
Vol. 10 (2017) Acta Physica Polonica B Proceedings Supplement No 3

INTERPLAY BETWEEN DECONFINEMENT
AND CHIRAL PROPERTIES∗

Hideo Suganuma, Takahiro M. Doi

Department of Physics, Kyoto University, Kyoto, Japan

Krzysztof Redlich, Chihiro Sasaki

Institute of Theoretical Physics, University of Wrocław, Wrocław, Poland

(Received February 16, 2017)

We study interplay between confinement/deconfinement and chiral
properties. We derive some analytical relations of the Dirac modes with
the confinement quantities, such as the Polyakov loop, its susceptibility
and the string tension. For the confinement quantities, the low-lying Dirac
eigenmodes are found to give negligible contribution, while they are es-
sential for chiral symmetry breaking. This indicates no direct, one-to-one
correspondence between confinement/deconfinement and chiral properties
in QCD. We also investigate the Polyakov loop in terms of the eigenmodes
of the Wilson, the clover and the domain-wall fermion kernels, respectively.
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1. Introduction

The relation between quark confinement and spontaneous chiral-sym-
metry breaking has been a longstanding difficult problem remaining in QCD
physics. In this paper, considering the essential role of low-lying Dirac modes
to chiral symmetry breaking [1], we derive analytical relations between the
Dirac modes and the confinement quantities, e.g., the Polyakov loop [2], its
fluctuations [3] and the string tension [4]. We mainly use the lattice unit,
a = 1.

2. Dirac operator, Dirac eigenvalues and Dirac modes

We use an ordinary square lattice with spacing a and size V ≡ N3
s ×Nt,

and impose the temporal periodicity/antiperiodicity for gluons/quarks. In
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lattice QCD, the gauge variable is expressed as the link-variable Uµ(s) =

eiagAµ(s), and the simple Dirac operator is given as

6D̂ =
1

2a

4∑
µ=1

γµ

(
Ûµ − Û−µ

)
, (1)

where the link-variable operator Û±µ is defined by [2–4]

〈s|Û±µ|s′ 〉 = U±µ(s)δs±µ̂,s′ , (2)

with U−µ(s) ≡ U †µ(s−µ̂). For the anti-hermitian Dirac operator ˆ6D satisfying
ˆ6D†s′,s=− ˆ6Ds,s′ , we define the Dirac mode |n〉 and the Dirac eigenvalue λn

ˆ6D|n〉 = iλn|n〉 (λn ∈ R) , 〈m|n〉 = δmn ,
∑
n

|n〉〈n| = 1 . (3)

3. Polyakov loop and Dirac modes on odd-number lattice

We use here a temporally odd-number lattice [2–4], where the temporal
lattice size Nt(< Ns) is odd. In general, only gauge-invariant quantities
such as closed loops and the Polyakov loop survive in QCD, according to
the Elitzur theorem [1]. All the non-closed lines are gauge-variant and their
expectation values are zero. Now, we consider the functional trace [2, 4]

I ≡ Trc,γ

(
Û4

ˆ6DNt−1
)
=
∑
n

〈n|Û4 6D̂Nt−1|n〉 = iNt−1
∑
n

λNt−1
n 〈n|Û4|n〉 , (4)

where Trc,γ ≡
∑

s trctrγ , and we use the completeness of the Dirac mode.
From Eq. (1), Û4

ˆ6DNt−1 is expressed as a sum of products of Nt link-
variable operators. Then, Û4

ˆ6DNt−1 includes many trajectories with the total
length Nt, as shown in Fig. 1. Note that all the trajectories with the odd-
number length Nt cannot form a closed loop on the square lattice, and
give gauge-variant contribution, except for the Polyakov loop. Thus, in
〈I〉 = 〈Trc,γ(Û4

ˆ6DNt−1
)〉, only the Polyakov-loop can survive as the gauge-

invariant component, and 〈I〉 is proportional to the Polyakov loop 〈LP〉.
Actually, we can mathematically derive the following relation [2, 4]:

〈I〉 =
〈
Trc,γ

(
Û4

ˆ6DNt−1
)〉

=

〈
Trc,γ

{
Û4

(
γ4D̂4

)Nt−1
}〉

= 4
〈
Trc

(
Û4D̂

Nt−1
4

)〉
=

4

2Nt−1

〈
Trc

{
ÛNt
4

}〉
= −4NcV

2Nt−1 〈LP〉 , (5)

where the last minus reflects the temporal antiperiodicity of ˆ6D [4].
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Fig. 1. Examples of the trajectories stemming from I = Trc,γ(Û4
ˆ6D
Nt−1

). For
each trajectory, the total length is Nt, and the “first step” is positive temporal
direction, Û4. All the trajectories with the odd length Nt cannot form a closed
loop on the square lattice, so that they are gauge-variant and give no contribution,
except for the Polyakov loop. Thus, only the Polyakov-loop component survives
in 〈I〉.

Thus, we obtain the analytical relation between the Polyakov loop 〈LP〉
and the Dirac modes in QCD on the temporally odd-number lattice [2, 4]

〈LP〉 = −
(2i)Nt−1

4NcV

〈∑
n

λNt−1
n 〈n|Û4|n〉

〉
gauge ave

, (6)

which is mathematically valid in both confined and deconfined phases. From
Eq. (6), we can investigate each Dirac-mode contribution to the Polyakov
loop. Remarkably, due to the factor λNt−1

n in Eq. (6), low-lying Dirac modes
give negligible contribution to the Polyakov loop [2,4]. In lattice QCD sim-
ulations, we have numerically confirmed relation (6) and scarce contribution
of low-lying Dirac modes to the Polyakov loop in both confined and decon-
fined phases [2].

4. Polyakov-loop fluctuations and Dirac eigenmodes

Next, we consider the Polyakov-loop fluctuations, which can be a good
indicator of the QCD transition [5]. On the temporally odd lattice, we derive
Dirac-mode expansion formula for the Polyakov-loop fluctuations [3], e.g.,

RA =

〈∣∣∣∑λNt−1
n Ûnn4

∣∣∣2〉− 〈∣∣∣∑λNt−1
n Ûnn4

∣∣∣〉2〈(∑
λNt−1
n Re

(
e2πki/3Ûnn4

))2〉
−
〈∑

λNt−1
n Re

(
e2πki/3Ûnn4

)〉2 ,
(7)

where Ûnn4 ≡ 〈n|Û4|n〉, and k is chosen such that the transformed Polyakov
loop lies in its real sector [3, 5]. The damping factor λNt−1

n appears in the
Dirac-mode sum. By removing low-lying Dirac modes, the quark condensate
rapidly reduces, but the Polyakov-loop fluctuation is almost unchanged [3].
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5. The Wilson loop and Dirac modes on arbitrary square lattices

In this section, we investigate the string tension and the Dirac modes,
using the Wilson loop on R × T rectangle on arbitrary square lattices with
any number of Nt [4]. The Wilson loop is expressed by the functional trace

W ≡ TrcÛ
R
1 Û

T
−4Û

R
−1Û

T
4 = TrcÛstapleÛ

T
4 , Ûstaple ≡ ÛR1 ÛT−4ÛR−1 . (8)

For even T (odd T case is similar [4]), we consider the functional trace

J ≡ Trc,γÛstaple
ˆ6DT

=
∑
n

〈n|Ûstaple 6DT |n〉 = (−)
T
2

∑
n

λTn 〈n|Ûstaple|n〉 . (9)

Similarly in Sec. 3, one can derive 〈W 〉 = (−)
T
2 2T

4 〈
∑

n λ
T
n 〈n|Ûstaple|n〉〉 [4].

Then, the string tension σ is expressed as

σ=− lim
R,T→∞

1

RT
ln〈W 〉=− lim

R,T→∞

1

RT
ln

∣∣∣∣∣
〈∑

n

(2λn)
T 〈n|Ûstaple|n〉

〉∣∣∣∣∣ . (10)
Because of the factor λTn in the sum, the string tension σ (the confining force)
is to be unchanged by the removal of the low-lying Dirac-mode contribution.

6. The Polyakov loop and Wilson/clover/domain-wall fermions

Finally, we express the Polyakov loop with the eigenmodes of the Wilson,
the clover (O(a)-improved Wilson) and the domain-wall fermion kernels,
where light doublers are absent [1]. The clover fermion kernel is given as

K̂ =
1

2a

4∑
µ=1

γµ

(
Ûµ−Û−µ

)
+

r

2a

±4∑
µ=±1

γµ

(
Ûµ−1

)
+m+

arg

2
σµνGµν , (11)

which becomes the Wilson fermion kernel without the last term in RHS. We
define eigenmodes and eigenvalues of K̂ as K̂|n〉〉 = iλ̃n|n〉〉 with λ̃n ∈ C.

We adopt the lattice with Nt = 4l+1, and consider the functional trace

J≡Tr
(
Û2l+1
4 K̂2l

)
=
∑
n

〈〈n|Û2l+1
4 K̂2l|n〉〉=

∑
n

(
iλ̃n

)2l
〈〈n|Û2l+1

4 |n〉〉 . (12)

Since the kernel K̂ in Eq. (11) includes many terms, J ≡ Tr(Û2l+1
4 K̂2l)

consists of products of link-variable operators. In each product, the total
number of Û does not exceed Nt. Each product gives a trajectory as in
Fig. 2. Among the trajectories, however, only the Polyakov loop can form a
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Fig. 2. Some examples of the trajectories in J ≡ Tr(Û2l+1
4 K̂2l). The length does

not exceed Nt. Only the Polyakov loop can form a closed loop and survives in 〈J〉.

closed loop and survives in 〈J〉, and we derive

〈LP〉 ∝

〈∑
n

λ̃2ln

〈
〈n|Û2l+1

4 |n〉
〉〉

gauge ave

. (13)

Due to λ̃2ln , one finds small contribution from low-lying modes of K̂ to the
Polyakov loop. We also derive a similar formula for the domain-wall fermion.

7. Summary

We have derived relations between the Dirac modes and the confine-
ment quantities (the Polyakov loop, its fluctuations and the string tension)
and have found scarce contribution from the low-lying Dirac modes. This
indicates some independence of confinement from chiral properties in QCD.
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