and frequently. Any 

process that uses dry powders will involve charged particles. Dilute-phase pneumatic 

conveying, in which particles are suspended in gas and transported in a pipeline, is a 

common process found in many particle processing and manufacturing industries1,2. As 

particles are being transported, they acquire electrostatic charge upon contact with the 

pipe wall. Among all the operating processes, the pneumatic conveying process generates 

the most charge on the particles3.  

 

Many studies have shown that overly-charged particles during handling and 

transportation can lead to dust explosion5-7. In addition to explosion, charged particles 

can hinder the transport operation. The presence of charged particles in the pipeline can 

increase the pressure drop8, cause blockage9, and damage sensors6. In pharmaceutical 

applications, charged particles can agglomerate and segregate, leading to changes in drug 

formulation and dosages10,11. Charged particles generated in medical inhalers can led to 

drastically different deposition patterns in the lung12. On the other hand, particle charging 

can be beneficial; it is possible to use the measured particle charge to create an online, 

non-intrusive monitoring system for flow information, including but not limited to mass 

loading, particle distribution and solid velocity13–17.  

 

Different methods have been used to study the effects of electrostatic charge, using both 

computer simulations and experimentation.	 Lim et al.18 used large eddy simulation and 

the discrete element method (DEM) to investigate the effects of electrostatic charge on 
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flowing granular materials. They found that charged particles exhibit a ring-like 

distribution during pipe flow with more particles found closer toward the pipe wall. They 

also investigated the effect on the drag force and the electric field generated due to the 

electrostatic force. Watano et al.19 performed DEM simulations as well as experiments to 

investigate electrostatic charging when a pile of PMMA particles was blown through a 

horizontal pipe. They found that the number of wall collisions and the vertical component 

of the impact velocity are important parameters for charging.  

 

However, most of the research on particle charging has been experimental, focused on 

determining the overall dependency of electrostatic charging on specific parameters. 

Masuda et al.20 coated a section of a pipeline with a polymer film and used a 

galvanometer to measure the current transfer upon impact. The number of particle 

contacts with the wall was then related to the charge transfer. They found that the current 

transfer between particles and the pipe surface depends on the contact frequency, contact 

area, contact time, and particle size. Smeltzer et al.21 measured the charge buildup on 

glass beads flowing through plexi-glass pipes. Nickel wires were inserted into the plexi-

glass pipe, and the charge was measured when particles came into contact with the wire. 

They found that the charge was linearly related to the collision frequency, which was 

measured in the various pipe sections. They also determined that impact charging was the 

primary mechanism for charge transfer in dilute pneumatic conveying. Yao et al.22 used 

electrical capacitance tomography, together with particle imaging velocimetry, to 

measure the time required for a flowing particle system to reach electrostatic equilibrium 

in a cyclic pipe flow. They found that a longer time is required for a more complex 
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geometry, and electrostatic equilibrium is reached faster in a horizontal pipe than a 

vertical pipe. 

  

Rather than measuring the charge transfer between particles and pipe surfaces, it is also 

possible to directly measure the charge on particles using a Faraday cup, also known as a 

Faraday cage. In this method, when particles enter the Faraday cup, an electric current is 

sent to the electrometer. The current reading measured from the electrometer can then be 

directly related to the amount of charge possessed by the particles. Kanazawa et al.23 used 

an electrostatic voltmeter to measure the charge on the pipe surface and a Faraday cup to 

measure the particle charge in a flowing particle system. They found a bipolar 

distribution of charge for the irregularly shaped particles, but a single polar distribution of 

charge for spherical particles. Nieh and Nguyen24 also used a Faraday cup to determine 

the effect of humidity, particle velocity, and particle diameter on particle charging 

behavior. They found that humidity has a significant effect on particle charging, and 

particles are neutralized at high humidity. Smaller particles were also found to have a 

higher charge to mass ratio. 

 

Only a handful of previous studies have investigated the charging behavior for a single 

particle impact (impact charging) and how the charging can be controlled. Matsusaka et 

al.25 performed experiments using a 31 mm rubber sphere impacting on a steel plate and 

came to the conclusion that the charge transferred in a single impact depends on the 

initial charge of the material, the impact velocity and the contact area. Matsuyama and 

Yamamoto26 performed experiments with 3 mm polymer particles and a metal plate; they 
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found that the impact charge is linearly dependent on the initial charge of the particle. 

There is also a charge beyond which a particle will no longer gain or lose charge upon 

further impact; this is known as the equilibrium charge and is independent of the impact 

conditions. Watanabe et al.27 studied 500-600 µm drug particles impacting a stainless 

steel plate; they found that the equilibrium charge is related to the contact potential 

difference. Matsusaka et al.28 also observed this equilibrium charging in a flowing 

particle system after a certain pipe length. Matsusaka et al.29 then confirmed in a flowing 

particle system that the amount of charge transfer is a function of the initial charge and 

the equilibrium charge. They observed that the amount of charge on the particles varies 

exponentially as a function of pipe length, and the charge transfer continues until 

particles reach equilibrium charge in the system. With this charging relationship, they 

were able to control the particle charge in pipe flow by changing the wall material with 

which the particles come in contact.  

 

In an attempt to control particle charge, Matsusaka et al. have designed and built particle 

chargers30,31. As particles flow through a conical or cylindrical chamber, the centrifugal 

force directs the particles toward the wall where they impact and become charged. The 

particle chargers work on the principle of contact electrification; a particle can gain or 

lose charge depending on the state of the material with which it comes in contact. The 

important parameters for the particle charger are the electrostatic properties between the 

particles and the wall surface and the applied electric field (see Appendix A for the effect 

of the electric field on the charge transfer). 
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Charge transfer model for metal-metal systems 

In metal-metal contact electrification, electrons are transferred between the surfaces. As a 

result, one material becomes positively charged while the other becomes negatively 

charged. The charge transfer ∆ݍெ between the two metals after one contact, without the 

influence of external electric field, is given by: 

 

Δݍெ ൌ ܥ ܸ (1) 

 

where ܥ is the contact capacitance between the two metals and ܸ is the contact potential 

difference that is directly dependent on the work function of the two metals. The work 

function is related to the amount of energy that is required to strip electrons from the 

surface; this value is strongly influenced by the surface state (e.g., the amount of valance 

electrons on the surface). The contact potential difference between the two metals ܸ is 

given by 

 

ܸ ൌ െ
ሺఝೌିఝ್ሻ


 (2) 

 

where ߮  is the work function for each metal, and ݁  is the elementary charge of an 

electron. Electrons move from the metal with the lower work function to the metal with 

the higher work function.  

 

Contact electrification for two metals is fairly straightforward; however, when an 

insulator is involved, the theory becomes more complex. In addition to electron transfer 



	 7

in an insulator-insulator system, there are other possible mechanisms.  These mechanisms 

involve the transfer of material32,33, ions34,35, or radicals36,37. Irrespective of the transfer 

mechanism, the concepts in Eq. (2) can still be applied for an insulator-metal or insulator-

insulator systems. The work function of an insulator cannot be directly measured. The 

surface state (e.g. roughness, geometry, and surface chemistry), the environment (e.g. air 

or vacuum), and other physical conditions directly influence the work function of an 

insulator. For an insulator, an ‘effective work function’, measured at a specific condition, 

is used in place of the metal work function38.  

 

Charge transfer model for metal-insulator and insulator-insulator systems 

The typical charge transfer model that is applied for any two materials in contact is 

known as the condenser model (CM). The condenser model describes the contact 

between the two materials in terms of a capacitor. The contact surfaces are considered to 

be the two plates in the capacitor, and the charge is transferred due to the potential 

difference of the two plates or materials. The complete details of this model can be found 

in Matsusaka et al.39. The total potential difference associated with the condenser model 

ሺ ܸெሻ when particles are in contact can be expressed as:  

 

ܸெ ൌ ܸ െ ܸ െ ܸ  ܸ௫ (3) 

 

where ܸ is calculated from Eq. (2) and based on the effective work functions, ܸ and ܸ 

are the potential differences due to the image charge and the space charge, respectively, 

and ܸ௫  is the potential difference caused by external factors, e.g. an imposed electric 
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field.31,39 Image charge occurs when the electric field from a point charge induces a 

charge on its surrounding. Space charge occurs when multiple point charges act together 

to form a cloud of charge. The terms ܸ  and ܸ  are both negative as both inhibit the 

charge transfer. The charge transfer in the condenser model can then be depicted as: 

 

ெݍ∆ ൌ ݇ܥ ܸெ  (4) 

 

where ݇ is the charging efficiency and ܥ is the capacitance between the two materials. In 

the case of metal-metal contact, ݇ is equal to one, ܥ is equal to ܥ, and ܸ ൌ ܸ ൌ 0. In 

addition, if ܸ௫ ൌ 0,	 then	 Eq. (4) reduces to Eq. (1) which describes the charge transfer 

for metal-metal contacts in the absence of an external electric field. 

 

Charge transfer model for repeated impacts  

To obtain the charge of a particle q as a function of the number of contacts n with a wall, 

a continuous quantity 
ௗಾ
ௗ

 is used: 

 

ௗಾ
ௗ

ൌ ݇ܥ ܸெሺݍሻ  (5) 

 

Eq. (5) is the continuous form of the single contact (n=1) equation depicted in Eq. (4). 

During contact, ܸ and ܸ are proportional to ݍ; they are generally defined as: 

 

ܸ ൌ ݇(6) ݍ 
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ܸ ൌ ݇(7)  ݍ 

 

where ݇ and ݇ are constants associated with the effect of the image charge and space 

charge respectively. The terms ܸ  and ܸ௫  are not a function of ݍ , and are treated as 

constants.  

 

In addition to these contributions to charge transfer, Itakura et al.40 found that 

electrostatic leakage from the particle electric field to its surroundings, after the particles 

are no longer in contact, plays a significant role in the final charge of the particle. This 

effect is directly proportional to ݍ i.e. 

 

ௗೝ
ௗ

ൌ െ݇(8) ݍ 

 

where ݇  is a constant associated with the effect of charge leakage. The total charge 

transfer 
ௗ

ௗ
 can then be represented by 

 

ௗ

ௗ
ൌ ௗಾ

ௗ
 ௗೝ

ௗ
ൌ െܽݍ  ܾ  (9) 

 

where constant ܽ  includes the effects of the image charge, space charge, and charge 

leakage, and ܾ includes the effects of the work functions and the external electric fields. 

Eq. (9) can be solved as a first-order, non-homogeneous differential equation with the 

initial conditions ݊ ൌ 0 and ݍ ൌ  , resulting inݍ
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ݍ ൌ ሺെܽ݊ሻݔ݁ݍ 



ሼ1 െ  ሺെܽ݊ሻሽ (10)ݔ݁

 

Eq. (10) can be further generalized into the following form: 

 

ݍ ൌ ݔ݁ݍ ቀെ


బ
ቁ  ஶݍ ቄ1 െ ݔ݁ ቀെ



బ
ቁቅ (11) 

 

where ݍ is the initial charge of the particle, ݍஶ is the equilibrium charge of the particle 

when ݊ tends to infinity, and ݊ is a constant specific to the particle-wall system. When 

applying this model to particle flow in a pipe, it can be assumed that the frequency of the 

particle-wall impacts per unit pipe length is constant, and that the number of impacts ݊ is 

proportional to the pipe length ܮ. This assumption is valid for dilute, fully-developed 

flow in a straight pipe. In fully-developed flow, the average flow properties are 

independent of the position along the direction of the flow; therefore, the collision 

frequency can be assumed constant. Therefore, Eq. (11) can be rewritten as 

 

ሻܮሺݍ ൌ exp	ݍ ቀെ


బ
ቁ  ∞ݍ ቄ1 െ exp ቀെ



బ
ቁቅ (12) 

 

 , in Eq. (12) is analogous to ݊; this term is known as the characteristic length. Finallyܮ

dividing Eq. (12) through by the particle mass and replacing ݍ in Eq. (12) by the charge-

to-mass ratio ݍ, i.e. the specific charge, yields the following equation which describes 

the particle charge as a function of pipe length:  
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ሻܮ୫ሺݍ ൌ exp	୫,ݍ ቀെ


బ
ቁ  ∞,୫ݍ ቄ1 െ exp ቀെ



బ
ቁቅ (13) 

 

Materials and Methods 

Experimental setup 

The experimental system is composed of four sections including a feeder, a particle 

charger, a pipe, and a Faraday cup-electrometer as shown in Figure 1. Figure 1a gives a 

detailed diagram of the feeder section, which consists of a vibratory feeder and a particle 

ejector. The vibratory feeder was made by placing a long stem funnel on top of a stainless 

steel plate, and piezo-electric vibrators were connected to the funnel and plate. The 

particle mass flow rate was controlled by the electric signal sent from a feeder controller 

(VST-01 Control system, IMP Co. Ltd.). The particle mass flow rate in all experiments is 

kept approximately at 0.5 mg/s to ensure dilute-phase flow. Particles leaving the feeder 

were drawn, by vacuum, into a particle ejector. The particle ejector consists of two 

sections - upstream where the particles enter and downstream where the particles mix 

with the air and exit. A nozzle opening was used to separate the two sections and 

functioned to direct the compressed air toward the exit; in doing so, the compressed air 

created suction in the upstream section. The gas flow rate was controlled using a pressure 

controller; during the experiment, the gas velocity was kept at 15 m/s. To prevent 

electrostatic disturbance, all components in the feeder section were grounded. 

 

After leaving the ejector, particles were sent to the particle charger in order to modify the 

particle charge. The particle charger used was the same one developed in Matsusaka’s 

group30,31. A diagram of the particle charger with a conical chamber is shown in Figure 
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1b. Particles enter from the top and exit from the bottom of the charger; the broken line 

illustrates the particle flow path in the particle charger. The conical shape allows for 

maximum particle-wall contact as the particles flow through the charger. Within the 

particle charger, there is a cone shaped electrode at the center. The inner wall of the 

charger, i.e. inner electrode, was designed in such a way that the cavity was 0.01 m wide. 

The outer wall of the charger, i.e. the outer electrode, was grounded during operation. 

Both electrodes were made using stainless steel. A high voltage source (Matsusada 

Precission Inc.) was connected to the inner electrode to generate an electric field between 

the inner and outer walls of the cavity. As particles come into contact with the outer 

electrode, the particles can gain or lose electrons as explained in Appendix A. The final 

charge of the particles leaving the charger directly depends upon the charge supplied to 

the inner electrode. 

 

Upon exiting the particle charger (or pipe), the particle charge was measured using a 

Faraday cup-electrometer. As shown in Figure 1c, the Faraday cup was connected to a 

vacuum system in order to collect particles into a thimble filter. The charge reading from 

the inner conductive surface was sent to the electrometer (Takeda Riken Co. Ltd.). The 

mass of the particles collected was determined using an analytical balance. The specific 

charge was obtained from the total charge and mass information. In each experiment, the 

mass of particles collected on the filter was used, along with experiment duration, to 

determine the average particle mass flow rate. The experiments were performed in 

ambient conditions with the relative humidity ranged from 30–50%, and the temperature 

ranged from 20–23 °C. To minimize the effect of humidity in the experiment, the 
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compressed air was sent through a dryer that kept the relative humidity constant at 10% 

and the particles were kept in a desiccator until used for the experiments. 

 

Short Pipe Experimentation with Varying Initial Charge 

The schematics of the setups for these sets of experiments are shown in Figures 2a and 2b. 

The arrows on the left in Figure 2 represent particles exiting the particle ejector shown in 

Figure 1a. In Figures 2a and 2b, a polyurethane tube (ID = 0.007 m; L = 0.3 m) connects 

the particle ejector to the particle charger. A glass tube (ID = 0.007 m; L = 0.07 m) was 

also used to direct the charged particles out of the particle charger. The Faraday cup was 

placed at the exit of the glass tube to measure ݍ,, as seen in Figure 2a. The Faraday cup 

was also placed after the 1m pipe to measure ݍሺܮ ൌ 1ሻ, seen in Figure 2b. Exit charge 

data ൫ݍሺܮ ൌ 1ሻ൯  for the particles were collected for each particle-pipe material 

combination by varying the initial charge applied to the particles using the particle 

charger.  

 

Validation Experiments with Longer Pipes 

In order to validate the proposed technique, the exit charge data for the particles were 

collected at different lengths of pipe. The experimental setups are shown in Figure 2c and 

2d. In these setups, a brass pipe (ID = 0.007 m; L = 0.1 m) is placed after the particle 

ejector. The Faraday cup was positioned as seen in Figure 2c to measure ݍ, for these 

validation experiments. The setup in Figure 2d was employed to collect particle charging 

data after 1-, 2-, 3-, and 4-m pipe length. The air flow rate in the pipes was measured 
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after the ejector and after 1-, 2-, 3-, and 4-m pipe to ensure that there were no changes in 

the flow rate with each additional pipe length. 

 

Materials 

A total of five different types of particles and four different types of pipe wall materials 

were tested. A summary of particles and pipes with their specifications are found in 

Tables 1 and 2 respectively. The pipes were grounded during experiment. 

 

Results and Discussion 

Varying Initial Charge in the Particle Charger 

The initial charge of the particles entering the 1m pipe was adjusted using the particle 

charger (Figure 2a). The initial charge was measured at different voltages applied to the 

inner electrode of the charger. Figure 3 shows the specific charge of the borosilicate 

particles as a function of electric field strength in the particle charger. The polarity of the 

particle charge could be changed from negative to positive. However, there is a limit to 

the particle charging with higher applied electric field because of electrical discharge in 

the particle charger. Applying voltage higher than this limit causes a decrease in particle 

charge; this is demonstrated by the maximum in the curve shown in Figure 3.  Other 

particles also show this decrease in particle charge. This is likely caused by the 

electrostatic air-breakdown, reducing the effect of the electric field in the charger. 

 

Short Pipe Experimentation with Varying Initial Charge 
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Particle charge measurements were made using the setup in Figures 2a and 2b. The initial 

charge of the particles is denoted ݍ,, and the particle charge collected after flowing in 

the 1m pipe is denoted ݍሺܮ ൌ 1ሻ. The particle charge measurements were repeated 

three times. A relationship between ݍ, and ݍሺܮ ൌ 1ሻ for borosilicate particles in the 

natural glass pipe is shown in Figure 4. In the figure, the data points represent the 

averages and the error bars represent the standard deviations for the measurements. The 

ܮሺݍ ൌ 1ሻ versus ݍ, curve exhibits a linear relationship, which agrees with Eq. (9) in 

the theory on the repeated impacts model. Matsuyama and Yamamoto26 observed similar 

behavior in their single particle impact experiments. Figure 4 also includes a broken line 

representing ݍሺܮ ൌ 1ሻ ൌ ,ݍ . The experimental data for ݍሺܮ ൌ 1ሻ versus ݍ,  are 

higher than the broken line; this result indicates that the particles obtained a positive 

charge from the wall by contact electrification. In other words, the electrons on the 

particles were transferred to the wall.  

 

Figure 5 shows the experimental results of ݍሺܮ ൌ 1ሻ  versus ݍ,  for borosilicate 

particles in a copper pipe. The ݍሺܮ ൌ 1ሻ  versus ݍ,  curve again exhibits a linear 

relationship. However, in this case, the experimental line intersects with a line 

representing ݍ, ൌ ܮሺݍ ൌ 1ሻ  at a ݍ, . The data points, with initial charge more 

negative than the intersection point, charged positively after conveying through a 1-m 

pipe; while data points with more positive initial charge than the intersection point 

charged negatively in the pipe. This observation indicates that the particle charge will 

approach the intersection point as particles flow along the pipeline; this intersection point 

is the equilibrium charge.  The equilibrium charge in Figure 5 is -59 μC/kg. If 
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borosilicate particles flow through an infinitely long copper pipe, the particles will 

consistently reach this equilibrium charge value. An intersection point also exists for 

borosilicate particles-natural glass pipe system (Figure 4), but at a charge outside of the 

range presented in Figure 4. Due to the extensive amount of data, only the results of 

borosilicate particles flowing in a natural glass pipe and in a copper pipe are discussed as 

a representative example. 

 

Predicting particle charging using stair-stepping procedure 

A technique to predict particle charge in any given length of pipe is proposed in Figure 6. 

The solid curve, i.e. ݍሺܮ ൌ 1ሻ versus ݍ, line, is the same as that in Figure 4, which is 

the result for the borosilicate particles traveling through the natural glass pipe. First, an 

initial charge on the ݍ, ൌ ܮሺݍ ൌ 1ሻ line is found. This point is labeled as ܲ. From 

this point a vertical line to the ݍሺܮ ൌ 1ሻ versus ݍ, line is drawn. This vertical line 

represents the final charge on the particles after traveling through 1m of the natural glass 

pipe with initial charge ܲ. A horizontal line is then drawn to the ݍ, ൌ ܮሺݍ ൌ 1ሻ line 

in order to set a new initial charge ଵܲ. If this stair-stepping process is repeated, the final 

charge of the particles at any given pipe length can be determined.  

 

The ݍሺܮ ൌ 1ሻ versus ݍ, line is not parallel to the ݍ, ൌ ܮሺݍ ൌ 1ሻ line; therefore, at 

a certain point the two lines will intersect. This intersection point represents the value of 

the particle charge when it has reached its equilibrium state, i.e. the particles will no 

longer gain or lose charge, regardless of continued interactions with the pipe surface.  
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Predicting particle charging using the semi-theoretical equation 

The experimental measurements in the short 1m pipe can be used to determine the two 

constants ݍ,ஶ  and ܮ  in the semi-theoretical Eq. (13), which describes the particle 

charge as a function of pipe length. Those two parameters ݍ,ஶ and ܮ are easily found 

using the relationship in Figure 4. In Figure 4, the specific charge of particles traveling 

through a pipe can be expressed as the following linear equation: 

 

ܮሺݍ ൌ 1ሻ ൌ ୫,ݍ	ܿ  ݀  (14) 

 

where ܿ and ݀ are constants. The equilibrium charge ݍ,ஶ can be calculated by finding 

the intersection point between Eq. (14) and line ݍ, ൌ ܮሺݍ ൌ 1ሻ. Mathematically, this 

equilibrium charge is given by 

 

∞,୫ݍ ൌ
ௗ

ଵି
  (15) 

 

To order to determine ܮ, a comparison of Eq. (14) to Eq. (13) results in: 

 

ܿ ൌ exp ቀെ


బ
ቁ (16) 

 

or 

 

ܮ ൌ െ


୪୬	
  (17) 
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The constants c, d, ݍ,ஶ, ܮ, and the coefficient of determination of Eq. (14) (R2) for 

each type of particle in each pipe wall material are summarized in Table 3. The values of 

  are 11.3 m and 3.9 m for the borosilicate-natural glass and the borosilicate-copperܮ

systems, respectively. In general, as the value of ܮ  increases, the slower the charge 

transfer between the particles and the wall. Based on the values of ܮ in Table 3, the 

insulator-metal system exhibits higher charge transfer than the insulator-insulator system.  

 

Figure 7 shows the predicted charging profiles for borosilicate particles in a natural glass 

pipe (Figure 7a) and copper pipe (Figure 7b). The lines in Figure 7 represent the initial 

particle charge of -300 μC/kg, 0 μC/kg, and 300 μC/kg. Each line in Figure 7 was 

determined using Eq. (13) with ݍ,ஶ and ܮ based on the short pipe experimentation; the 

stair-step procedure also yielded similar results. In Figure 7b, two of the initial charges 

were greater than the equilibrium charge, while one of the initial charges was less. The 

charge on the particles always approaches the equilibrium charge with additional pipe 

length. This explains the increase and decrease in charge in Figure 7b. In Figure 7, the 

particle charge approaches the equilibrium value more quickly (i.e. shorter pipe lengths) 

for the borosilicate-copper pipe (insulator-metal) system than for the borosilicate-glass 

(insulator-insulator) pipe system.. The charging profiles are symmetrical with respect to 

the equilibrium for the same absolute value of ݍ,െݍ,ஶ.  

 

Validating the technique 
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To validate the technique for predicting particle charging in any given pipe length, 

particle charging data were collected using different lengths of pipe as shown Figures 2c 

and 2d. Again, the particle charge measurements were repeated three times. These data 

were compared with the predicted charging profiles as given by Eq. (13) with values for 

,ஶݍ  and ܮ  based on the short pipe experimentation. For all the particle-pipe wall 

material combinations tested, the comparisons between predicted and measured charging 

profiles are in good agreement. Figure 8a compares the predicted charging profile to the 

experimental data for borosilicate particles flowing in the natural glass pipe. Figure 8b 

shows the comparisons between predicted and measured charging profiles for borosilicate 

particles in the copper pipe. Two additional representative comparisons are shown in 

Figures 8c and 8d. Figure 8c presents the comparisons for PMMA spherical particles in a 

stainless steel pipe, and Figure 8d for non-spherical crushed soda lime glass particles in a 

Pyrex pipe. The small deviations are likely caused by variations in the surface state of 

pipes. Figures 8 shows that it is possible to predict particle charge along any pipe length 

by using Eq. (13) and performing a small-scale (1-m) experiment to determine 

parameters associated with the particle and pipe wall materials. 

 

Conclusions 

A technique using a small-scale experiment has been developed for predicting particle 

charging behavior in pipes of any given length. This technique was tested for a range of 

particle characteristics and pipe wall materials. A small-scale experimentation looking at 

changes in particle charge in a 1-m pipe was used to determine two parameters associated 

with the particle and pipe wall materials. These parameters, along with a predictive 
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model equation, are used to predict the particle charge along any length pipe, irrespective 

of the initial charge of the particle. The predictive technique is applicable to any metal-

metal, metal-insulator and insulator-insulator particle-wall system with two limitations. 

First, particle charging must be via the impact charging mechanism. For example, this 

predictive technique would not be applicable to dense-phase pneumatic conveying where 

particles are in sustained contact with the wall. Second, the particle and pipe wall 

materials and the operating conditions (e.g. air and solids flow rate), in which the two 

parameters (ݍ,ஶ and ܮ) are determined from the short pipe experimentation, must be 

the same as the case in which particle charging is being predicted in longer length pipes. 

Given these two limitations, this predictive technique should work well for a full range of 

particle characteristics (including initial charge) and pipe wall materials.  
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Appendix A. Effect of ࢞ࢋࢂ on the contact potential  

The external electric field has a significant influence on contact electrification. The term 

ܸ௫ in Eq. (3) arises from the electric fields in the surrounding environment, including 

electric fields in nature (e.g. the earth magnetic field) and man-made electric fields (e.g. 

electric field from power line). A schematic of the electric potential of a particle in 

contact with a surface (Figure A.1) can help understand the effect of ܸ௫. In Figure A.1, 

the energy levels of the particle and wall are presented on the left and right hand sides, 

respectively. The Fermi level is a hypothetical energy level for an electron inside the 

particle. The vacuum level is the energy level such that the potential energy of the 

electron is zero. The difference between the Fermi level and the vacuum level is equal to 

the work function of the particle. Consider Case 1 in Figure A.1 where no external 

electric field is applied and the particle’s work function ሺ߮ሻ is higher than the wall’s 

ሺ߮ሻ, while the potential difference due to image charge ሺ ܸሻ and space charge ሺ ܸሻ 

remain constant. The final voltage potential of the particle is determined by the work 

function and the final potential of the wall consists of the wall work function and the 

contribution from the image charge and the space charge. The charge transfer is equal to 

the potential difference of the two surfaces, ܸ. During contact, electrons will transfer 

from lower voltage potential to higher voltage potential, as the potential is zero at the 

vacuum level. In Case 1, electrons will flow from the wall to the particle, resulting in 

negatively charged particles. Cases 2, 3, and 4 show what occurs when the external 

potential is applied to the wall surface. In Case 2, a small amount of potential is applied 

to the wall; the final potential of the wall is now closer to the potential of the particle. The 

result of such a contact is that smaller charge transfer occurs during contact, so that the 
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resultant particle in Case 2 will not gain as many electrons as the resultant particle from 

Case 1. In Case 3, the potential of the wall is equal to the potential of the particle, and no 

charge transfer occurs between the particle and the wall. In Case 4, a strong electric field 

is applied to the wall such that the potential of the wall is higher than the work function 

of the particle. In this case, the vacuum level is shown for the wall as more energy is 

required to remove electrons from the surface of the wall than from the particle’s surface. 

In Case 4, electrons transfer from the particle to the wall and particles becomes positively 

charged. The examples shown in Cases 2, 3, and 4 suggest that electric field can directly 

influence how particles are charged. The particle charger used in this study builds upon 

this concept. In the particle charger, the electric field is intentionally applied to the wall 

surface to artificially modify the potential difference between the particle and the wall. 

The charge of the impacted particle is directly related to the applied electric field. 
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Table 1 Characteristics of particles used in the experiment 

Material of particle 
Mass median 

diameter 
(μm) 

Mass mean 
diameter (μm) 

Standard 
deviation (μm) 

Sphericity 

Borosilicate 49 48 3 1 
Soda lime 79 78 8 1 
PMMA 67 67 16 1 
Crush soda lime 66 66 16 0.75 
JSC-1A (30-90 μm) 
sieve fraction 

55 54 16 0.86 
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Table 2 Characteristic of pipes used in the experiment 

Material of pipe Inner diameter (m) 
Copper 0.0070 
Stainless steel 0.0070 
Natural glass 0.0068 
Pyrex 0.0068 
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Table 3 Characteristic values for each particle in 1-m pipe 
Material of 
particle 

Material of 
pipe 

R2 c (–) d (μC/kg) L0 (m) qm,∞ (μC/kg) 

Borosilicate Copper 0.985 0.772 –13.4 3.9 –59 
 Stainless steel 0.976 0.256 -83.8 0.7 -113 
 Natural glass 0.982 0.915 60.2 11.3 711 
 Pyrex 0.995 0.949 24.1 19.1 473 
Soda lime Copper 0.994 0.727 -4.7 3.1 -17 
 Stainless steel 0.985 0.241 -42.3 0.7 -56 
 Natural glass 0.994 0.908 19.5 10.3 212 
 Pyrex 0.994 0.916 14.7 11.4 175 
PMMA Copper 0.896 0.556 339.8 1.7 766 
 Stainless steel 0.880 0.492 736.8 1.4 1451 
 Natural glass 0.963 0.594 204.8 1.9 504 
 Pyrex 0.991 0.697 111.4 2.8 368 
Crush soda lime Copper 0.987 0.797 3.1 4.4 15 
 Stainless steel 0.996 0.588 -2.5 1.9 -6 
 Natural glass 0.990 0.911 15.9 10.7 179 
 Pyrex 0.993 0.956 12.5 22.2 285 
JSC-1A Copper 0.998 0.758 -25.4 3.6 -105 
(30-90 μm)  Stainless steel 0.997 0.390 -27.3 1.1 -45 
sieve fraction Natural glass 0.997 0.884 30.8 8.1 265 
 Pyrex 0.998 0.951 10.3 19.9 211 
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Figure 1. Diagram of a) particle feeder, b) particle charger, c) Faraday cup-electrometer. 
All units are in mm. 
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Figure 2. Experimental setup for determining a) initial particle charge after leaving the 
particle charger b) particle charge after 1-m pipe length c) particle charge leaving the 
ejector d) particle charge after different pipe lengths. 
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Figure 3. Specific charge of borosilicate particles leaving the particle charger as a 
function of applied electrical field in the particle charger. 
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Figure	4.	ݍሺܮ ൌ 1ሻ	vs.	ݍ,	for	borosilicate	particles	in	1m	natural	glass	pipe	
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Figure	5.	ݍሺܮ ൌ 1ሻ	vs.	ݍ,for	borosilicate	particles	in	1m	copper	pipe	
 

 
 
  



	 35	

Figure 6. Predicting particle charge in natural glass pipe using stair-step method 
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Figure 7. Predicting charging profile for borosilicate particles a) in natural glass pipe b) 
in copper pipe 
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Figure 8. Comparison of the experimental data with predicted charging profile for a) 
borosilicate particles in natural glass pipe b) borosilicate particles in copper pipe c) 
PMMA particles in stainless steel pipe d) Crush soda lime particle in Pyrex pipe. 
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	Figure A.1. Different cases of contact charge transfer in applied electric field.	

	 	
	


