
314
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

PAPER Special Section on Reconfigurable Systems

Area Efficient Annealing Processor for Ising Model without
Random Number Generator

Hidenori GYOTEN†a), Student Member, Masayuki HIROMOTO†, and Takashi SATO†, Members

SUMMARY An area-efficient FPGA-based annealing processor that is
based on Ising model is proposed. The proposed processor eliminates ran-
dom number generators (RNGs) and temperature schedulers, which are the
key components in the conventional annealing processors and occupying
a large portion of the design. Instead, a shift-register-based spin flipping
scheme successfully helps the Ising model from stucking in the local op-
timum solutions. An FPGA implementation and software-based evalua-
tion on max-cut problems of 2D-grid torus structure demonstrate that our
annealing processor solves the problems 10–104 times faster than conven-
tional optimization algorithms to obtain the solution of equal accuracy.
key words: combinatorial optimization problem, max-cut problem, Ising
model, annealing, FPGA

1. Introduction

Efficient social infrastructures and systems are essential to
our daily lives. It is desirable to reduce the logistics cost of
supply chain, to shorten travel time, to minimize the distri-
bution loss of energy resources, etc. Most of these practical
problems are known to be formulated as combinatorial op-
timization problems. However, it is very hard to obtain the
optimal solutions in a practical time as the size of the prob-
lems becomes large, mostly due to the exponential nature of
their computational complexity. Although efficient heuristic
algorithms have been actively developed [1]–[3], they still
require unacceptably large computation time to obtain solu-
tions, or the quality of the solutions becomes insufficient.

Besides these conventional heuristic algorithms, an al-
ternative solver that utilizes the Ising model is gaining in-
creasing attention. The Ising model is a mathematical model
of ferromagnetism in statistical mechanics [4]. The model
consists of spins, each of which takes one of two discrete
states {+1,−1}. The spins are generally arranged in a lat-
tice form as shown in Fig. 1. The spin’s value is determined
such that the local energy of the spin decreases according to
the states of the adjacent spins considering the interactions
with adjacent spins, as shown in Fig. 2. This local update
decreases the energy of the entire Ising model, which facili-
tates to solve the problems in a highly parallel manner, thus
achieving a fast optimization.

A quantum annealing computer, D-Wave [5], is one of

Manuscript received May 8, 2017.
Manuscript revised September 8, 2017.
Manuscript publicized November 17, 2017.
†The authors are with Department of Communications and

Computer Engineering, Graduate School of Informatics, Kyoto
University, Kyoto-shi, 606–8501 Japan.

a) E-mail: paper@easter.kuee.kyoto-u.ac.jp
DOI: 10.1587/transinf.2017RCP0015

Fig. 1 Typical structure of the Ising model.

Fig. 2 A spin in the Ising model. Each spin has interactions with adjacent
spins.

the Ising-model-based solvers, which emulates the behavior
of the Ising model by quantum annealing [6], [7]. It is re-
ported that the weak-strong cluster pair problem, which is
one of the combinatorial optimization problems, has been
solved 1.8 × 108 times faster than simulated annealing [8].
However, a superconducting flux qubit, the key element of
the D-Wave, requires cryogenic temperature during the op-
eration. This makes the computer system significantly com-
plex and expensive. Other approach includes CMOS anneal-
ing [9]. It simulates the annealing of the Ising model on a
general CMOS logic circuit, which realizes the circuit oper-
ation at a room temperature. This method has advantages of
inexpensive implementation and easier integration with con-
ventional computer systems. Recent research includes an
implementation of the CMOS annealing on FPGA [10] and a
hardware architecture for fully-connected Ising model [11].

In this paper, we focus on the architecture based on the
concept of CMOS annealing and propose an area-efficient
annealing processor that can be implemented using fully
digital circuits, such as in an FPGA. One of the most impor-
tant challenges for the annealing processor is area efficiency.
The performance of such processors directly depends on the
parallelism achieved, i.e., the number of spins that can be
implemented on a single chip. The spin itself can be eas-
ily realized by a simple small circuit. However, the anneal-
ing processor requires an additional function to simulate the

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



GYOTEN et al.: AREA EFFICIENT ANNEALING PROCESSOR FOR ISING MODEL WITHOUT RANDOM NUMBER GENERATOR
315

probabilistic behavior of the Ising model. Random number
generators (RNGs) and temperature scheduler are typically
adapted for this purpose, which have been occupying a large
hardware resource, as in the case of [10].

In this work, we propose a novel shift-register-based
spin flipper (SRSF) that helps the annealing process to con-
verge without using random numbers. This approach signif-
icantly improves the area efficiency of the annealing proces-
sor by eliminating large RNGs, and thus improves its scala-
bility. Our proposed annealing processor has the following
three features: (1) a simple SRSF circuit that can emulate
the annealing behavior, (2) scalable architecture that can be
configurable for the size of the problems to solve, and (3)
fully synthesizable digital design that can be easily imple-
mented on an FPGA. Owing to these features, we can suc-
cessfully implement a 2000-spin Ising model on an FPGA
of moderate capacity to use as the accelerator of the combi-
natorial optimization solver. We solve max-cut problems of
2D-grid torus structures by the proposed annealing proces-
sor and compare its efficiency and accuracy to the existing
software solvers. The experimental results show that our
processor can find quasi-optimum solutions 10–104 times
faster than the existing software solvers.

The contribution of this paper is summarized as fol-
lows:

• An area-efficient annealing processor for the Ising
model is proposed, which eliminates the resource-
consuming random number generators, by employing
a simple shift-register-based spin flipper with a negli-
gible area overhead.

• The proposed processor is implemented on an FPGA
and its performance is quantitatively evaluated using
max-cut benchmark problems [12]. The results are also
compared with software implementations.

• Our annealing processor can solve the max-cut prob-
lems several orders faster than the existing fastest ap-
proximation algorithm [1].

The rest of this paper is organized as follows. Section 2
provides preliminary knowledge about the Ising model. Sec-
tion 3 proposes the architecture of our annealing processor
and the SRSF methods to improve the area efficiency with-
out using RNGs. Section 4 shows the evaluation and the
results, and finally, Sect. 5 concludes the paper.

2. Ising Model

2.1 Definition

The Ising model [4] consists of a set of spins that are in-
terconnected with each other with a weight. The connec-
tion of the spins can take any topology, representatively a
lattice form as shown in Fig. 1, which is a most typical ex-
ample. For each spin i, the spin has a discrete spin value
σi ∈ {+1,−1} and interaction weight Ji j with an adjacent
spin j, as shown in Fig. 2. The local energy of spin i is given
by

Hi(σi) = −
∑

j

Ji jσiσ j − hiσi, (1)

where hi is an external magnetic field (or a bias). Thus, the
total energy of the entire model is given by

H = −
∑

〈i j〉
Ji jσiσ j −

∑

i

hiσi. (2)

Note that 〈i j〉 indicates to take sum of all spin pairs. The
value of each spin σi is determined according to the inter-
actions with adjacent spins, such that the local energy Hi is
minimized. By repeatedly updating all spins independently,
the total energy of the Ising model, H, decreases and con-
verges to a minimum value.

2.2 Optimization Utilizing the Ising Model

Combinatorial optimization problems can be solved by uti-
lizing the Ising model by the following four steps:

Step 1: Formulation Represent the real-world problem of
interest as a combinatorial optimization problem and
formulate equations in the form of the energy mini-
mization of the Ising model in Eq. (2).

Step 2: Mapping Assign parameters (interactions and bi-
ases) to the model according to the formulation.

Step 3: Annealing Update spin values repeatedly until
convergence is obtained.

Step 4: Interpretation Convert the final spin values back
into the original optimization problem.

In the following subsections, each step will be explained in
detail.

2.2.1 Formulation

The first step of the formulation is to express the real-world
problem as a combinatorial optimization problem. The main
part of this formulation step is to convert the combinatorial
optimization problem to the form of the energy minimiza-
tion of the Ising model of Eq. (2). We consider the max-cut
problem, which is one of the NP-hard problems, but other
problems can be also formulated as summarized in [13].

The objective of the general max-cut problem is to ob-
tain a vertex set such that the total weight of the edges be-
tween the vertices in the subset and the complementary sub-
set becomes the largest. In the example of Fig. 3, the maxi-
mum cut is 25, when {1, 2, 4} is chosen as the subset.

Fig. 3 An example of the max-cut problem and its solution.



316
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

The max-cut problem is formulated as follows:

max
1
2

∑

i, j∈V, i< j

wi j (1 − xix j), (3)

where V is a set of vertices, wi j is a weight of the edge
between the vertices i and j, and xi = {−1, 1} is an indi-
cator that represents the vertex i belongs to the subset or
not. Here, our objective is to convert the max-cut prob-
lem represented by Eq. (3) to the energy minimization of
the Ising model in Eq. (2). By comparing these equations,
they become equivalent when we associate the variables as
Ji j = −wi j, σi = xi, and hi = 0. The spin corresponds to the
cut, and the minimum energy of the Ising model gives the
maximum cut.

2.2.2 Mapping

In the mapping step, according to the formulation obtained
in the previous step, parameters (interactions and biases) are
assigned to the hardware Ising model. This process is called
“embedding” in [14]. In general, both the formulated prob-
lem and the structure of the hardware Ising model can be
treated as graphs. The formulated problem can be repre-
sented as a graph G = (V, E), where V is a set of vertices that
represents logical variables {σi} and E is a set of edges that
represents interactions {Ji j}. We can also obtain the graph
G′ = (V ′, E′) that represents the structure of the hardware
Ising model. In order to embed G into G′, G should be a
subgraph of G′. In this case, it is possible to simply embed
G into G′, if the degree of all V is equal to or smaller than
that of V ′ and the graph G′ is sufficiently large. Otherwise,
particularly when the maximum degree of V exceeds that of
V ′, a vertex σi ∈ V should be represented using a group of
duplicated multiple vertices, called “a clone,” such that the
all clones attain sufficient number of edges that realize the
necessary connections of all vertices in the problem to solve,
as shown in Fig. 4. Here, interactions between the vertices
in a clone are determined so that the vertices tend to take
the same spin value. This process is called “graph minor
embedding,” which is known as an NP-hard problem [15].

The reduction of the execution time of graph minor
embedding, the minimization of the number of the clones
to be generated, and the determination of the optimal inter-
actions between clones are currently the topics of intense
researches. The detail of the general mapping algorithm is
beyond the scope of this paper, so we limit ourselves to refer
the algorithms proposed in [14], [15]. Similarly, the prob-
lems solved in the later section are limited to be a 2D-grid
torus graph structure.

2.2.3 Annealing

In this step, each spin is iteratively updated so that the lo-
cal energy of the spin becomes smaller. Since a change of a
spin value will affect its neighbors, the iteration is required
so that the change propagates in the Ising model. The energy

Fig. 4 An example of minor embedding for a six-edge vertex to two four-
edge vertices. The spin σi is duplicated using two clones, σi1 and σi2 .

Fig. 5 Optimization by annealing.

Algorithm 1 Annealing Process of the Ising Model
1: NRF ← K
2: Initialize σi

3: for n = 1 to N do
4: for all i ∈ Gn do
5: σi ← argmin Hi(σi)
6: end for
7: Flip NRF spins (random flip)
8: NRF ← αnNRF (αn < 1)
9: end for

reduction of each spin basically decreases the total energy of
the Ising model, but the reduction may stuck in a local mini-
mum as shown in Fig. 5 (i). To get out of the local minimum
to continue to find the global minimum, temporary energy
increase is necessary. In the Ising model, this is realized by
a “random flip (RF),” in which a set of spins is randomly
chosen and their values are flipped [9]. By the RF, the en-
ergy of the entire Ising model once increases as shown in
Fig. 5 (ii), but eventually decreases further as the local min-
imization is repeated. This is how the global minimum is
obtained (Fig. 5 (iii)).

In order to ensure convergence, “temperature schedul-
ing” during the optimization process is important. The tem-
perature is the metaphor of the energy input to the spins.
When the temperature is high, a large number of spins are
randomly flipped to increase the probability of escaping out
of possible local minima. On the other hand, when the tem-
perature is low, few spins are flipped and it is easy to con-
verge to the steady state. To find the global minima, gradu-
ally decreasing the temperature from high to low is effective.
This temperature scheduling is called annealing.

Algorithm 1 shows the detailed procedure of the an-
nealing. NRF is the number of spins to be randomly flipped
at a time, and K is its initial value. The following opera-
tions are repeated for N times. First, a set of spins to be
updated, Gn, is determined. It can be a single spin, an entire
set of spins, or a subset of spins partitioned like a checker-
board [10]. Second, each spin in Gn is updated so that its



GYOTEN et al.: AREA EFFICIENT ANNEALING PROCESSOR FOR ISING MODEL WITHOUT RANDOM NUMBER GENERATOR
317

local energy is minimized. Finally, the RF is executed and
the temperature is lowered by multiplying αn (< 1) to NRF.

Note that an update of spin values can be executed in
a fully parallel manner because the individual spin depends
only on the adjacent spins. This is a great advantage for
implementing the Ising model on highly parallel hardware
architecture.

2.2.4 Interpretation

This step converts the final spin states with minimum energy
after the annealing process to the solution of the original op-
timization problem. It is realized just by the reverse process
of the formulation. For example, in the case of the max-cut
problem, the maximum cut can be obtained by calculating
Eq. (3) with xi = σi.

3. Annealing Processor for the Ising Model

Recently, several specialized processors motivated by the
Ising model have been proposed, such as [5], [9]–[11]. Sim-
ilarly to the design in [10], our proposed annealing proces-
sor is fully synthesizable, is targeting an FPGA implemen-
tation, but our processor specifically aims to achieve better
area efficiency. This section first describes the base archi-
tecture of the proposed annealing processor with the details
of its key components, and then describes the proposed two
techniques to improve the area efficiency.

3.1 Base Architecture of Annealing Processor

The architecture of the proposed annealing processor is pre-
sented in Fig. 6. The basic units called Ising cells (ISC ij)
are arranged in an m × n lattice form. Though the proposed
architecture is not bound to a limited network topology, the
target Ising model here is assumed to be in a lattice form, in
which each spin has interactions with the left, right, top, and
bottom adjacent spins.

Each Ising cell corresponds to a single spin and per-
forms operations for spin update, which will be detailed in
Sect. 3.1.1. The subscripts i and j of each cell are indices
that represent the cell location in the array. Each cell ISC ij

Fig. 6 Overall architecture of the proposed annealing processor. It con-
sists of a controller and a 2D-array of Ising cells (ISCs), each of which is
connected to the adjacent ISCs with interactions J.

is connected with its neighbors: left ISC i(j-1), right
ISC i(j+1), top ISC (i-1)j, and bottom ISC (i+1)j.
Interaction weights between cells are stored in the register
J ijk. For the index variable k, “v” represents the vertical
interaction weights Ji jv between ISC ij and ISC (i+1)j,
and “h” represents the horizontal interaction weights Ji jh be-
tween ISC ij and ISC i(j+1).

All the registers for the variables Ji jk, σi j, and hi j (the
last two are inside the Ising cell) form independent scan
chains for initialization and result output. Note that the scan
chains are not depicted in the figure for clarity. A controller
module changes operation mode of the processor, to con-
trol I/O and annealing behavior, which will be described in
Sect. 3.1.3.

The annealing processor is fully synthesizable, and
hence it can easily be implemented on an FPGA. Although
the example architecture in Fig. 6 is a simple 2-D array
structure, we can configure the processor to fit various prob-
lems by changing the number of connections between spins
or adopting torus structure. A synthesized instance of the
annealing processor with a certain configuration can be ap-
plicable to solve various problems without resynthesizing
the instance as long as the numbers of spins and connec-
tions do not exceed its capacity. When solving the other
problems, only an initialization of the registers that are stor-
ing the variables Ji jk, σi j, and hi j are required, which can
be carried out in a very short time. However, if we want to
solve the problems that do not fit the instance, resynthesis
and reconfiguration of the FPGA are required.

3.1.1 Ising Cell

The Ising cell, ISC ij, holds the corresponding spin value
σi j in the register σ ij and the bias hi j in h ij. It performs
local energy minimization through the spin update opera-
tion. The internal structure of the cell is shown in Fig. 7. The
inputs of the cell are the adjacent spin values, σ (i-1)j,
σ (i+1)j, σ i(j-1), and σ i(j+1), and the interac-
tion weights to the adjacent cells, J (i-1)jv, J (i+1)jv,
J i(j-1)h, and J i(j+1)h. According to Eq. (1), the Ising
cell calculates the next spin direction and updates its spin
under the control of the update signal upd ij and the flip
signal fp ij.

The Ising cell works as follows. The spin determina-
tion module Spin Det determines the spin value s det so

Fig. 7 The internal structure of the Ising cell. It calculates the next spin
state from the adjacent spins σ, interactions J, and bias hi j, and updates its
spin under the control of the update signal upd ij and flip signal fp ij.



318
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Fig. 8 Operation flow of the proposed annealing processor to solve a
problem.

that the local energy is minimized. The multiplexer MUX1
determines whether to update the spin or not, by select-
ing the output of Spin Det or the current state. Then the
multiplexer MUX2 determines whether the spin is flipped or
not according to the flip signal fp ij. If fp ij = 1, the
flipped (multiplied by −1) spin value is selected, otherwise,
the original value is selected. Finally, the output of the mul-
tiplexer is stored to the register σ ij, which is the final out-
put of this module.

3.1.2 Spin Determination Module

This module is inside the Ising cell and calculates the spin
value by σi = argmin Hi(σi). From Eq. (1), the local energy
Hi can be calculated by

Hi = −
⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

Ji jσ j + hi

⎞⎟⎟⎟⎟⎟⎟⎠σi = −sum × σi. (4)

This means that σi can be determined just from the sign of
the value, i.e., if sum > 0, σi = +1, if sum < 0, σi = −1.

3.1.3 Controller

The controller controls the operation mode of the annealing
processor according to the operation flow in Fig. 8. In the
“Input Data” phase, bit stream for the problem is shift-in to
initialize the registers of Ji jk and hi j using the scan chains.
The initial values of the spins σi j are also loaded. The shift-
inputs are executed in parallel using m × n clocks, which
is equal to the number of the spins. Then in the “Update
Spin” phase, the spin update is repeated for N times. The
spin update takes one clock cycle, and thus this phase uses
N clocks in total. After the update phase, all spin values are
read out via the scan chain. This operation also needs m × n
clocks, which is the same as the input operation.

In addition to the mode control, the controller also con-
trols the spin update signals upd ij and the flip signals
fp ij to emulate the annealing behavior during the “Update
Spin” phase. These operations are performed by “Update
controller” and “Flip controller” modules, respectively.

3.2 Methods for Improving Area-Efficiency

In order to simulate the probabilistic annealing behavior of
the Ising model, random numbers are required for two pur-
poses: to determine of the spin value when the interactions
are “balanced,” and to realize the random flip to increase
energy temporally to avoid local optima. However, ran-
dom number generators (RNGs) consume large hardware
resources having significant impact on the area efficiency. In
this work, the following two novel annealing methods with-
out using RNGs are proposed.

3.2.1 RNG-Less Determination of Balanced Spins

The spin determination module Spin Det calculates Eq. (4)
to determine a spin value. If the interactions are balanced,
i.e., sum happened to be 0, the spin can take either direction.
Ideally, the spin value should be randomly determined to
avoid spatial or temporal bias. Instead, we propose a simple
flipping operation that approximates the random behavior
without using RNGs:
⎧⎪⎪⎨⎪⎪⎩
σi ← −σi if sum = 0,

σi ← argmin Hi(σi) otherwise.
(5)

With this scheme, the spin is flipped whenever the interac-
tions are balanced. Otherwise, a spin value that gives lower
local energy is chosen.

3.2.2 Shift-Register-Based Spin Flipper

To realize the RF on the annealing processor, the circuit that
satisfies the following properties has to be considered: 1)
a random pulse generator whose 0/1 probability is control-
lable according to the annealing temperature, and 2) a mech-
anism to deliver the generated random pulse to the flip sig-
nals fp ij for each Ising cell. The simplest approach that
satisfies the above requirements is to include an RNG and
a temperature scheduler for each and every Ising cell [10].
However, it will result in an unacceptably large circuit area.
Another idea is to deliver pre-calculated random sequences
for all cells for every cycle, by giving up online random
number generation. In this case, the distribution of the sig-
nal to all the Ising cells requires long time or requires a lot
of wire resources.

In this work, we resolve these issues with the proposed
shift-register-based spin flipper (SRSF). The SRSF consists
of the registers fp ij that are connected in series to form a
long shift register as shown in Fig. 9, or we can subdivide
registers into multiple shift registers. The SRSF works as
follows:

1. Load an initial bit sequence Cfp = {fp 11, fp 21, · · · ,
fp mn} into the shift register with m × n clocks.

2. During each annealing, apply k clocks to the shift reg-
isters and fill the vacant bits by zeros, i.e., Cfp becomes
{0, · · · , 0, fp 11, fp 21, · · · }.



GYOTEN et al.: AREA EFFICIENT ANNEALING PROCESSOR FOR ISING MODEL WITHOUT RANDOM NUMBER GENERATOR
319

Fig. 9 Proposed shift-register-based spin flipper (SRSF). It consists of
fp ij registers connected in serial like a scan chain.

3. Repeat steps 1 and 2 until Cfp becomes all zeros.

The initial bit sequence Cfp is initialized randomly so that
0 and 1 are approximately equally contained. The random
numbers here can be generated offline and in advance us-
ing any algorithms. The above shift operation reduces the
number of 1s in Cfp (NRF in Algorithm 1). By repeating
the shifts, it reduces the number of 1s further, which corre-
sponds to the gradual decrease of the annealing temperature.
By adjusting the parameter k, the speed of the temperature
lowering (αn in Algorithm 1) can be controlled.

The advantage of the proposed method is the small area
overhead by completely eliminate the RNGs. In addition,
the initialization step (step 1) of the proposed method does
not require additional clock cycles because it can be exe-
cuted in parallel with the existing initializations for J ijk,
h ij, and σ ij. Moreover, the proposed method can help
the Ising model from being stuck in the local optimum so-
lutions having several regions of conflicting spin directions.
The behavior of the SRSF causes spacial imbalance of the
annealing temperature due to its shift operation, e.g., the
upper area with low temperature and the lower with high
temperature. Since this situation is similar to the physical
phenomenon of crystalizing from the edge of the material,
the proposed method is considered effective for avoiding the
local optima caused by uniform global cooling.

4. Evaluation

In this section, the effect of eliminating RNGs is first eval-
uated, then the performance of the proposed annealing pro-
cessor implemented on an FPGA is evaluated. The max-
cut benchmark problems used for the evaluation of the pro-
posed processor are listed in Table 1. The problems G11,
G12, G13, G32, G33, and G34 are taken from G-Set bench-
mark [12], while the others, Gx y, (x ∈ {11, 12, 13}, y ∈
{1, 2, 3}), are generated by “rudy” [16], which is a genera-
tor program of G-Set. Gx y has the same graph structure as
Gx, but they are different in edge weights.

4.1 Effectiveness of SRSF

4.1.1 RNG-Less Determination of Balanced Spins

In order to verify the effectiveness of the proposed RNG-
less determination of balanced spins, the solution accuracy

Table 1 List of max-cut problems used in evaluation

Problem Structure Nodes (H×W) Edges Weight
G11 2D-grid torus 800 (8 × 100) 1600 {1,−1}
G11 1 2D-grid torus 800 (8 × 100) 1600 {1,−1}
G11 2 2D-grid torus 800 (8 × 100) 1600 {1,−1}
G11 3 2D-grid torus 800 (8 × 100) 1600 {1}
G12 2D-grid torus 800 (16 × 50) 1600 {1,−1}
G12 1 2D-grid torus 800 (16 × 50) 1600 {1,−1}
G12 2 2D-grid torus 800 (16 × 50) 1600 {1,−1}
G12 3 2D-grid torus 800 (16 × 50) 1600 {1}
G13 2D-grid torus 800 (32 × 25) 1600 {1,−1}
G13 1 2D-grid torus 800 (32 × 25) 1600 {1,−1}
G13 2 2D-grid torus 800 (32 × 25) 1600 {1,−1}
G13 3 2D-grid torus 800 (32 × 25) 1600 {1}
G32 2D-grid torus 2000 (20 × 100) 4000 {1,−1}
G33 2D-grid torus 2000 (25 × 80) 4000 {1,−1}
G34 2D-grid torus 2000 (40 × 50) 4000 {1,−1}

Fig. 10 Development of solution accuracy of G11 as a function of iter-
ations n. The proposed method (d) shows the comparable accuracy to that
of the random method (a).

is compared with the following methods:

(a) σi ← {+1,−1} (random)
(b) σi ← +1 (always +1)
(c) σi ← −1 (always −1)
(d) σi ← −σi (proposed)

In this evaluation, a software-implemented Ising solver is
used. The parameters in the spin update (Algorithm 1) are
set as follows:

• Initial spin values σi: all 1
• Maximum number of iterations N: 3000 (G32, G33,

G34), 2000 (otherwise)
• Random flips: disabled (NRF = 0)

The checkerboard-like update, in which black and white
cells are alternatively updated, is adopted in this experiment.

Figure 10 shows the solution accuracy of the four meth-
ods (a)–(d) as the function of iterations when solving G11.
The solution accuracy is evaluated by Rcut, which is defined
as a percentage of the obtained cut to the exact solution.
Since the method (a) uses random numbers, the upper and
the lower bounds of the results in 20 runs are shown as a



320
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Table 2 Solution accuracies Rcut obtained by the different spin-
determination methods [%]

Problem (a) random (b) +1 (c) −1 (d) proposed
G11 98.21 72.70 84.75 97.87
G11 1 97.99 71.74 81.16 97.83
G11 2 98.00 70.69 84.14 97.93
G11 3 100 100 100 100
G12 99.26 67.99 82.01 97.48
G12 1 97.53 70.99 83.96 97.61
G12 2 97.46 71.67 79.86 97.27
G12 3 100 100 100 100
G13 97.58 72.85 80.76 97.94
G13 1 97.27 75.87 85.31 97.90
G13 2 97.15 68.68 81.14 97.15
G13 3 100 100 100 100
G32 97.45 74.33 81.84 97.02
G33 97.55 72.21 83.36 97.68
G34 97.59 70.09 81.36 97.40

shaded region, and the run that achieved the best result is
shown using a line. The proposed method (d) obtains Rcut of
97.9% accuracy, which is comparable to a 99.3% obtained
by method (a) that uses random numbers. Table 2 shows the
accuracies of final solutions when the problems in Table 1
are solved. The best result for a problem is shown in bold
font. Here, all the values of (a) are the mean of 20 runs as (a)
includes random process, while those of (b), (c), and (d) are
the result of one run as those methods are deterministic. The
proposed method (d) obtained equal or very close solution
to the random flipping. There is no noticeable difference
in the solution accuracies between the problems of different
sizes. Hence, the proposed method is considered effective
for solving the max-cut problems evaluated. The methods
(b) and (c), which use a fixed spin value, could only obtain
worse solutions. Our spin determination method works well
without using resource-consuming RNGs.

4.1.2 Shift-Register-Based Spin Flipper

In order to verify the effectiveness of the SRSF, solu-
tion accuracy is compared with the conventional flipping
method that uses a random number generator. A software-
implemented Ising solver and a logic simulator of Ver-
ilog HDL are used for the conventional and the proposed
method, respectively. The parameters in the spin update are
set as follows:

• Initial spin values σi: random
• Maximum number of iterations N: 3000 (G32, G33,

G34), 2000 (otherwise)
• Random flip: K = 0.5× (spin size) and αn = 0.996

(G32, G33, G34), αn = 0.993 (otherwise) for the con-
ventional method, and decrement NRF by 1 for each
iteration for the proposed method. αn is determined so
that NRF becomes 0 at about the same time as the pro-
posed method.

In both methods, the checkerboard-like update is adopted,
and the optimizations are run for 100 times to obtain av-
eraged performance. Figure 11 compares how the solution

Fig. 11 Development of solution accuracy of G11 as a function of itera-
tions n. The proposed SRSF (b) shows the comparable accuracy to that of
the random method (a).

Table 3 Solution accuracies Rcut of spin-flipping methods [%]

Problem (a) random (b) SRSF
mean max mean max

G11 98.73 100 98.48 100
G11 1 98.79 100 98.44 100
G11 2 98.68 99.66 98.16 99.31
G11 3 98.69 100 99.99 100
G12 98.75 100 98.68 99.64
G12 1 98.36 99.66 97.89 98.98
G12 2 98.46 100 97.98 99.32
G12 3 98.74 100 100 100
G13 98.46 99.66 97.10 98.63
G13 1 98.44 99.65 97.55 99.30
G13 2 98.50 100 97.33 98.93
G13 3 99.74 100 99.60 100
G32 98.64 99.29 98.16 99.01
G33 95.70 99.42 97.30 98.41
G34 98.79 99.28 98.46 99.42

accruracies changed as a function of iteration count. Since
the initial spin values are randomly determined, the upper
and the lower bounds of the results are shown as a shaded
region, and the run that achieved the best result is shown us-
ing a line. Both methods obtain optimal solution almost at
the same iteration counts. Table 3 shows the mean and the
best accuracies, in which bold font indicates better results
between the corresponding columns. Again, the proposed
SRSF achieved very close solution accuracy to the conven-
tional method. By using proposed SRSF, good optimiza-
tion results are expected without using resource-consuming
RNGs.

4.2 Evaluation of Hardware-Implemented Annealing Pro-
cessor

The proposed annealing processor is implemented on an
FPGA to evaluate its circuit area and speed to solve max-
cut problems. The spin value σ is expressed using 1 bit (0
for “+1” and 1 for “−1”) and both the interaction weight J
and bias h are represented by using 2 bits so that it can take
three values {−1, 0,+1}.



GYOTEN et al.: AREA EFFICIENT ANNEALING PROCESSOR FOR ISING MODEL WITHOUT RANDOM NUMBER GENERATOR
321

Table 4 FPGA resource usage of the annealing processor with 800 spins (G11)

Module Slices LUTs Registers
Cell array 10,975 (21.2%) 19,190 (9.3%) 5,600 (2.7%)

Ising cell (avg.) 13.7 24.0 7.0
Controller 229 (0.4%) 80 (0.0%) 848 (0.4%)

Flip controller 202 (0.4%) 2 (0.0%) 801 (0.4%)
Others 27 (0.0%) 78 (0.0%) 47 (0.0%)

Overall 11,204 (21.3%) 19,270 (9.3%) 6448 (3.1%)

Table 5 FPGA resource usage of the annealing processor with 2000 spins (G32)

Module Slices LUTs Registers
Cell array 34,185 (65.94%) 52,010 (25.08%) 14,000 (6.75%)

Ising cell (avg.) 17.1 26.0 7.0
Controller 527 (1.0%) 79 (0.0%) 2046 (1.0%)

Flip controller 502 (1.0%) 3 (0.0%) 2001 (1.0%)
Others 25 (0.0%) 76 (0.0%) 45 (0.0%)

Overall 34,712 (67.0%) 52,089 (25.1%) 16,046 (7.7%)

4.2.1 Circuit Area and Maximum Delay

The proposed annealing processor was written in Verilog
HDL and synthesized/implemented by Xilinx ISE Design
Suite 14.7 for a target FPGA, Xilinx Virtex5 XC5VLX330T.
Tables 4 and 5 show the breakdown of the resource usage
after synthesis for the problems of G11 with 800 nodes and
for G32 with 2000 nodes, respectively. Synthesis results for
the other problems are omitted since the resource usages are
determined by the number of nodes. The percentages to the
total resources are also shown in the parentheses. The maxi-
mum delays of the designs for all the problems are less than
5.0 ns, meaning that the proposed processor can operate at
200 MHz. As shown in Table 4, the proposed SRSF used
202 slices, which is much smaller than the array of the Ising
cells. By eliminating the RNGs, the area efficiency of the
annealing processor has been greatly improved. According
to Tables 4 and 5, the resource usage of slices and LUTs in-
creases linearly to the number of nodes, indicating that the
proposed annealing processor is scalable as long as the max-
imum number of edges is bounded to a small number.

4.2.2 Speed and Accuracy

In order to evaluate the efficiency of solving optimization
problem on an FPGA, the synthesized netlist is implemented
on the same FPGA board, and a PC with Intel Core i7-
6700K @4.00GHz is used as a host. The FPGA board and
the PC are connected via PCI Express, and the input/output
data are transferred by using a DDR2 memory on the FPGA
board. A control program on the host PC written in C lan-
guage controls the following execution flow:

(a) PC converts a problem to the Ising model (Mapping)
(b) PC writes data to DDR2 memory on FPGA board
(c) FPGA executes annealing of the Ising model
(d) PC reads data from DDR2 memory on FPGA board

The process (c) includes all the operations on the FPGA,

Table 6 Runtime of the proposed annealing processor for solving max-
cut problems (G11 and G32)

Process Time (G11) Time (G32)
(a) Mapping on PC 690 μs 980 μs
(b) Write data from PC to FPGA board 80 μs 80 μs
(c) Annealing on FPGA 80 μs 100 μs
(d) Read data from FPGA board to PC 70 μs 70 μs
Total 0.92 ms 1.23 ms

which are data input/output between the DDR2 memory and
the FPGA and the spin update operation as shown in Fig. 8.
The execution time of each step to solve G11 and G32 is
summarized in Table 6. Numbers of iterations in the spin
update are N = 2000 for G11 and N = 3000 for G32. We
omit the runtime of the other problems because their run-
times are completely equal to those with the same number
of spins. The processing time to solve a single problem with
the proposed annealing processor only takes about 1 ms in
total, including communications between PC.

We also compare the execution time with other max-
cut solvers: (A) SW Ising: software-implemented Ising
model solver, (B) CPLEX: mixed-integer programming
(MIP) solver [17], and (C) SG3: existing fastest heuristic
algorithm for max-cut solver [1]. Here, (A) is the same as
the software Ising solver in Sect. 4.1.2. For the experiments,
SW Ising and SG3 were run on a PC with Intel Xeon E5-
1650 @3.5 GHz, and CPLEX was run using 32 threads on a
PC with Intel Xeon E5 @2.6 GHz. SW Ising and SG3 were
written in C++ language.

Figures 12, 13, and Table 7 show the comparison of the
solving time by the proposed FPGA-based annealing pro-
cessor (D) and the other software solvers (A)–(C). Note that
t in Table 7 means runtime of the algorithms and teq is the
time required for CPLEX to obtain a solution with an equal
accuracy to that of HW Ising. As shown in Fig. 12, HW
Ising by the proposed processor is 2.0×102 times faster than
SW Ising to obtain the solution. When compared with SG3,
which achieved 96.0% solution and takes 1.0 s, HW Ising is
still faster and obtained solutions with better accuracy. On



322
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Table 7 Solution accuracy Rcut and runtime of four algorithms

Problem (A) SW Ising (B) CPLEX (C) SG3 (D) HW Ising
Rcut [%] t [s] Rcut [%] t [s] teq [s] Rcut [%] t [s] Rcut [%] t [ms]

G11 98.73 0.18 100 10.27 6.66 95.92 1.01 98.48 0.92
G11 1 98.79 0.19 100 6.14 5.59 95.83 1.27 98.44 0.92
G11 2 98.68 0.18 100 9.11 5.41 94.66 1.21 98.16 0.92
G11 3 98.69 0.18 100 0.03 0.03 99.94 1.49 99.99 0.92
G12 98.75 0.19 100 11.30 10.48 95.86 1.06 98.68 0.92
G12 1 98.36 0.19 100 8.65 7.41 95.05 1.23 97.89 0.92
G12 2 98.46 0.18 100 9.37 7.48 92.32 1.22 97.98 0.92
G12 3 98.74 0.19 100 0.03 0.03 99.94 1.44 100 0.92
G13 98.46 0.15 100 14.62 9.01 96.05 1.13 97.10 0.92
G13 1 98.44 0.16 100 8.64 6.93 94.58 1.34 97.55 0.92
G13 2 98.50 0.15 100 7.92 7.09 94.13 1.34 97.33 0.92
G13 3 99.74 0.15 100 3.86 0.03 99.94 1.39 99.60 0.92
G32 98.64 0.73 100 41.97 33.74 94.68 16.46 98.16 1.23
G33 95.70 0.61 100 72.89 46.40 93.85 16.78 97.30 1.23
G34 98.79 0.73 100 76.75 48.06 95.01 17.25 98.46 1.23

Fig. 12 Solution accuracy of G11 as a function of runtime.

Fig. 13 Solution accuracy of G32 as a function of runtime.

the other hand, CPLEX obtained the optimal solution but it
took much longer time to the other solvers. When the calcu-
lation time of CPLEX is compared to the HW Ising at a same
accuracy, HW Ising is faster than CPLEX by 7.2× 103. Fig-
ure 13 also shows similar trend. HW Ising is 5.9×102 times
faster than SW Ising and 2.7×104 times faster than CPLEX.
The results are similar for the other problems except G11 3,
G12 3, G13 3, for which, however, our HW Ising is still 10
times faster. This result shows that the proposed architec-
ture is suitable to obtain quasi optimal solution with a very
short time.

5. Conclusion

This paper proposed an area-efficient highly parallel anneal-

ing processor that utilizes no random number generator. The
proposed processor is based on the Ising model, and fully
synthesizable, scalable, and configurable for the problems
to solve. In order to eliminate random number generators, a
spin flipping scheme for balanced spin and a shift-register-
based spin flipping scheme in the annealing are introduced.
Through an implementation of the proposed architecture on
an FPGA and evaluation solving max-cut problems, our an-
nealing processor achieved 10–104 times speedup compared
with conventional optimization algorithms to obtain the so-
lution of equal accuracy.

Acknowledgments

This work was partially supported by JSPS KAKENHI
Grant No. 26280014 and 17H01713. This work was also
supported by VLSI Design and Education Center (VDEC),
the University of Tokyo in collaboration with Mentor
Graphics, Inc.

References

[1] S. Kahruman, E. Kolotoglu, S. Butenko, and I.V. Hicks, “On greedy
construction heuristics for the MAX-CUT problem,” International
Journal of Computational Science and Engineering, vol.3, no.3,
pp.211–218, 2007.

[2] G.A. Kochenberger, J.-K. Hao, Z. Lü, H. Wang, and F. Glover,
“Solving large scale max cut problems via tabu search,” Journal of
Heuristics, vol.19, no.4, pp.565–571, 2013.

[3] L. Grippo, L. Palagi, M. Piacentini, V. Piccialli, and G. Rinaldi,
“SpeeDP: an algorithm to compute SDP bounds for very large
max-cut instances,” Mathematical Programming, vol.136, no.2,
pp.353–373, 2012.

[4] H. Nishimori, Statistical Physics of Spin Glasses and Information
Processing, Oxford University Press, 2001.

[5] D-Wave. http://www.dwavesys.com/.
[6] T. Kadowaki and H. Nishimori, “Quantum annealing in the trans-

verse ising model,” Physical Review E, vol.58, no.5, pp.5355–5363,
1998.

[7] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D.
Preda, “A quantum adiabatic evolution algorithm applied to random
instances of an NP-complete problem,” Science, vol.292, no.5516,
pp.472–475, 2001.

http://dx.doi.org/10.1504/ijcse.2007.017827
http://dx.doi.org/10.1007/s10732-011-9189-8
http://dx.doi.org/10.1007/s10107-012-0593-0
http://dx.doi.org/10.1103/physreve.58.5355
http://dx.doi.org/10.1126/science.1057726


GYOTEN et al.: AREA EFFICIENT ANNEALING PROCESSOR FOR ISING MODEL WITHOUT RANDOM NUMBER GENERATOR
323

[8] V.S. Denchev, S. Boixo, S.V. Isakov, N. Ding, R. Babbush, V.
Smelyanskiy, J. Martinis, and H. Neven, “What is the computational
value of finite-range tunneling?,” Physical Review X, vol.6, no.3,
2016.

[9] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki,
and H. Mizuno, “20k-spin ising chip for combinational optimiza-
tion problem with CMOS annealing,” Digest of Technical Papers of
IEEE International Solid-State Circuits Conference (ISSCC), p.24.3,
2015.

[10] C. Yoshimura, M. Hayashi, T. Okuyama, and M. Yamaoka, “Imple-
mentation and evaluation of FPGA-based annealing processor for
ising model by use of resource sharing,” International Journal of
Networking and Computing, vol.7, no.2, pp.154–172, 2017.

[11] K. Someya, R. Ono, and T. Kawahara, “Novel ising model using di-
mension-control for high-speed solver for ising machines,” Proceed-
ings of 14th IEEE International New Circuits and Systems Confer-
ence (NEWCAS), 2016.

[12] G-Set. http://web.stanford.edu/˜yyye/yyye/Gset/.
[13] A. Lucas, “Ising formulations of many NP problems,” Frontiers in

Physics, vol.2, no.5, pp.1–15, 2014.
[14] A. Zaribafiyan, D.J.J. Marchand, and S.S.C. Rezaei, “Systematic

and deterministic graph minor embedding for cartesian products of
graphs,” Quantum Information Processing, vol.16, no.5, 2017.

[15] J. Cai, W.G. Macready, and A. Roy, “A practical heuristic for finding
graph minors,” 2014. arXiv:1406.2741.

[16] C. Helmberg and F. Rendl, “A spectral bundle method for semidef-
inite programming,” SIAM Journal on Optimization, vol.10, no.3,
pp.673–696, Jan. 2000.

[17] IBM, “IBM ILOG CPLEX Optimization Studio V12.6.2 documen-
tation.”

Hidenori Gyoten recieved B.E. degree
in Electrical and Electronic Engineering from
Kyoto University in 2016. He is a master course
student at Department of Communications and
Computer Engineering, Kyoto University.

Masayuki Hiromoto received B.E. de-
gree in Electrical and Electronic Engineering
and M.Sc. and Ph.D. degrees in Communica-
tions and Computer Engineering from Kyoto
University in 2006, 2007, and 2009 respectively.
He was a JSPS research fellow from 2009 to
2010, and with Panasonic Corp. from 2010 to
2013. In 2013, he joined the Graduate School of
Informatics, Kyoto University, where he is cur-
rently a senior lecturer. His research interests
include VLSI design methodology, image pro-

cessing and pattern recognition. He is a member of IEEE and IPSJ.

Takashi Sato received B.E. and M.E. de-
grees from Waseda University, Tokyo, Japan,
and a Ph.D. degree from Kyoto University,
Kyoto, Japan. He was with Hitachi, Ltd., Tokyo,
Japan, from 1991 to 2003, with Renesas Tech-
nology Corp., Tokyo, Japan, from 2003 to 2006,
and with the Tokyo Institute of Technology,
Yokohama, Japan. In 2009, he joined the Grad-
uate School of Informatics, Kyoto University,
Kyoto, Japan, where he is currently a profes-
sor. He was a visiting industrial fellow at the

University of California, Berkeley, from 1998 to 1999. His research inter-
ests include CAD for nanometer-scale LSI design, fabrication-aware design
methodology, and performance optimization for variation tolerance. Dr.
Sato is a member of the IEEE and the Institute of Electronics, Information
and Communication Engineers (IEICE). He received the Beatrice Winner
Award at ISSCC 2000 and the Best Paper Award at ISQED 2003.

http://dx.doi.org/10.1103/physrevx.6.031015
http://dx.doi.org/10.15803/ijnc.7.2_154
http://dx.doi.org/10.1109/newcas.2016.7604797
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1007/s11128-017-1569-z
http://dx.doi.org/10.1137/s1052623497328987

