Holographic QCD for H-dibaryon (uuddss)

Hideo Suganuma^{1,a} and Kohei Matsumoto²

¹Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 606-8502, Japan ²Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Sakyo, Kyoto 606-8502, Japan

Abstract. The H-dibaryon (uuddss) is studied in holographic QCD for the first time. In holographic QCD, four-dimensional QCD, i.e., $SU(N_c)$ gauge theory with chiral quarks, can be formulated with S^1 -compactified D4/D8/D8-brane system. In holographic QCD with large N_c , all the baryons appear as topological chiral solitons of Nambu-Goldstone bosons and (axial) vector mesons, and the H-dibaryon can be described as an SO(3)-type topological soliton with B = 2. We derive the low-energy effective theory to describe the H-dibaryon in holographic QCD. The H-dibaryon mass is found to be twice of the B = 1 hedgehog-baryon mass, $M_H \approx 2.00M_{B=1}^{H_H}$, and is estimated about 1.7GeV, which is smaller than mass of two nucleons (flavor-octet baryons), in the chiral limit.

1 Introduction

Nowadays, QCD is established as the fundamental theory of the strong interaction, and all the experimentally observable hadrons have been considered as color-singlet composite particles of quarks and gluons. From QCD, as well as ordinary mesons ($\bar{q}q$) and baryons (qqq) in the valence picture, there can exist "exotic hadrons" [1] such as glueballs, multi-quarks [2, 3] and hybrid hadrons, and the exotic-hadron physics has been an interesting field theoretically and experimentally.

The H-dibaryon, B = 2 SU(3) flavor-singlet bound state of uuddss, has been one of the oldest multi-quark candidates, first predicted by R. L. Jaffe in 1977 from a group-theoretical argument of the color-magnetic interaction in the MIT bag model [2]. In 1985, the H-dibaryon was also investigated [4, 5] in the Skyrme-Witten model [6–8]. These two model calculations suggested a low-lying H-dibaryon below the $\Lambda\Lambda$ threshold, which means the stability of H against the strong decay. In 1991, however, Imai group experimentally excluded the low-lying H-dibaryon [9], and found the first event of the double hyper nuclei, i.e., ${}_{\Lambda\Lambda}^{6}$ He, instead. Then, the current interest is mainly possible existence of the H-dibaryon as a resonance state.

Theoretically, it is still interesting to consider the stability of H-dibaryons in the SU(3) flavorsymmetric case of $m_u = m_d = m_s$ [10–12], because the large mass of H may be due to an SU(3) flavor-symmetry breaking by the large s-quark mass, $m_s \gg m_{u,d}$, in the real world. Actually, recent lattice QCD simulations suggest the stable H-dibaryon in an SU(3) flavor-symmetric and large quark-mass region [10, 11].

So, how about the H-dibaryon in the chiral limit of $m_u = m_d = m_s = 0$? Although the lattice QCD calculation is usually a powerful method to evaluate hadron masses, it is fairly difficult to take the chiral limit, because a large-volume lattice is needed for such a calculation to control massless pions.

^ae-mail: suganuma@scphys.kyoto-u.ac.jp

[©] The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

In this paper, we study the H-dibaryon and its properties in the chiral limit using holographic QCD [13], which has a direct connection to QCD, unlike most effective models. In particular, we investigate the H-dibaryon mass from the viewpoint of its stability in the chiral limit.

2 Holographic QCD

In this section, we briefly summarize the construction of holographic QCD from a D-brane system [14, 15], and derive the low-energy effective theory of QCD [16] at the leading order of $1/N_c$ and $1/\lambda$ expansions, where the 't Hooft coupling $\lambda \equiv N_c g_{YM}^2$ is given with the gauge coupling g_{YM} .

2.1 QCD-equivalent D-brane system

Just after J. M. Maldacena's discovery of the AdS/CFT correspondence in 1997 [17], E. Witten [14] succeeded in 1998 the formulation of non-SUSY four-dimensional pure $SU(N_c)$ gauge theories using an S^1 -compactified D4-brane in the superstring theory. In 2005, Sakai and Sugimoto showed a remarkable formulation of four-dimensional QCD, i.e., $SU(N_c)$ gauge theory with chiral quarks, using an S^1 -compactified D4/D8/D8-brane system [15], as shown in Fig. 1. Such a construction of QCD is often called holographic QCD.

This QCD-equivalent D-brane system consists of N_c D4-branes and N_f D8/ $\overline{D8}$ -branes, which give color and flavor degrees of freedom, respectively. In this system, gluons appear as 4-4 string modes on N_c D4-branes, and the left/right quarks appear as 4-8/4- $\overline{8}$ string modes at the cross point between D4 and D8/ $\overline{D8}$ branes, as shown in Fig. 1. This D-brane system possesses the SU(N_c) gauge symmetry and the exact chiral symmetry [15], and gives QCD in the chiral limit.

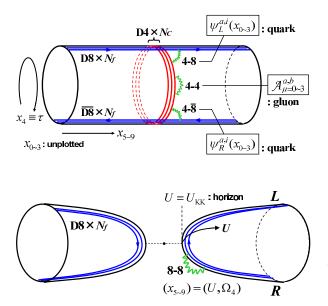


Figure 1. Construction of holographic QCD with an S^{1} -compactified D4/D8/D8-brane system, which corresponds to non-SUSY four-dimensional QCD with chiral quarks [15, 16]. This figure is taken from Ref.[16].

Figure 2. Holographic QCD after the replacement of large- N_c D4 branes by a gravitational background via the gauge/gravity correspondence [14–16]. This figure is taken from Ref.[16].

In holographic QCD, $1/N_c$ and $1/\lambda$ expansions are usually taken. In large N_c , D4-branes are the dominant gravitational source, and can be replaced by their SUGRA solution [15] as shown in Fig. 2, via the gauge/gravity correspondence. In large λ , the strong-coupling gauge theory is converted into a weak-coupling gravitational theory [14]. In this paper, we consider the leading order of $1/N_c$ and $1/\lambda$ expansions.

2.2 Low-energy effective theory

In the presence of the D4-brane gravitational background g_{MN} , the D8/ $\overline{\text{D8}}$ brane system can be expressed with the non-Abelian Dirac-Born-Infeld (DBI) action,

$$S_{\rm D8}^{\rm DBI} = T_8 \int d^9 x \, e^{-\phi} \, \sqrt{-\det(g_{MN} + 2\pi\alpha' F_{MN})} \,, \tag{1}$$

at the leading order of $1/N_c$ and $1/\lambda$ expansions. Here, $F_{MN} \equiv \partial_M A_N - \partial_N A_M + i[A_M, A_N]$ is the field strength of the U(N_f) gauge field A_M in the flavor space on the D8 brane. The surface tension T_8 , the dilaton field ϕ and the Regge slope parameter α' are defined in the framework of the superstring theory, and, for the simple notation, we have taken the $M_{KK} = 1$ unit, where the Kaluza-Klein mass M_{KK} is the energy scale of this theory [15].

After some calculations, one can derive the meson theory equivalent to infrared QCD at the leading order of $1/N_c$ and $1/\lambda$ [15, 16]. For the construction of the low-energy effective theory, we only consider massless Nambu-Goldstone (NG) bosons and the lightest SU(N_f) vector meson $\rho_{\mu}(x) \equiv$ $\rho_{\mu}(x)^a T^a \in \mathfrak{su}(N_f)$, which we simply call " ρ -meson". We eventually derive the four-dimensional effective action in Euclidean space-time $x^{\mu} = (t, \mathbf{x})$ [16],

$$S_{\text{HQCD}} = \int d^4x \left\{ \frac{f_{\pi}^2}{4} \text{tr}(L_{\mu}L_{\mu}) - \frac{1}{32e^2} \text{tr}[L_{\mu}, L_{\nu}]^2 + \frac{1}{2} \text{tr}(\partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu})^2 + m_{\rho}^2 \text{tr}(\rho_{\mu}\rho_{\mu}) - ig_{3\rho} \text{tr}\{(\partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu})[\rho_{\mu}, \rho_{\nu}]\} - \frac{1}{2}g_{4\rho} \text{tr}[\rho_{\mu}, \rho_{\nu}]^2 + ig_1 \text{tr}\{[\alpha_{\mu}, \alpha_{\nu}](\partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu})\} + g_2 \text{tr}\{[\alpha_{\mu}, \alpha_{\nu}][\rho_{\mu}, \rho_{\nu}]\} + g_3 \text{tr}\{[\alpha_{\mu}, \alpha_{\nu}]([\beta_{\mu}, \rho_{\nu}] + [\rho_{\mu}, \beta_{\nu}])\} - ig_4 \text{tr}\{(\partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu})([\beta_{\mu}, \rho_{\nu}] + [\rho_{\mu}, \beta_{\nu}])\} - g_5 \text{tr}\{[\rho_{\mu}, \rho_{\nu}]([\beta_{\mu}, \rho_{\nu}] + [\rho_{\mu}, \beta_{\nu}])\} - \frac{1}{2}g_6 \text{tr}([\alpha_{\mu}, \rho_{\nu}] + [\rho_{\mu}, \alpha_{\nu}])^2 - \frac{1}{2}g_7 \text{tr}([\beta_{\mu}, \rho_{\nu}] + [\rho_{\mu}, \beta_{\nu}])^2 \right\},$$
(2)

where L_{μ} is defined with the chiral field U(x) or the NG boson field $\pi(x) \equiv \pi^{a}(x)T^{a} \in \mathfrak{su}(N_{f})$ as

$$L_{\mu} \equiv \frac{1}{i} U^{\dagger} \partial_{\mu} U \in \mathrm{su}(N_f), \quad U(x) \equiv e^{i2\pi(x)/f_{\pi}} \in \mathrm{SU}(N_f).$$
(3)

The axial vector current α_{μ} and the vector current β_{μ} are defined as

$$\alpha_{\mu} \equiv l_{\mu} - r_{\mu} \in \operatorname{su}(N_f)_A, \quad \beta_{\mu} \equiv \frac{1}{2}(l_{\mu} + r_{\mu}) \in \operatorname{su}(N_f)_V, \tag{4}$$

with the left and the right currents,

$$l_{\mu} \equiv \frac{1}{i} \xi^{\dagger} \partial_{\mu} \xi, \quad r_{\mu} \equiv \frac{1}{i} \xi \partial_{\mu} \xi^{\dagger}, \quad \xi(x) \equiv e^{i\pi(x)/f_{\pi}} \in \mathrm{SU}(N_f).$$
(5)

Thus, we obtain the effective meson theory derived from QCD in the chiral limit at the leading order of $1/N_c$ and $1/\lambda$ expansions. Note that this theory has just two independent parameters, e.g., the Kaluza-Klein mass $M_{\rm KK} \sim 1$ GeV and $\kappa \equiv \lambda N_c/216\pi^3$ [15, 18], and all the coupling constants and masses in the effective action (2) are expressed with them [16]. As a remarkable fact, in the absence of the ρ -meson, this effective theory reduces to the Skyrme-Witten model [6] in Euclidean space-time,

$$\mathcal{L}_{\text{Skyrme}} = \frac{f_{\pi}^2}{4} \text{tr}(L_{\mu}L_{\mu}) - \frac{1}{32e^2} \text{tr}[L_{\mu}, L_{\nu}]^2.$$
(6)

3 H-dibaryon as a B=2 Topological Chiral Soliton in Holographic QCD

As a general argument, large- N_c , QCD becomes a weakly interacting meson theory, and baryons are described as topological chiral solitons of mesons [7]. In holographic QCD with large N_c , the H-dibaryon is also described as a B = 2 chiral soliton, and its static profile is expressed with the "SO(3)-type hedgehog Ansatz", similarly in the Skyrme-Witten model [4, 5]. Here, the SO(3) is the flavor-symmetric subalgebra of SU(3)_f, and its generators $\Lambda_{i=1,2,3}$ are

$$\Lambda_1 = \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \Lambda_2 = -\lambda_5 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, \quad \Lambda_3 = \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \tag{7}$$

which satisfy the SO(3) algebra and the following relations,

$$[\Lambda_i, \Lambda_j] = i\epsilon_{ijk}\Lambda_k, \quad (\mathbf{\Lambda} \cdot \hat{\mathbf{x}})^3 = \mathbf{\Lambda} \cdot \hat{\mathbf{x}}, \quad \mathrm{Tr}[(\mathbf{\Lambda} \cdot \hat{\mathbf{x}})^2 - 2/3] = 0, \tag{8}$$

with $\hat{\mathbf{x}} \equiv \mathbf{x}/r$ and $r \equiv |\mathbf{x}|$. The SO(3)-type hedgehog Ansatz [4, 5, 13] is generally expressed as

$$U(\mathbf{x}) = e^{i[(\mathbf{\Lambda} \cdot \hat{\mathbf{x}})F(r) + [(\mathbf{\Lambda} \cdot \hat{\mathbf{x}})^2 - 2/3]\varphi(r)]} \in \mathrm{SU}(3)_f, \quad F(r) \in \mathbf{R}, \quad \varphi(r) \in \mathbf{R},$$
(9)

where F(r) and $\varphi(r)$ are the chiral profile functions characterizing the NG boson field. Note that $U(\mathbf{x})$ in Eq.(9) is the general form of the special unitary matrix which consists of $\mathbf{\Lambda} \cdot \hat{\mathbf{x}}$, because of Eq.(8). For the topological soliton, the B = 2 boundary condition [4, 5] is given as

$$F(\infty) = \varphi(\infty) = 0, \quad F(0) = \varphi(0) = \pi.$$
 (10)

On the SU(3)_f ρ -meson field, we use the SO(3) Wu-Yang-'t Hooft-Polyakov Ansatz,

$$\rho_0(\mathbf{x}) = 0, \quad \rho_i(\mathbf{x}) = \epsilon_{ijk} \hat{x}_j G(r) \Lambda_k \in \mathrm{so}(3) \subset \mathrm{su}(3), \quad G(r) \in \mathbf{R}, \tag{11}$$

similarly in the B = 1 case in holographic QCD [16]. (This G(r) corresponds to $-\tilde{G}(r)$ in Ref.[16].) Thus, all the above treatments are symmetric in the (u, d, s) flavor space.

Substituting Ansätze (9) and (11) in Eq.(2), we derive the effective action to describe the static H-dibaryon in terms of the profile functions F(r), $\varphi(r)$ and G(r) [13]:

$$\begin{split} S_{\text{HQCD}} &= \int d^4 x \left\{ \frac{f_{\pi}^2}{4} \Big[\frac{2}{3} \varphi'^2 + 2F'^2 + \frac{8}{r^2} (1 - \cos F \cos \varphi) \Big] + \frac{1}{32e^2} \frac{16}{r^2} \Big[(\varphi'^2 + F'^2) (1 - \cos F \cos \varphi) \\ &+ 2\varphi' F' \sin F \sin \varphi + \frac{1}{r^2} \{ (1 - \cos F \cos \varphi)^2 + 3 \sin^2 F \sin^2 \varphi \} \Big] \\ &+ \frac{1}{2} \Big[8 \Big(\frac{3}{r^2} G^2 + \frac{2}{r} G G' + G'^2 \Big) \Big] + m_{\rho}^2 [4G^2] + g_{3\rho} \Big[8 \frac{G^3}{r} \Big] + \frac{1}{2} g_{4\rho} [4G^4] \\ &- g_1 \Big[\frac{16}{r} \Big\{ \Big(\frac{1}{r} G + G' \Big) \Big(F' \sin \frac{F}{2} \cos \frac{\varphi}{2} + \varphi' \cos \frac{F}{2} \sin \frac{\varphi}{2} \Big) + \frac{1}{r^2} G (1 - \cos F \cos \varphi) \Big\} \Big] \\ &- g_2 \Big[\frac{8}{r^2} G^2 (1 - \cos F \cos \varphi) \Big] \\ &+ g_3 \Big[\frac{16}{r^3} G \Big\{ 3 \sin F \sin \frac{F}{2} \sin \varphi \sin \frac{\varphi}{2} + \Big(1 - \cos \frac{F}{2} \cos \frac{\varphi}{2} \Big) \Big(1 - \cos F \cos \varphi) \Big\} \Big] \\ &- g_4 \Big[\frac{16}{r^2} G^2 \Big(1 - \cos \frac{F}{2} \cos \frac{\varphi}{2} \Big) \Big] - g_5 \Big[\frac{8}{r} G^3 \Big(1 - \cos \frac{F}{2} \cos \frac{\varphi}{2} \Big) \Big] \\ &+ g_6 \Big[4G^2 (F'^2 + \varphi'^2) \Big] + g_7 \Big[\frac{8}{r^2} G^2 \Big\{ 3 \sin^2 \frac{F}{2} \sin^2 \frac{\varphi}{2} + \Big(1 - \cos \frac{F}{2} \cos \frac{\varphi}{2} \Big) \Big] \Big\} \\ &= \int dt \int_0^{\infty} dr \, 4\pi r^2 \varepsilon [F(r), \varphi(r), G(r)]. \end{split}$$

4 H-dibaryon Solution in Holographic QCD

To obtain the topological soliton solution of the H-dibaryon in holographic QCD, we numerically calculate the profiles F(r), $\varphi(r)$ and G(r) [13] by minimizing the Euclidean effective action (12) under the boundary condition (10) [19]. The two independent parameters, e.g., $M_{\rm KK}$ and $\kappa \equiv \lambda N_c/216\pi^3$, are set to reproduce the pion decay constant f_{π} =92.4MeV and the ρ -meson mass m_{ρ} =776MeV [15, 16].

For the H-dibaryon solution in holographic QCD, we obtain the chiral profiles, F(r) and $\varphi(r)$, and the scaled ρ -meson profile $G(r)/\kappa^{1/2}$ as shown in Fig. 3, and estimate the H-dibaryon mass of $M_{\rm H} \simeq 1673$ MeV in the chiral limit. Figure 4 shows the energy density $4\pi r^2 \varepsilon(r)$ in the H-dibaryon. The root mean square radius of the H-dibaryon is estimated as $\sqrt{\langle r^2 \rangle_{\rm H}} \simeq 0.413$ fm in terms of the energy density. For comparison, we calculate the B = 1 hedgehog (HH) baryon in holographic QCD with the same numerical condition, and estimate $M_{B=1}^{\rm HH} \simeq 836.7$ MeV and $\sqrt{\langle r^2 \rangle_{B=1}^{\rm HH}} \simeq 0.362$ fm. Thus, the H-dibaryon mass is twice of the B = 1 hedgehog-baryon mass, $M_{\rm H} \simeq 2.00M_{B=1}^{\rm HH}$.

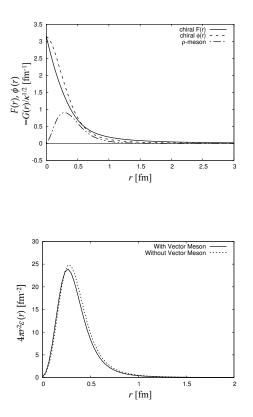


Figure 3. The chiral profiles, F(r) and $\varphi(r)$, and the scaled ρ -meson profile $G(r)/\kappa^{1/2}$ in the H-dibaryon as the SO(3)-type hedgehog soliton solution in holographic QCD. Here, the topological boundary condition of B = 2 is $F(0) = \varphi(0) = \pi$ and $F(\infty) = \varphi(\infty) = 0$.

Figure 4. The energy density distribution $4\pi r^2 \varepsilon(r)$ in the H-dibaryon (solid curve), and that without vector mesons (dashed curve) for comparison.

We summarize in Table 1 the mass and the radius of the H-dibaryon and the B = 1 hedgehog baryon in holographic QCD. Since the nucleon mass M_N is larger than the B = 1 hedgehog mass $M_{B=1}^{\rm HH}$ by the rotational energy [6, 8], the H-dibaryon mass is smaller than mass of two nucleons (flavor-octet baryons), $M_{\rm H} < 2M_{\rm N}$, in the chiral limit.

Finally, we examine the vector-meson effect for the H-dibaryon by comparing with the $\rho(x) = 0$ case. As the result, we find that the chiral profiles F(r) and $\varphi(r)$ are almost unchanged and slightly shrink by the vector-meson effect, and the energy density also shrinks slightly, as shown in Fig. 4.

Table 1. The mass $M_{\rm H}$ and the radius $\sqrt{\langle r^2 \rangle_{\rm H}}$ of the H-dibaryon in the chiral limit in holographic QCD, together with those of the B = 1 hedgehog (HH) baryon.

M _H	$\sqrt{\langle r^2 \rangle_{\rm H}}$	$M_{B=1}^{ m HH}$	$\sqrt{\langle r^2 \rangle_{B=1}^{\text{HH}}}$
1673 MeV	0.413 fm	836.7 MeV	0.362 fm

As a significant vector-meson effect, we find that about 100MeV mass reduction is caused by the interaction between NG bosons and vector mesons in the interior region of the H-dibaryon.

5 Summary and Concluding Remarks

We have studied the H-dibaryon (uuddss) as the B = 2 SO(3)-type topological chiral soliton solution in holographic QCD for the first time. The H-dibaryon mass is twice of the B = 1 hedgehog-baryon mass, $M_{\rm H} \simeq 2.00 M_{B=1}^{\rm HH}$, and is estimated about 1.7GeV, which is smaller than mass of two nucleons (flavor-octet baryons), in the chiral limit. In holographic QCD, we have found that the vector-meson effect gives a slight shrinkage of the chiral profiles and the energy density, and also gives about 100MeV mass reduction of the H-dibaryon.

Acknowledgements

The authors thank S. Sugimoto and T. Hyodo for the useful discussions with them.

References

- [1] N. Isgur and J. Paton, Phys. Rev. D31, 2910 (1985).
- [2] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977).
- [3] F. Okiharu, H. Suganuma and T. T. Takahashi, Phys. Rev. Lett. 94, 192001 (2005); Phys. Rev. D72, 014505 (2005); F. Okiharu, T. Doi, H. Ichie, H. Iida, N. Ishii, M. Oka, H. Suganuma and T. T. Takahashi, J. Mod. Phys. 7, 774 (2016) and references therein.
- [4] A. P. Balachandran, F. Lizzi, V. G. J. Rodgers and A. Stern, Nucl. Phys. B256, 525 (1985).
- [5] R. L. Jaffe and C. L. Korpa, Nucl. Phys. B258, 468 (1985).
- [6] T. H. R. Skyrme, Proc. Roy. Soc. A260, 127 (1961); Nucl. Phys. 31 556, (1962); J. Math. Phys. 12, 1735 (1971).
- [7] E. Witten, Nucl. Phys. B160, 57 (1979).
- [8] G. S. Adkins, C. R. Nappi and E. Witten, Nucl. Phys. B228, 552 (1983).
- [9] K. Imai, Nucl. Phys. A527, 181 (1991); H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001).
- [10] S. R. Beane et al. (NPLQCD Coll.), Phys. Rev. Lett. 106, 162001 (2011).
- [11] T. Inoue *et al.* (HAL QCD Coll.), Phys. Rev. Lett. **106**, 162002 (2011).
- [12] Y. Yamaguchi and T. Hyodo, arXiv:1607.04053 [hep-ph].
- [13] K. Matsumoto, Y. Nakagawa and H. Suganuma, arXiv:1610.00475 [hep-th], JPSCP in press.
- [14] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998); 2, 505 (1998).
- [15] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005); 114, 1083 (2005).
- [16] K. Nawa, H. Suganuma and T. Kojo, Phys. Rev. D75, 086003 (2007).
- [17] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
- [18] H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Prog. Theor. Phys. 117, 1157 (2007).
- [19] T. Sakai and H. Suganuma, Phys. Lett. B430, 168 (1998).