
Submitted to Structural and Multidisciplinary Optimization

Force density method for simultaneous optimization of
geometry and topology of trusses

Makoto Ohsaki · Kazuki Hayashi

Received: date / Revised version: date

Abstract A new method of simultaneous optimization
of geometry and topology is presented for plane and
spatial trusses. Compliance under single loading condi-
tion is minimized for specified structural volume. The
difficulties due to existence of melting nodes are suc-
cessfully avoided by considering force density, which is
the ratio of axial force to the member length, as design
variable. By using the fact that the optimal truss is stat-
ically determinate with the same absolute value of stress
in existing members, the compliance and structural vol-
ume are expressed as explicit functions of force density
only. After obtaining optimal cross-sectional area, nodal
locations, and topology, the cross-sectional areas and
nodal coordinates are further optimized using a con-
ventional method of nonlinear programming. Accuracy
of the optimal solution is verified through examples of
plane trusses and a spatial truss. It is shown that var-
ious nearly optimal solutions can be found using the
proposed method.
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1 Introduction

Topology optimization of trusses is a well-established
field of research, and various methods including math-
ematical programming and heuristic approaches have
been developed (Ohsaki 2010; Bendsøe and Sigmund
2003). The ground structure approach (Dorn et al. 1964)
is generally used for obtaining a sparse truss from a
highly connected ground structure. In this process, the
nodal locations are fixed; therefore, a dense ground struc-
ture is needed to obtain appropriate locations of nodes.

Optimization of nodal locations of trusses is called
geometry optimization or configuration optimization.
This process is rather easy, if the possible location of
each node is restricted in a small neighborhood region
of the initial location. When optimizing the geometry
of a truss, the member cross-sectional areas are also
preferred to be varied, and the thin members after op-
timization are to be removed. This way, the geometry
and topology of a truss can be simultaneously opti-
mized. For a simple truss, optimal geometry and topol-
ogy may be obtained by solving two optimization prob-
lems alternatively by considering cross-sectional areas
and nodal coordinates, respectively, as design variables
(Dobbs and Felton 1969). However, if the nodes are al-
lowed to move in a wide range of the design space, then
so-called melting nodes will exist, where closely spaced
nodes are connected by very short members (Ohsaki
1998; Achtziger 2007).

To overcome difficulties for simultaneous optimiza-
tion of geometry and topology, a growing process has
been developed (McKeown 1998; Hagishita and Ohsaki
2009). The process starts with a very simple truss and
adds nodes and members sequentially based on some
heuristics. Although a sparse optimal topology and ge-
ometry can be found, the solution obtained by this
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method does not satisfy any theoretically defined op-
timality criteria.

The most serious difficulty due to existence of melt-
ing nodes is that the axial stiffness of a member be-
comes infinity, if its length approaches zero. Further-
more, the sensitivity coefficients of stiffness of a very
short member with respect to nodal coordinates have
very large values, and the sensitivity coefficients are dis-
continuous when the member length vanishes. The dis-
continuity can be alleviated by modification of stiffness
of short members using sigmoid functions. Guo et al.
(2003) proposed a method for finding a globally sta-
ble truss by condensing some nodes of a regular truss
without using overlapping members.

There are various methods for reformulation of topol-
ogy optimization problems (Stolpe 2007); however, few
studies have been done for problems involving geometry
modification. Achtziger (2007) reformulated the prob-
lem of simultaneous optimization to a problem with cu-
bic objective function and quadratic constraints. He dis-
cussed properties of simultaneous approach, alternating
approaches, and implicit programming approach in de-
tail. It is pointed out that the alternating approach does
not always lead to the optimal solution of the problem
with two types of variable. He proposed a method based
on the implicit function approach under condition that
each pair of nodes is sufficiently spaced.

In the field of tension structures such as cable nets
and tensegrity structures, the force density method is
used for finding the self-equilibrium shape (Sheck 1974;
Zhang and Ohsaki 2015). The force density is defined
as the ratio of axial force to length, and the nodal coor-
dinates at equilibrium are obtained by solving a set of
linear equations of the force densities of all members.
Descamps and Coelho (2014) used force density as one
of design variables in their intermediate problem in the
reformulation process. However, they finally solved a
problem considering stress, nodal location, and the ra-
tio of cross-sectional area to the member length, which
is called section density, as design variables.

In this paper, a new method of simultaneous op-
timization of geometry and topology is presented for
plane and spatial trusses. The difficulties stated above
are successfully avoided by considering force density as
design variable. The compliance and structural volume
are expressed as explicit functions of force density using
the fact that the optimal truss is statically determinate
with the same absolute value of stress in existing mem-
bers. Smoothing approximation is used for the absolute
value of force density to find optimal solutions using a
nonlinear programming (NLP), where the variables are
force densities only. The accuracy of the optimal solu-
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Fig. 1 Definition of member direction vector ti.

tion is verified through an example of a plane truss, and
an example of spatial truss is also presented.

We consider a truss in two- or three-dimensional
space. However, the equations and problems in the fol-
lowing sections are formulated, for generality, for a truss
in three-dimensional space. Furthermore, throughout
the paper, the ith component of a vector a is written
as ai without explanation, and the (i, j) component of
a matrix B is denoted by Bij . All vectors are assumed
to be column vectors.

2 Equilibrium and stiffness equations

Consider a truss with n nodes and m members. Let
Ai and Li denote the cross-sectional area and length
of the ith member, respectively. The global coordinates
(x, y, z), local node numbers, and local displacement
numbers are defined in Fig. 1. Let ti ∈ R3 denote the
unit vector directed from node 1 to 2 of the ith mem-
ber; i.e. the three components of ti correspond to the
directional cosines with respect to x-, y-, and z-axes,
respectively. A vector di ∈ R6 is defined as

di =
(
−ti

T , ti
T
)T

(1)

The nodal displacement vector and the nodal force
vector of member i with respect to the global coordi-
nates are denoted by ui ∈ R6 and f i ∈ R6, respectively,
which have six components in the directions of six axes
in Fig. 1. Then, ui and f i are related by the 6 × 6
member stiffness matrix ki with respect to the global
coordinates as

f i = kiui (2)

where

ki =
AiE

Li
did

T
i (3)

with E being Young’s modulus.
The stiffness matrices ki of all members are assem-

bled to construct the 3n × 3n global stiffness matrix
K, where 3n is the total number of degrees of freedom
(DOFs) of nodes including the constrained DOFs at
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supports. Let P ∈ R3n denote the nodal load vector in-
cluding support reaction force. The displacement vector
U ∈ R3n is obtained by solving the stiffness (equilib-
rium) equation with appropriate support conditions.

The unit directional vectors ti of all m members are
assembled to construct the 3n × m equilibrium matrix
T . Relation between the axial force vector N ∈ Rm and
P is written as

TN = P (4)

Let Li denote the length of the ith member. The axial
strain vector ε ∈ Rm can be computed from U as

ε = (diag L)−1T T U (5)

Then, the axial force Ni of member i can be expressed
as

Ni = εiEAi (6)

3 Force density method

Let qi denote the force density of member i defined as

qi =
Ni

Li
(7)

which is the ratio of axial force to length.
If member i is connected to nodes j and k, then the

components of connectivity matrix, or incidence ma-
trix, C ∈ Rm×n is defined as follows:

Cij = −1, Cik = 1 (i = 1, ...,m) (8)

By using C and the force density vector q ∈ Rm, the
force density matrix Q ∈ Rm×m can be defined as
(Zhang and Ohsaki 2015)

Q = CT diag(q)C (9)

The diagonal element Qjj of Q is equal to the total
amount of force densities of members connected to node
j, and off-diagonal element Qjk (j 6= k) is equal to −qi,
if node k is connected to node j by member i.

Let x ∈ Rn, y ∈ Rn, and z ∈ Rn denote the vectors
of x-, y-, and z-coordinates, respectively, of all nodes.
The axial force vector ni ∈ R3 of the ith member con-
necting nodes j and k is defined as

ni = Niti

= Ni

(xk − xj)/Li

(yk − yj)/Li

(zk − zj)/Li


= qi

xk − xj

yk − yj

zk − zj


(10)

Therefore, the equilibrium equations in x-, y-, and z-
directions have the following same form:

Qx = px, Qy = py, Qz = pz (11)

where px ∈ Rn, py ∈ Rn, and pz ∈ Rn are the nodal
load vectors including the reactions in x-, y-, and z-
directions, respectively. See Sheck (1974), Tibert and
Pellegrino (2011), and Zhang and Ohsaki (2006) for de-
tails.

The nodes are re-ordered such that the components
of free nodes precede those of fixed nodes as

x =
(

xfree

xfix

)
, y =

(
yfree

yfix

)
, z =

(
zfree

zfix

)
(12)

The force density matrices in three directions are com-
bined to Q̃ ∈ R3n×3n as

Q̃ =

nfree︷ ︸︸ ︷ nfix︷ ︸︸ ︷

Qx
free 0 0

0 Qy
free 0

0 0 Qz
free

Qx
link 0 0

0 Qy
link 0

0 0 Qz
link

QxT
link 0 0

0 QyT
link 0

0 0 QzT
link

Qx
fix 0 0

0 Qy
fix 0

0 0 Qz
fix




nfree

 nfix

(13)

where nfree and nfix are the numbers of free and fixed
DOFs satisfying

nfree + nfix = 3n (14)

Remark 1 In the conventional formulation of force den-
sity method, the numbers of free and fixed nodes de-
pend on the direction of displacement, if there exist
roller supports. However, in the following formulation,
the fixed node means that the location of the node is
fixed in the optimization problem. Therefore, we con-
ceive all pin supports, roller supports, and loaded nodes
as fixed nodes. Therefore, the numbers of free compo-
nents and the fixed components, respectively, in three
directions are the same, and they are added to compute
nfree and nfix.

The total amount of force densities for members
connected to node j is stored in the diagonal element
(j, j) of Qx

free or Qx
fix, if node j is free or fixed, respec-

tively. The value of qk is stored in Qx
link, if member

k connects a free node and a fixed node. The matri-
ces Qy

free, Qz
free, Qy

fix, Qz
fix, Qy

link, and Qz
link are defined

similarly.
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The matrices (Qx
free, Qy

free, Qz
free), (Qx

fix, Qy
fix, Qz

fix),
and (Qx

link, Qy
link, Qz

link) are combined to Q̃free ∈ Rnfree×nfree ,
Q̃link ∈ Rnfree×nfix , and Q̃fix ∈ Rnfix×nfix , respectively,
and Q̃ in (13) is rewritten simply as

Q̃ =

(
Q̃free Q̃link

Q̃
T

link Q̃fix

)
(15)

The set of equilibrium equations in (11) is combined
as(

Q̃free Q̃link

Q̃
T

link Q̃fix

)(
X free

Xfix

)
=

(
P free

P fix

)
(16)

where

X free = (xT
free, y

T
free, z

T
free)

T ,

Xfix = (xT
fix, y

T
fix, z

T
fix)

T
(17)

and P free ∈ Rnfree and P fix ∈ Rnfix are the nodal load
vectors corresponding to X free and Xfix, respectively.
Note that the locations of loaded nodes are fixed in the
following formulation of optimization problem; there-
fore, they are included in fixed nodes and P free is a
zero vector for any arbitrary model.

If the force densities of all members and locations of
fixed nodes are assigned, then the locations of free nodes
are obtained from the following set of linear equations,
which is derived from (16):

Q̃freeX free = P free − Q̃linkXfix (18)

Therefore, X free is considered as function of q.

Remark 2 It has been proved in Kanno (2003) that the
connectivity matrix C corresponding to free nodes is
non-singular, if at least one node is fixed. Therefore, if qi

for sufficient number of members have non-zero values
and coordinate of at least one node is fixed, Qx

free, Qy
free,

and Qz
free are non-singular; and accordingly, (18) has a

solution.

Let R = P fix ∈ Rnfix denote the vector of reaction
forces corresponding to Xfix. Loaded nodes are treated
as fixed, and constraints are given so that the reaction
force is equal to the specified external load. R is ob-
tained from

R = Q̃
T

linkX free + Q̃fixXfix (19)

For member i that connects nodes j and k, the
square of length Li is given as

L2
i = (Xk − Xj) · (Xk − Xj) (20)

where Xj ∈ R3 and Xk ∈ R3 are the vectors composed
of x-, y-, and z-coordinates of nodes j and k, respec-
tively. Note that L2

i is also a function of q.
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Fig. 2 Coordinate numbering of 1 × 2 plane grid truss.

Remark 3 As pointed out by Achtziger (2007) and Descamps
and Coelho (2014), the sensitivity coefficients of length
Li with respect to nodal coordinates are discontinuous
at Li = 0. We alleviate this difficulty by avoiding the
use of Li in the objective and constraint functions of
the optimization problem; i.e., only L2

i is used.

For a simple 1×2 plane grid truss in Fig. 2, suppose
a load p is applied in y-direction at node 5. Then, the
truss has four fixed nodes 1, 2, 3, 5, and two free nodes
4, 6. Accordingly, the components of vectors X free, Xfix,
P free, P free, and matrices Q̃free, Q̃fix, Q̃link are defined
as follows:

X free = (x4, x6, y4, y6)T ,

Xfix = (x1, x2, x3, x5, y1, y2, y3, y5)T ,

P free = (0, 0, 0, 0)T ,

P fix = (0, 0, 0, 0, 0, 0, 0, p)T

(21)

Q̃free =


q1 + q3 0

0 q2+q5

0

0 q1 + q3 0

0 q2+q5

 (22)

Q̃fix =



q3 0 0 0

0 q4 0 −q4

0 0 q5 0

0 −q4 0 q1 + q2 + q4

0

0

q3 0 0 0

0 q4 0 −q4

0 0 q5 0

0 −q4 0 q1 + q2 + q4


(23)
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Q̃link =


−q3 0 0 −q1

0 0 −q5 −q2

0

0 −q3 0 0

0 0 −q5 0

 (24)

4 Optimization problem

Consider a problem for minimizing compliance under
constraint on total structural volume. We first formu-
late the problem with the coordinates of free nodes and
the cross-sectional areas of members as design variables,
Then, the problem is regarded as a two-stage optimiza-
tion problem, which is reformulated to a single-stage
problem with force densities as design variables incor-
porating the properties of optimal solution of the lower-
level problem.

The problem of simultaneous optimization of geom-
etry and topology is first simply formulated as

minimize F (X, A) =
m∑

i=1

uT
i kiui (25a)

subject to V (X, A) =
m∑

i=1

AiLi ≤ V̄ (25b)

AL
i ≤ Ai ≤ AU

i (i = 1, . . . ,m) (25c)

XL
i ≤ Xi ≤ XU

i (i = 1, . . . , nfree) (25d)

where ( )L and ( )U indicate lower and upper bounds,
respectively, of a variable. Note that ki defined in (3) is
an explicit function of A and X, while ui is an implicit
function of A and X that are obtained by solving the
stiffness equation.

For fixed nodal locations, the optimal topology can
be found by minimizing the compliance considering cross-
sectional areas as design variables; hence, the optimal
cross-sectional areas can be regarded as function of X.
Therefore, Problem (25) can be formulated as a two-
stage parametric programing problem Ohsaki 1993, which
is also called an implicit programming problem.

The lower-level problem is formulated as

minimize FX(A) (26a)

subject to VX(A) = V̄ (26b)

AL
i ≤ Ai ≤ AU

i (i = 1, . . . ,m) (26c)

where the subscript ( )X indicates that X is fixed.
Since the optimal solution of Problem (26) is obtained
for specified value of X, it can be regarded as func-
tions of X, which is indicated by a hat as Â(X); ac-
cordingly, F and V are also functions of X only as

F̂ (X) = F (Â(X), X) and V̂ (X) = V (Â(X), X), re-
spectively.

Hence, the upper-level problem is formulated as

minimize F̂ (X) (27a)

subject to V̂ (X) = V̄ (27b)

XL
i ≤ Xi ≤ XU

i (i = 1, . . . , nfree) (27c)

It is known that the optimal solution to the lower-level
problem (26) is a statically determinate truss, and all
existing members have the same absolute value of stress
(Hemp 1973, Achtziger et al. 1992).

Remark 4 The optimal truss is sometimes unstable with
collinear two members connected to a node. However,
even in such case, the truss is statically determinate in
the sense that the axial forces of members are uniquely
determined irrespective of the size of members. Unsta-
ble optimal solutions are often found when only a single
loading condition is considered. Unstable solutions can
be stabilized by fixing pin joints or adding a thin mem-
ber after optimization, when we do not consider mem-
ber buckling. Assigning fictitious nominal forces is also
effective as proposed by Descamps and Coelho (2014).
Since compatibility conditions between strains and dis-
placements are neglected in the problem formulation,
statical indeterminacy should be checked for the solu-
tion, and the solution should be rejected if it happens
to be statically indeterminate.

Let σ̄ denote the absolute value of stress for existing
members of the optimal solution of Problem (26). In the
following, (̃ ) indicates a function of q only. Using σ̄, Ai

is expressed in terms of qi as

Ãi(q) =
|Ni|
σ̄

=
|qi|Li

σ̄

(28)

Since X is computed from q using (18), all variables
are defined by q. The volume Vi of member i is defined
using q as

Ṽi(q) =
|qi|L2

i

σ̄
(29)

Let Si denote the strain energy of member i. Using
(28), Si is written as

S̃i(q) =
AiLi

2E
σ̄2

=
σ̄|qi|L2

i

2E

(30)
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Therefore, the compliance F is obtained as

F̃ (q) = 2
m∑

i=1

σ̄|qi|L2
i

2E

=
m∑

i=1

σ̄|qi|L2
i

E

(31)

It is seen from (28) that σ̄ can be regarded as a scal-
ing parameter for Ai of a statically determinate truss,
for which Ni is independent of Ai. From (29) and (31),
the product of V and F is computed as

Ṽ F̃ =
m∑

i=1

q2
i L4

i

E

=
m∑

i=1

N2
i L2

i

E

(32)

which means that Ṽ F̃ is independent of σ̄. Hence, the
total volume of members can be calculated after the
optimal solution is obtained by minimizing the compli-
ance with arbitrary positive value of σ̄.

Since A and X are functions of q, and the volume
constraints can be ignored, the simultaneous optimiza-
tion problem (25) is reformulated as

minimize F̃ (q) =
m∑

i=1

σ̄|qi|L2
i

E
(33a)

subject to Ri(q) = R̄i (i ∈ R) (33b)

qL
i ≤ qi ≤ qU

i (i = 1, . . . ,m) (33c)

where qL
i and qU

i are the lower and upper bounds of
qi, respectively, and R is the set of indices of reaction
components that are to be specified.

This way, the number of variables is reduced to m.
In contrast, in the formulation by Descamps and Coelho
(2014), the number of variables is 3m + d, where d

is the number of variables of nodal coordinates. It is
pointed out by Rojas-Labanda and Stolpe (2015) that
the formulation using simultaneous analysis and design
(SAND) for topology optimization demands more com-
putational cost than the nested formulation for large-
scale problems. Therefore, it is important to formulate
a problem with small number of variables.

Although Problem (33) is a simple NLP problem
with q as the design variable, |qi| is non differentiable
at qi = 0. A standard approach to prevent this discon-
tinuity is to use auxiliary variables q+

i and q−i as

qi = q+
i − q−i , |qi| = q+

i + q−i , q+
i ≥ 0, q−i ≥ 0 (34)

However, we use the smoothing approximation, because
our purpose is to obtain the optimal topology, geome-
try, and cross-sectional areas by considering only q as
design variables. Accordingly, |qi| is approximated as

|qi| =
√

q2
i + c (35)

where c is a sufficiently small positive number. The
compliance is approximated as

F̃ a(q) =
m∑

i=1

σ̄L2
i

√
q2
i + c

E
(36)

5 Sensitivity analysis

We use sequential quadratic programming, which is a
gradient-based approach of NLP. Therefore, sensitiv-
ity coefficients of objective and constraint functions are
needed for reduction of computation time.

Differentiation of (36) with respect to ql leads to

∂F̃ a (q)
∂ql

=
σ̄qlL

2
l

E
√

q2
l + c

+
m∑

i=1

(
σ̄
√

q2
i + c

E
· ∂L2

i

∂ql

)
(37)

From (20), the sensitivity coefficient of L2
i with re-

spect to ql is obtained as

∂L2
i

∂ql
= 2(Xj − Xk) · ∂(Xj − Xk)

∂ql
(38)

Differentiation of (18) and (19) with respect to ql leads
to

Q̃free

∂X free

∂ql
= −∂Q̃free

∂ql
X free −

∂Q̃link

∂ql
Xfix (39)

∂R

∂ql
=

∂Q̃
T

link

∂ql
X free + Q̃

T

link

∂X free

∂ql
+

∂Q̃fix

∂ql
Xfix (40)

For the current value of q during optimization, the
set of linear equations (39) is solved for ∂X free/∂ql,
which is incorporated successively into (37), (38), and
(40) to obtain the sensitivity coefficients of the objective
and constraint functions.

6 Improvement of optimal solution

Since the optimal solution to Problem (33) may include
many overlapped nodes and members, and the nodal
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positions are obscure, we further optimize the cross-
sectional areas of members and the nodal coordinates.
The following problem is solved with fixed topology:

minimize F (X, A) =
m∗∑
i=1

N2
i Li

EAi
(41a)

subject to
m∗∑
i=1

AiLi ≤ V̄ (41b)

XL
i ≤ Xi ≤ XU

i (i = 1, ..., n∗
free) (41c)

AL
i ≤ Ai ≤ AU

i (i = 1, ...,m∗) (41d)

where m∗ and n∗
free are the numbers after unifying over-

lapped nodes and members in the optimal solution to
Problem (33). The same symbols as the previous sec-
tion are used for variables for convenience.

The lower bound AL
i for Ai is a sufficiently small

positive value, and the member with Ai = AL
i is elimi-

nated after optimization. Since we do not have to expect
existence of melting nodes in this re-optimization pro-
cess, upper and lower bounds XU

i and XL
i , respectively,

may be close to the initial value of Xi that is assigned
based on the optimal solution of Problem (33). Finite
difference method is used for computing sensitivity co-
efficients, because Problem (41) is solved only once.

7 Numerical examples

We present three numerical examples to confirm the
efficiency of the optimization method proposed in the
previous sections. A sequential quadratic programming
(SQP) implemented in the library SNOPT Ver 7.2 (Gill
et al. 2002) is used for solving NLP problems. Units are
omitted in the following examples, because they are not
important in this research.

Young’s modulus is 1.0 for comparison to the results
in Achtziger (2007) and Descamps and Coelho (2014).
The values of c in (35) and σ̄ are 1.0 × 10−6 and 1.0,
respectively, for all examples. Let q̄ = (q̄1, . . . , q̄i)T de-
note the vector of force density of the initial regular
truss with uniform cross-sectional areas. The lower and
upper bounds for qi are given as qL

i = qi − ∆q and
qU
i = qi + ∆q, respectively. The initial values of force

density for optimization are randomly provided within
the range [q̄i − δq, q̄i + δq]. We choose the best solu-
tion out of 100 solutions obtained using 100 different
random seeds.

7.1 Example 1 : 3 × 2 truss with 27 members

The first example is optimization of a plane truss model.
The initial ground structure is a 3×2 rectangular grid as
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Fig. 3 Initial ground structure of a 3 × 2 plane grid.

Fig. 4 Optimal solution of 3 × 2 grid obtained by solving
Problem (33) (F∗ = 8.316).

Table 1 Nodal location of optimal solution of 3 × 2 grid.

node x y
1 0.0 0.0
2 0.0 1.0
3 0.0 2.0
4 1.912 0.308
5 1.498 0.975
6 1.870 1.683
7 2.839 0.859
8 2.838 0.861
9 2.033 1.620
10 2.841 0.864
11 3.0 1.0
12 2.830 0.868

shown in Fig. 3 with 27 members and 12 nodes including
supports. Note that the intersecting diagonal members
are not connected with each other. The truss is pin-
supported at nodes 1, 2, 3, and a downward unit load
is applied at node 11. Nodal coordinates are optimized
fixing the locations of these four nodes with parameter
values ∆q = 1000.0 and δq = 5.0.

The best optimal solution to Problem (33) is ob-
tained as shown in Fig. 4, where F̃ a and Ṽ a have the
same value 9.131. The values of F̃ and Ṽ without smooth-
ing are 9.119. The compliance F ∗ corresponding to the
total volume 10.0 is computed as F ∗ = F̃ Ṽ /10.0 =
8.316, which is almost equal to F ∗ = 8.307 obtained by
Achtziger (2007). The nodal locations of optimal solu-
tion are listed in Table 1. Note that nodes 7, 8, 10, and
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Table 2 Force density, cross-sectional area, and length of
members of optimal solution of 3 × 2 grid.

member nodes qi Ai Li

1 1 4 −0.509 0.986 1.937
2 4 7 −0.050 0.054 1.079
3 7 10 1.736 0.003 0.002
4 2 5 0.000 0.001 1.499
5 5 8 0.000 0.001 1.345
6 8 11 −3.874 0.823 0.213
7 3 6 0.546 1.036 1.897
8 6 9 5.609 0.981 0.175
9 9 12 0.202 0.024 0.118
10 4 5 0.465 0.365 0.785
11 7 8 4.635 0.006 0.001
12 10 11 −0.010 0.002 0.212
13 5 6 −0.266 0.213 0.800
14 8 9 0.119 0.132 1.106
15 11 12 0.013 0.013 1.030
16 1 5 −0.351 0.628 1.788
17 4 2 0.000 0.002 2.034
18 4 8 −0.793 0.856 1.079
19 7 5 0.000 0.001 1.346
20 7 11 −0.254 0.054 0.213
21 10 8 −5.423 0.005 0.001
22 2 6 0.000 0.002 1.991
23 5 3 0.319 0.579 1.816
24 5 9 −0.265 0.222 0.838
25 8 6 0.009 0.011 1.269
26 8 12 0.011 0.011 0.988
27 11 9 0.680 0.780 1.148

Fig. 5 Fourth best solution among 100 optimal solutions of
Problem (33) of 3 × 2 grid (F∗ = 8.347).

Fig. 6 Solution of re-optimization of 3× 2 grid (F = 8.312).

12 converged to an almost the same place; i.e., three
nodes melted.

The values of qi, Ai, and Li for all members of op-
timal solution are listed in Table 2. It is seen from the
table that members 3, 11, and 21 that connect pairs of

Table 3 Maximum, median, minimum, average values, and
standard deviation of function values for Examples 1, 2, and 3
for 100 solutions, which are scaled for comparison to existing
results.

Ex. 1 (F∗) Ex. 2 (F∗) Ex. 3 (Ṽ )
max 10.227 7.850 × 106 4015.431
median 9.095 640.150 54.927
min 8.316 118.994 54.544
average 9.218 9.271 × 104 125.171
std. dev. 0.549 7.875 × 105 435.744

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Fig. 7 Iteration history of merit function for four best solu-
tions of 3 × 2 grid.

nodes (7,10), (7,8), and (8, 10), respectively, have small
member length. Since ∆q has a sufficiently large value
1000, no bound constraint is active for qi. Note again
that, as seen from (22) and (24) for the simple exam-
ple truss in Fig. 2, a diagonal term of the force density
matrix is the sum of the force densities of the mem-
bers connected to the node. Therefore, even some force
densities are zero, it does not mean that the matrix
is singular. In Table 2, the force densities of members
4, 5, and 19 have very small absolute values; however,
they are not exactly equal to zero. Furthermore, mem-
bers 10, 13, 16, 23, and 24 connected to node 5 have
nonzero force densities.

Iteration history of the merit function is plotted in
Fig. 7 for the four best solutions of the 3×2 grid. Merit
function is the objective function with penalty terms of
violated constraints, and it is used for QP subproblem
and line search in SQP. Therefore, almost monotonic
reduction of this function indicates a good convergence
of the algorithm.

The maximum, median, minimum, average values,
and standard deviation of F ∗ for 100 different solutions
are listed in the second column of Table 3. F ∗ varies
around 10 with small standard deviation, which con-
firms the convergence property of the proposed method.
Note that almost all solutions, which have vanishing
members and melting nodes, are obtained without di-
vergence in the optimization process. Moreover, the com-
putation time for each optimization is about three sec-
onds using a PC with Intel Core i7 processor, which im-
plies possible application to complex models. Although
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the solutions from different random seed do not con-
verge to the same optimal solution, it is important to
note that various nearly optimal solutions with differ-
ent topology can be found using the proposed method.
Fig. 5 shows the fourth best solution among 100 solu-
tions. Note that the truss in Fig. 5 is symmetric, al-
though the best solution in Fig. 3 is asymmetric.

Next, the solution in Fig. 3 is re-optimized solving
Problem (41) with the upper-bound volume V̄ = 10.0.
The four nodes 7, 8, 10, and 12 are combined to a sin-
gle node, and node 2 and the three thin members con-
nected to node 2 are removed before re-optimization.
Bound constraints are given for the nodal coordinates;
however, they are not active at the optimal solution.
The upper bound AU

i for Ai is sufficiently large, and the
lower bound AL

i is 0.001. The optimal solution is shown
in Fig. 6, which is almost the same as the solution in
Fig. 4. Note that the members with Ai = AL

i are re-
moved in Fig. 4. The compliance F ∗ is slightly reduced
to 8.312. Therefore, influence of the re-optimization is
trivial and the proposed method leads to a sufficiently
converged solution.

7.2 Example 2 : 6 × 1 truss with 31 members

Consider next a 6×1 plane grid truss as shown in Fig. 8.
The truss has 31 members and 14 nodes including sup-
ports. Note that the left and right supports are pin and
roller, respectively, and other lower nodes are subjected
to downward unit loads. Throughout the optimization
process, the locations of these seven nodes are fixed.

Since the y-coordinates of all fixed and loaded nodes
are 0, there exists an obvious solution for (18), where
all y-coordinates vanish. To prevent this difficulty, y-
coordinates of the loaded nodes are modified from 0.0 to
−0.1. Note that this modification does not have any ef-
fect on the final optimal solution after re-optimization,
if an appropriate optimal topology is found by solving
Problem (33).

The best optimal solution obtained from 100 dif-
ferent random seed is illustrated in Fig. 9, where F̃ a

and Ṽ a have the same value 34.520. The values of F̃
and Ṽ without smoothing are 34.496. The compliance
F ∗ corresponding to the total volume 10.0 is computed
as F ∗ = F̃ Ṽ /10.0 = 118.994, which is smaller than
F ∗ = 122, 477 obtained by Achtziger (2007), because
the y-coordinates of loaded nodes are modified. It is
seen from Fig. 9 that no melting node exists in this ex-
ample. Although ∆q = 100.0, which is 1/10 of Example
1, no bound constraint is active for qi at the optimal
solution; however, the bounds are needed for improv-
ing convergence of solutions. The properties of function
values of 100 different optimal solutions are listed in the

[1] [3] [5] [7] [9] [11] [13]

[2] [4] [6] [8] [10] [12] [14]

1 1 1 1 1

1

1 1 1 1 1 1

x

y

Fig. 8 Initial ground structure of a 6 × 1 plane grid.

Fig. 9 Optimal solution of 6 × 1 grid obtained by solving
Problem (33) (F∗ = 118.994).

Fig. 10 Solution of re-optimization of 6 × 1 grid (F =
122.411).

third column of Table 3. Note that solution sometimes
diverges in this example; however, the median value is
sufficiently small.

The truss in Fig. 9 is re-optimized to obtain the
solution in Fig. 10, which is a little different from the
solution in Fig. 9. Note that y-coordinates of the loaded
nodes are 0.0 in this process. The value of compliance
F ∗ for V̄ = 10.0 is = 122.411, which is slightly smaller
than 122.477 in Achtziger (2007). However, due to the
elimination of thin members, this optimal solution is
globally unstable with a zero-energy mechanism mode
in x-direction. To prevent such instability, some mem-
bers, e.g., those connecting nodes (1,3) and (11,13) may
be left without removing.

7.3 Example 3 : L-shaped frame

Finally, the L-shaped three-dimensional truss in Fig. 11
is optimized. This model has been studied in Descamps
and Coelho (2014) for stress constrained optimization
problem. Since the compliance optimization problem
under single loading condition can be reformulated as
a stress constrained problem or a limit analysis prob-
lem, the optimal solution obtained using the proposed
method is expected to be the same as the solution in
Descamps and Coelho (2014) under appropriate param-
eter values.
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Fig. 11 Initial ground structure of an L-shaped truss.

The initial ground structure is an L-shaped truss
with 28 nodes and 108 members as shown in Fig. 11.
The four upper nodes are pin-supported. Each of two
upper tips of the truss is subjected to unit load in neg-
ative z-direction.

To compare the results with those in Descamps and
Coelho (2014), x-, y-, and z-coordinates of the right-
most and lower nodes, which are indicated by blank cir-
cles, are considered as design variables, and the bound-
ing box is set as 1 × 1 × 1 unit cube around the initial
position in Fig. 11. The values of ∆q and δq are 100.0
and 1.0, respectively.

The best optimal solution obtained from 100 differ-
ent random seed is shown in Fig. 12, where F̃ = 54.544.
It is seen from the figure that two pairs of lower nodes
turned out to be coalescent as a result of optimization.
The properties of function values of 100 different opti-
mal solutions are listed in the last column of Table 3.
The value of V exceeds 1000 in only two cases; there-
fore, no severe divergence occurs in this example. Av-
erage computation time is 16 seconds for obtaining an
optimal solution.

Although 66 members in Fig. 12 are thin enough to
be neglected, the number of members are decreased by
only 40 to maintain stability of the truss of the ground
structure for re-optimization process Note that the re-
maining 26 members vanish after re-optimization. The
solution with F̃ = 54.276 as shown in Fig. 13 is ob-
tained by re-optimization. Note that the objective value
by Descamps and Coelho (2014) is 54.098.

Fig. 12 Optimal solution of an L-shaped truss obtained by
solving Problem (33) (F̃ = 54.544).

Fig. 13 Solution of re-optimization of L-shaped truss (F =
54.276).

8 Conclusions

A new method of simultaneous optimization of geome-
try and topology has been presented for plane and spa-
tial trusses. The conclusions obtained from this study
are summarized as follows:

1. The difficulty in simultaneous optimization of geom-
etry and topology can be successfully avoided using
force density as design variable. The nodal coordi-
nates are considered as functions of force densities,
where the loaded nodes are also included in the fixed
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nodes, for which the coordinates are to be assigned.
Regularity of the force density matrix to obtain the
nodal coordinates is ensured, if the location of at
least one node is fixed; however, a plane truss degen-
erates to a line, if all the fixed nodes have the same
coordinate value in a direction; e.g., y-coordinates
of all fixed nodes are 0.

2. The compliance and structural volume are expressed
as functions of force density only, using the fact that
the optimal truss is statically determinate with the
same absolute value of stress in existing members.
This way, the number of design variables can be re-
duced to m, which is the number of members, even
for the problem including geometry optimization.
In contrast, in the formulation by Descamps and
Coelho (2014), the number of variables is 3m + d,
where d is the number of variables of nodal coordi-
nates. As pointed out by Rojas-Labanda and Stolpe
(2015), it is important to formulated a problem with
small number of variables.

3. Discontinuity of the sensitivity coefficient of cross-
sectional area with respect to the force density can
be successfully avoided using smoothing function.
Since the nodal locations and cross-sectional areas
are re-optimized by solving a simple NLP problem,
small errors such as existence of thin members do
not have any effect on the final optimal solution.

4. Accuracy of the optimal solution has been verified
through two examples of plane truss and an exam-
ple of three-dimensional truss that have been stud-
ied in the existing literatures. Although the optimal
topologies are different from those in existing stud-
ies, the differences in objective values are sufficiently
small. It should be noted that various nearly optimal
solutions can be found using the proposed method.
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