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Relativistic viscoelastic fluid mechanics
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A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on
the basis of Onsager’s linear nonequilibrium thermodynamics. After rederiving the theory using a local argument
with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes
fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short
time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to
relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for
the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric
hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation
suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of
relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide
variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly
generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal
description of single-component relativistic continuum materials. We also show that the presence of strains and
the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant
description of continuum mechanics.
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I. INTRODUCTION

The dynamics of fluids at large scales is universally
described by the Navier-Stokes equations, which represent the
regression to a global equilibrium with transfers of conserved
quantities (such as energy-momentum and particle number)
among fluid particles [1]. This can be formulated in a generally
covariant way, but it is known that there arises a problem of
acausality. In fact, the obtained equations for the propagation of
disturbance are basically parabolic and thus predict infinitely
large speed of propagation for infinitely high frequency modes,
leaving light cones. One should note here that this does
not imply the breakdown of the internal consistency of the
description because the Navier-Stokes equations are simply
an effective description at large space-time scales and need
not describe high-frequency modes correctly. However, this is
still troublesome when adopting the equations in numerical
simulations; the initial value problems are ill posed, and
unacceptable numerical solutions can be obtained easily.

To remedy the problem, Müller, Israel, and Stewart [2–4]
extended the theory by treating the dissipative part of stress
tensor, τ

μν

(d) , and the heat flux qμ (for the Eckart frame)
or the particle diffusion current νμ (for the Landau-Lifshitz
frame) as additional thermodynamic variables on which
the entropy density can depend. This prescription is based
on the so-called extended thermodynamics and corresponds
to taking into account higher derivative corrections to the
effective theory. It has been shown that such modified theories
have a good causal behavior and that linear perturbations
around a hydrostatic equilibrium obey hyperbolic differ-
ential equations. This is now regarded as a fundamental
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framework for the numerical study of relativistic viscous
fluids.

Meanwhile, modifications of the Navier-Stokes equations
have also been studied in the area of rheology, and the materials
treated there are generically called viscoelastic materials or
viscoelastic fluids. Historically, viscoelasticity was defined by
Maxwell in the 19th century as the characteristic property of
such continuum materials that behave as elastic solids at short
time scales and as viscous fluids at long time scales [1,5]. In
1948, Eckart proposed a theory of elasticity and anelasticity
[6], which describes the nonrelativistic dynamics of single-
component viscoelastic materials and was reinvented recently
[7] in the light of the covariance under foliation preserving
diffeomorphisms. In this description, elastic strains (or equiv-
alently, the “intrinsic metric” defined below) are introduced
as additional thermodynamic variables, as in the theory of
elasticity. As explicitly shown in [7], this theory of viscoelas-
ticity contains the theory of elasticity and the theory of fluids
as special limiting cases, and correctly reproduces the Navier-
Stokes equations in the fluid limit. Furthermore, as was pointed
out in [8], since the dynamics at short time scales is dominated
by elasticity, shear modes of linear perturbations around
a hydrostatic equilibrium obey differential equations with
second-order time derivatives (in contrast to the equations
obtained from the Navier-Stokes equations that contain only a
first-order time derivative), so that causal behaviors for large
frequencies are significantly improved.

Recently, on the basis of Onsager’s linear regression
theory on nonequilibrium thermodynamics [9–12], the present
authors proposed a relativistic theory of viscoelasticity [13]
which generalizes the theory of elasticity and anelasticity [6,7]
in a generally covariant form. In the present paper, after
rederiving the theory relying on a local argument with the
entropy current, we study the detailed properties of relativistic
viscoelasticity. We show that fluidity is universally realized in
the long time limit and also that acausal problems disappear
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for a wide region of parameters. Thus, the relativistic theory
of viscoelasticity with such parameters can be regarded
as a causal completion of relativistic Navier-Stokes fluid
mechanics, and we expect that it could be used as another
basis in the numerical study of relativistic viscous fluids.

This paper is organized as follows. In Sec. II we rederive
the viscoelastic model of [13] using a local argument with
the entropy current. We also show that the presence of
strains and the corresponding change in temperature are
naturally unified in a generally covariant description of
continuum mechanics. In Sec. III we consider the long and
short time limits of our viscoelastic model. We prove that
the model universally gives relativistic Navier-Stokes fluids
in the long time limit. In Sec. IV we show that when
some parameters take specific values, our viscoelastic model
reduces to (a higher-dimensional extension of) the nonlinear
generalization of the simplified Israel-Stewart model [14]. In
Sec. V we consider linear perturbations around a hydrostatic
equilibrium in Minkowski space-time. The dispersion relations
show that the evolutions are certainly stable. Although the
wave equations for the linear perturbations are not always
hyperbolic, if some parameters are chosen appropriately (in-
cluding the parametrizations for the simplified Israel-Stewart
model) they become symmetric hyperbolic and thus free of
acausality problems. Section VI is devoted to conclusion and
discussions.

II. RELATIVISTIC VISCOELASTIC MECHANICS

In this section, we rederive the fundamental equations
for relativistic viscoelastic mechanics using a local argument
with the entropy current. In Appendix A we show that the
present formulation is equivalent to the “entropic formulation”
proposed in our previous paper [13] which is based on
Onsager’s linear regression theory.

A. Definitions

We start by giving a brief review on the generally covariant
definitions of viscoelastic materials [13].

1. Geometrical setup

We consider a single-component continuum material living
in a (D + 1)-dimensional Lorentzian manifold M. The local
coordinates are denoted by xμ (μ = 0,1, . . . ,D), and the
background Lorentzian metric with signature (−, + , . . . ,+)
by gμν(x). Following the convention of Landau and Lifshitz
[1], we define the velocity field u = uμ(x)∂μ from the
momentum (D + 1) vector pμ as

uμ(x) ≡ gμν(x)pν(x)/e(x) = pμ(x)/e(x), (1)

where e(x) ≡ √−gμν(x)pμ(x)pν(x) is the proper energy den-
sity. Note that uμ(x) is normalized as gμν(x)uμ(x)uν(x) = −1.
Here and hereafter indices are subscripted (or superscripted)
always with gμν (or with its inverse gμν).

Assuming that the velocity field is hypersurface orthogonal,
we introduce a foliation of M consisting of spatial hyper-
surfaces (time slices) orthogonal to uμ. We parametrize the
time slices with a real parameter t and denote them by �t .
We exclusively (except for Sec. V) use a coordinate system
x = (xμ) = (x0,x) such that x0 = t , x = (xi) (i = 1, . . . ,D),
for which the shape of the material at time t is given by the
induced metric on �t :

hμν(x) ≡ gμν(x) + uμ(x)uν(x)

= gμν(x) + pμ(x)pν(x)

e2(x)
. (2)

We also define the extrinsic curvature Kμν of the hypersurface
as half the Lie derivative of hμν with respect to the velocity
field u = uμ∂μ:

Kμν ≡ 1
2 £uhμν = 1

2hρ
μhσ

ν (∇ρuσ + ∇σ uρ). (3)

This measures the rate of change in the induced metric hμν

as material particles flow along uμ. Note that this tensor is
symmetric and orthogonal to uμ, Kμνu

ν = 0.
In the ADM parametrization, the metric and the velocity

are represented with the lapse N (x) and the shifts Ni(x) (i =
1, . . . ,D) as

ds2 = gμν(x)dxμdxν

= −N2(x)dt2 +hij (x)[dxi −Ni(x)dt][dxj − Nj (x)dt],

(4)

u = uμ(x)∂μ = 1

N (x)
∂0 + Ni(x)

N (x)
∂i

[⇔ uμ(x)dxμ = −N (x)dt]. (5)

The volume element on the hypersurface is given by the D

form
√

hdD x ≡ √det(hij )dD x = N−1√−gdD x.
With a given foliation, we still have the symmetry of

foliation preserving diffeomorphisms that give rise to trans-
formations only among the points on each time slice. Using
this residual gauge symmetry we can impose the synchronized
gauge, Ni(x) ≡ 0, so that the background metric and the
velocity field are expressed as

ds2 = gμν(x)dxμdxν ≡ −N2(x)dt2 + hij (x)dxidxj , (6)

u = uμ(x)∂μ = 1

N (x)

∂

∂t
= ∂

∂τ
, (7)

where τ is the local proper time defined by dτ = Ndt . In
this gauge, due to the relation ∂/∂t = N (x)∂/∂τ , the proper

FIG. 1. Processes of deformation and stress relaxation [7,8].
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energy density e(x) measured with the proper time τ is related
to the energy density e(x) measured with time t as

e(x) = N (x)e(x). (8)

Note that e(x) includes the gravitational potential through the
factor N (x). Accordingly, the local temperature T measured
with τ is related to the temperature T measured with t through
the following Tolman law:

T(x) = N (x)T (x). (9)

2. Definition of (relativistic) viscoelastic materials

According to the definition of Maxwell, viscoelastic ma-
terials behave as elastic solids at short time scales and as
viscous fluids at long time scales (see, e.g., Sec. 36 in [5]).
In order to understand how such materials evolve in time,
we consider a material consisting of many molecules bonding
each other and assume that the molecules first stay at their
equilibrium positions in the absence of strains (as in the
leftmost illustration of Fig. 1) [7,8]. We now suppose that
an external force is applied to deform the material. An internal
strain is then produced in the body, and according to the
definition, the accompanied internal stress can be treated as an
elastic force at least during short intervals of time. However, if
we keep the deformation much longer than the relaxation times
(characteristic to each material), then the bonding structure
changes to maximize the entropy, and the internal strain
vanishes eventually as in the rightmost of Fig. 1. The point
is that two figures (the central and the rightmost) have the
same shape (same induced metric) hμν , but different bonding
structures.

The internal bonding structure can be specified by the
intrinsic metric h̄μν , which measures the shape that the
material would take when all the internal strains are removed
virtually [6,7]. For the example given in Fig. 1, the intrinsic
metric for the center illustration is given by the induced metric
for the leftmost illustration, while the intrinsic metric for the
rightmost illustration agrees with the induced metric for itself.
Thus, the plastic (i.e., nonelastic) deformation from the center
illustration to the rightmost illustration is described as the
evolution of the intrinsic metric.1

Its generally covariant generalization can be defined in the
following way. Suppose that we have two adjacent, spatially
separated space-time points P and Q, each of which represents
a point on the trajectory of a material particle (see Fig. 2). By
denoting their coordinates by x = (xμ) and x + dx = (xμ +
dxμ), respectively, the distance between P and Q in the real
configuration is of course given with the metric gμν as (the
square root of)

ds2 = gμν(x)dxμdxν. (10)

We now virtually remove all the strains in a sufficiently small
space-time region including the two points. Then P and Q

1h̄μν is also called the “strain metric” and was first introduced
by Eckart to embody “the principle of relaxability-in-the-small” in
anelasticity [6]. Some examples of the explicit form of hμν and h̄μν

under various deformations can be found in [7,8].

FIG. 2. Real [xμ(τ )] and virtual [x̄μ(τ )] trajectories of material
particles. The distance between P̄ and Q̄ gives the definition of the
intrinsic metric ḡμν .

would move to other positions P̄ and Q̄, whose coordinates we
denote by x̄ = (x̄μ) and x̄ + dx̄ = (x̄μ + dx̄μ), respectively.
This correspondence defines a local map f : x �→ x̄ = x̄(x),
with which we define the intrinsic metric ḡμν(x) as the metric
measuring the virtual distance between P̄ and Q̄ (or, as the
pullback of the metric gμν for the map; ḡμν ≡ f ∗gμν):2

ds̄2 ≡ gρσ (x̄)dx̄ρdx̄σ = gρσ [x̄(x)]
∂x̄ρ

∂xμ

∂x̄σ

∂xν
dxμdxν

≡ ḡμν(x)dxμdxν. (11)

With the velocity vector u = uμ(x)∂μ, we parametrize ḡμν as

ḡμν = −(1 + 2θ )uμuν − εμuν − ενuμ + h̄μν

(εμuμ = 0, hμνu
ν = 0, h̄μνu

ν = 0). (12)

The strain tensor is then introduced as

Eμν(x) ≡ 1
2 [gμν(x) − ḡμν(x)]

= θuμuν + 1
2 (εμuν + ενuμ) + εμν, (13)

where

εμν(x) ≡ 1
2 [hμν(x) − h̄μν(x)] (14)

is the spatial strain tensor. Note that if we define the extrinsic
curvature associated with the spatial intrinsic metric h̄μν as

K̄μν ≡ 1
2 £uh̄μν = 1

2 (uλ∂λh̄μν + ∂μuλh̄λν + ∂νu
λh̄μλ), (15)

the following identity holds:

£uεμν = Kμν − K̄μν. (16)

A viscoelastic material is a thermodynamic system con-
sisting of material particles as its subsystems. While the
system regresses to a thermodynamic equilibrium, one can
imagine that the virtual trajectory of each material particle
approaches its real trajectory, so that the strain tensor Eμν

approaches zero. Such an irreversible process is called plastic
(i.e., nonelastic), and thus we see that the dynamics of
Eμν includes plastic evolutions (in addition to reversible,
elastic evolutions). In the following discussions, we assume
that Eμν = (εμν,εμ,θ ) are all small quantities, such that
their nonlinear effects can be neglected. We shall denote

2As in the standard theory of elasticity [5], there may be an
arbitrariness in defining x̄μ, but the intrinsic metric ḡμν can still
be defined uniquely.
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the contraction of a spatial tensor3 Aμν with gμν by trA,
so that

trε ≡ gμνεμν = hμνεμν, (17)

trK ≡ gμνKμν = hμνKμν. (18)

We close this section by explaining the physical meaning
of the strain tensor Eμν = (εμν,εμ,θ ). The spatial strain tensor
εμν stands for the standard strains, measuring the difference
between the induced metric hμν and the spatial induced metric
h̄μν . One can easily see that the quantity εμ represents the
relative velocity of a material particle in its real trajectory
with respect to that in its virtual trajectory, εμ = uμ − ūμ ≡
dxμ/dτ − dx̄μ/dτ , where τ is a common proper time (see
Fig. 2). In order to understand the meaning of θ , we first recall
that the covariant vector uμ is expressed as uμdxμ = −Ndx0.
We can then rewrite ds2 and ds̄2 as

ds2 = −N2(x)(dx0)2 + hμν(x) dxμdxν, (19)

ds̄2 = −[1 + 2θ (x)]N2(x)(dx0)2 + 2N (x)εμ(x) dxμdx0

+ h̄μν(x) dxμdxν, (20)

with hμνdxμdxν = hij (dxi − Nidx0)(dxj − Njdx0) and a
similar (but a bit more complicated) expression for
2Nεμdxμdx0 + h̄μνdxμdxν . These equations mean that N̄ ≡√

1 + 2θN 	 (1 + θ )N represents the lapse function for the
intrinsic metric. Then, through the Tolman law, we can relate
the virtual temperature T̄ observed in the absence of strains
to the actual temperature T as NT = N̄ T̄ (= T). We thus
obtain the relation θ = (N̄2/N2 − 1)/2 = (T 2/T̄ 2 − 1)/2 	
(T − T̄ )/T̄ , and conclude that the scalar θ expresses the
increase of the temperature due to strains. This conclusion
shows that the presence of strains and the corresponding
change in temperature are naturally unified in a generally
covariant description of continuum mechanics.

B. Entropy production rate

As was adopted in [13], in order to develop thermodynamics
in a generally covariant manner, it is convenient to distinguish
density quantities from other intensive quantities, and, by
multiplying them with the spatial volume element

√
h, we

construct new quantities which are spatial densities on each
time slice. For example, the entropy density s, the energy-
momentum density pμ, and the number density n are density
quantities, and for them we introduce the following spatial
densities:

s̃ ≡
√

hs, p̃μ ≡
√

hpμ, ñ ≡
√

hn. (21)

We assume that each material particle is in its local thermody-
namic equilibrium, and that the local entropy s̃ is a function of
p̃μ, ñ, and gμν as well as of the strain tensor Eμν = (εμν,εμ,θ ):

s̃(x) = s̃(Eμν(x),p̃μ(x),ñ(x),gμν(x)). (22)

3By spatial we mean that Aμν is orthogonal to uμ, Aμνu
ν = 0 =

Aμνu
μ. Recall that gμν = −uμuν + hμν .

We further assume that s̃ depends on p̃μ only through the local
proper energy ẽ(p̃μ,gμν) ≡ √−gμνp̃μp̃ν , so that s̃ can also be
expressed as

s̃(x) = σ̃ (Eμν(x),ẽ(x),ñ(x),gμν(x))

= σ̃ (εμν(x),εμ(x),θ (x),ẽ(p̃μ(x),gμν(x)),ñ(x),gμν(x)).

(23)

Since we are only interested in linear nonequilibrium ther-
modynamics, we only need to expand s̃ in Eμν to second
order:4

s̃ = (terms independent of Eμν) − 1

2T
[2λ1ε〈μν〉ε〈μν〉

+ λ2εμεμ + γ1(trε)2 + 2γ2(trε)θ + γ3θ
2]. (24)

We require the stability of the system under the change in
strains Eμν , so that the constants λ1 and λ2 are non-negative,

and the matrix γ = (γ1 γ2
γ2 γ3

) is positive semidefinite.
Then the fundamental thermodynamic relation can be

written as

δs̃ = −uν

T
δp̃ν − μ

T
δñ +

√
h

2T
T

μν

(q) δgμν

−
√

h

T
2λ1ε

〈μν〉δε〈μν〉 −
√

h

T
(γ1trε + γ2θ )δ(trε)

−
√

h

T
λ2ε

μδεμ −
√

h

T
(γ3θ + γ2trε)δθ. (25)

Here the temperature T , the chemical potential μ and the
quasiconservative part of the stress tensor, τ

μν

(q) , are defined
as5

∂σ̃

∂ẽ
= 1

T
,

∂σ̃

∂ñ
= −μ

T
,

∂σ̃

∂gμν

=
√

h

2T
τ

μν

(q) , (26)

where we require that τ
μν

(q) be orthogonal to uμ, τ
μν

(q) uν = 0.
The quasiconservative part of the energy-momentum tensor is
then defined as

T
μν

(q) ≡ euμuν + τ
μν

(q) . (27)

In deriving Eq. (25), we have used the relations

∂ẽ(p̃μ,gμν)

∂p̃ν

= −uν,
∂ẽ(p̃μ,gμν)

∂gμν

= ẽ

2
uμuν. (28)

We now set the variation in Eq. (25) to be δ = £u. We then
obtain√

h∇μ(suμ)

=
√

h

[
−uν

T
∇μ(pνu

μ) − μ

T
∇μ(nuμ) + 1

T
τ

μν

(q) Kμν

− 2λ1

T
ε〈μν〉£uε〈μν〉 − 1

T
(γ1trε + γ2θ )£u(trε)

− λ2

T
εμ£uεμ − 1

T
(γ3θ + γ2trε)£uθ

]
. (29)

4For a tensor Aμν , we define A〈μν〉 ≡ (1/2)hρ
μhσ

ν [Aρσ + Aσρ −
(2/D)hαβAαβhρσ ].

5We here use a convention that the quasiconservative stress tensor
τ

μν

(q) does not include stresses originated from strains.
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Here we have used the identities for Lie derivatives:

£us̃ =
√

h∇μ(suμ), £up̃ν =
√

h∇μ(pνu
μ), (30)

£uñ =
√

h∇μ(nuμ), (31)

which can be shown by using the identities £u

√
h = √

h∇μuμ

and pμ∇νu
μ = 0. Note that tr(£uεμν) = hμν£uεμν can be re-

placed by £u(trε) in our approximation because the difference
£u(trε) − tr(£uεμν) = (£uh̄

μν)εμν = −2Kμνεμν is of higher
orders.

The full energy-momentum tensor T μν and the full number
current nμ are given by

T μν ≡ euμuν + τμν, nμ ≡ nuμ + νμ,

(τμνuν = 0 = νμuμ), (32)

where τμν and νμ are the stress tensor and the diffu-
sion current, respectively. Then, by introducing the entropy
current

sμ ≡ suμ − μ

T
νμ, (33)

and by using Eq. (29) together with the current conservation
laws

∇νT
μν = 0, ∇μnμ = 0, (34)

the local entropy production rate can be evaluated as

∇μsμ = − 1

T

(
τμν − τ

μν

(q)

)
Kμν + νμ∂μ

(
−μ

T

)
− 2λ1

T
ε〈μν〉£uεμν − 1

T
(γ1trε + γ2θ )£u(trε)

− λ2

T
εμ£uεμ − 1

T
(γ3θ + γ2trε)£uθ

=
(

ε〈μν〉 − 1

T
K 〈μν〉

)(− 2λ1
T

£uε〈μν〉
τ〈μν〉 − τ

(q)
〈μν〉

)

+
(

εμ ∇μ

(
−μ

T

))(− λ2
T

£uεμ

νμ

)

+
(

tr ε θ − 1

T
trK

)⎛⎝− 1
T
γ

(
£u(trε)

£uθ

)
1
D

(trτ − trτ(q))

⎞⎠ . (35)

Thus, if we require that each term be separately positive
definite, we obtain the following equations:(− 2λ1

T
£uε〈μν〉

τ〈μν〉 − τ
(q)
〈μν〉

)
= 2(G + η)

(
ε〈μν〉

− 1
T
K〈μν〉

)
, (36)

(
− λ2

T
£uεμ

νμ

)
= (H + σ )

(
εμ

hν
μ∂ν

(−μ

T

)) , (37)⎛⎝− 1
T
γ
(£u(trε)

£uθ

)
1
D

(trτ − trτ(q))

⎞⎠ = (K + ζ )

⎛⎝ trε
θ

− 1
T

trK

⎞⎠ . (38)

Here G, H, and K are antisymmetric matrices,

G =
(

0 G
−G 0

)
, H =

(
0 H

−H 0

)
, (39)

K =

⎛⎜⎝ 0 K′ K
−K′ 0 −Ka

−K Ka 0

⎞⎟⎠ , (40)

and η, σ , and ζ are positive semidefinite symmetric
matrices,

η =
(

η1 η2

η2 η3

)
, σ =

(
σ1 σ2

σ2 σ3

)
, (41)

ζ =

⎛⎜⎝ζ1 ζ2 ζ4

ζ2 ζ3 ζ5

ζ4 ζ5 ζ6

⎞⎟⎠ . (42)

Note that only the symmetric matrices contribute when
substituted to the entropy production rate (35). This means
that the matrices η, σ , and ζ are associated with irreversible
processes, while the matrices G, H, and K are with reversible
ones.

The relationship between the equations given above and
the corresponding ones given in [13] is summarized in
Appendix A.

C. Fundamental equations

Using Eqs. (36)–(42) at each point x = (x0 = t,x) on
time slice �t , we can express (A) the currents τμν and
νμ and (B) the evolution of strains, £uε〈μν〉, £uεμ, £utrε,
and £uθ , only in terms of local thermodynamic quantities
on �t .

We thus conclude that the dynamics of relativistic vis-
coelastic materials is described by the following two sets of
equations [7,13]:

(A) Current conservation laws:

∇μT μν = ∇μ(euμuν + τμν) = 0, (43)

∇μnμ = ∇μ(nuμ + νμ) = 0, (44)

with the constitutive equations

τμν = τ
μν

(q) − 2(G − η2)ε〈μν〉 − 2η3

T
K 〈μν〉

−
[

(K − ζ4)trε − (Ka + ζ5)θ + ζ6

T
trK

]
hμν, (45)

νμ = −(H − σ2)εμ + σ3h
μν∂ν

(
−μ

T

)
. (46)

(B) Rheology equations:

£uε〈μν〉 = −η1T

λ1
ε〈μν〉 + G + η2

λ1
K〈μν〉, (47)

£uεμ = −σ1T

λ2
εμ − (H + σ2)T

λ2
hν

μ∂ν

(
−μ

T

)
, (48)
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£u(trε)

£uθ

)
=
(

γ1 γ2

γ2 γ3

)−1 (−ζ1T trε − (K′ + ζ2)T θ + (K + ζ4)trK

(K′ − ζ2)T trε − ζ3T θ − (Ka − ζ5)trK

)

=
⎛⎝− [γ3ζ1+γ2(K′−ζ2)]T

det γ trε + [γ2ζ3−γ3(K′+ζ2)]T
det γ θ + γ3(K+ζ4)+γ2(Ka−ζ5)

det γ trK

[γ2ζ1+γ1(K′−ζ2)]T
det γ trε − [γ1ζ3−γ2(K′+ζ2)]T

det γ θ − γ2(K+ζ4)+γ1(Ka−ζ5)
det γ trK

⎞⎠ . (49)

The former set of equations describes the dynamics
of D + 2 conserved quantities (pμ = euμ,n), while
the latter that of D(D + 1)/2 dynamical variables Eμν =
(εμν,εμ,θ ).

It is convenient to introduce the following parameters:

τs ≡ λ1

η1T
, τσ ≡ λ2

σ1T
, (50)

τ± ≡ 2 det γ

T
[
Pζγ ∓

√
P 2

ζγ − 4 det γ (det ζ s + K′2)
] , (51)

a± ≡ −2[ζ3γ2 − (K′ + ζ2)γ3]

ζ3γ1 − ζ1γ3 − 2K′γ2 ±
√

P 2
ζγ − 4 det γ (det ζ s +K′2)

,

(52)

where Pζγ ≡ ζ3γ1 + ζ1γ3 − 2ζ2γ2 � 0, and ζ s is the principal

submatrix of ζ defined by ζ s ≡ ( ζ1 ζ2
ζ2 ζ3

). Since ζ s is positive
semidefinite, det ζ s is non-negative. Note that τs, τσ , and
Reτ± are all non-negative. We further introduce the scalar
variables

ε± ≡ 1
2 (trε − a±θ ). (53)

Then the rheology equations (47)–(49) can be rewritten in a
more compact form.
(B′) Rheology equations:

£uε〈μν〉 = − 1

τs
ε〈μν〉 + G + η2

λ1
K〈μν〉, (54)

£uεμ = − 1

τσ

εμ − (H + σ2)T

λ2
hν

μ∂ν

(
−μ

T

)
, (55)

£uε± = (Ka − ζ5)(a±γ1 + γ2) + (K + ζ4)(a±γ2 + γ3)

2 det γ
trK

− 1

τ±
ε±. (56)

From these, we see that τs, τσ , and Reτ± give the typical time
scales for the relaxation of strains.

The relation between the viscoelastic models and a few
well-known rheological models (such as the Maxwell model
and the Kelvin-Voigt model) is discussed in Appendix B.

III. FLUID AND ELASTIC LIMITS

In this section, we discuss the limits of elasticity and fluidity
in the relativistic theory of viscoelasticity. We first identify the
properties that characterize a given material as a fluid or as an
elastic material. We then consider the long-time and short-time
limits of our dynamical equations and show that fluidity is
universally realized in the long time limit. We also make a
comment on the subtlety existing in Maxwell’s definition of
viscoelasticity.

A. Fluidity and elasticity

Fluidity is characterized by the property that the relaxation
of the strains Eμν = (εμν,εμ,θ ) proceeds instantaneously.
Thus, their rheology equations are expressed as

£uεμν = 0, £uεμ = 0, £uθ = 0, (fluids) (57)

or equivalently,

£uε〈μν〉 = 0, £uεμ = 0, £uε± = 0. (fluids) (58)

This situation can also be realized in the long time limit,
and we show in the next section that the constitutive
equations for our viscoelastic model universally reduces
to those for the Navier-Stokes fluids in the long time
limit.

On the other hand, elastic materials by definition do
not undergo any plastic deformations, and thus their in-
trinsic metric h̄μν does not evolve for any processes.
Thus, a given viscoelastic material is regarded as be-
ing elastic when its rheology equations are expressed
as [6,7,15]

K̄μν = 1
2 £uh̄μν = 0. (elastics) (59)

B. Long time limit as a fluid limit

Let the time scale of observation be Tobs. If the observation
is made much longer than the relaxation times (i.e., Tobs �
τs,τσ ,Reτ±), then we can neglect the terms £uε〈μν〉, £uεμ,
and £uε± in Eqs. (54)–(56) because, for example, £uε〈μν〉 ∼
T −1

obs ε〈μν〉 � τ−1
s ε〈μν〉. We thus obtain

ε〈μν〉 	 τs
G + η2

λ1
K〈μν〉 = G + η2

η1T
K〈μν〉, (60)

εμ 	 τσ

(H + σ2)T

λ2
hν

μ∂ν

(
−μ

T

)
= H + σ2

σ1
hν

μ∂ν

(
−μ

T

)
, (61)
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ε± 	 τ±
(Ka − ζ5)(a±γ1 + γ2) + (K + ζ4)(a±γ2 + γ3)

2 det γ
trK

⎡⎢⎣or(
trε
θ

)
	 trK

(det ζ s+K′2)T

(
ζ3(ζ4 + K) − (ζ2 + K′)(ζ5 − Ka)

−(ζ2 − K′)(ζ4 + K) + ζ1(ζ5 − Ka)

)⎤⎥⎦.

(62)

By substituting these equations to Eqs. (45) and (46), the
constitutive equations take the following form:

τ (long)
μν = τ (q)

μν − 2ηNSK〈μν〉 − ζNS(trK)hμν, (63)

ν(long)
μ = σNSh

ν
μ∂ν

(
−μ

T

)
, (64)

where we have defined viscosity and diffusion coefficients by

ηNS ≡ det η + G2

η1T
, (65)

ζNS ≡ det ζ +K2(a2ζ1 +2aζ2 +ζ3)−2KK′(aζ4 +ζ5)+K′2ζ6

(det ζ s +K′2)T
,

(66)

σNS ≡ det σ + H2

σ1
. (67)

Note that they are always non-negative, as can be seen from
the inequality

K2(a2ζ1 + 2aζ2 + ζ3) − 2KK′(aζ4 + ζ5) + K′2ζ6

= (Ka K −K′)ζ

⎛⎜⎝ Ka

K
−K′

⎞⎟⎠ � 0. (68)

In particular, when the material is locally isotropic, we can take
τ

μν

(q) = Phμν , with P the pressure, and thus the stress tensor
certainly gives the constitutive equations for a relativistic
Navier-Stokes fluid:

τ
μν

(long) = −2ηNSK
〈μν〉 + (P − ζNStrK)hμν. (69)

We thus confirm that our viscoelastic model always exhibits
fluidity in the long time limit.

C. Short time limit as an elastic limit

In contrast, at short time scales (Tobs � τs,Reτ±), we have

£uε〈μν〉 � − 1

τs
ε〈μν〉, £uε± � − 1

τ±
ε±, (70)

so that Eqs. (54)–(56) can be approximated as

£uε〈μν〉 	 G + η2

λ1
K〈μν〉, (71)

£uε± 	 (Ka − ζ5)(a±γ1 + γ2) + (K + ζ4)(a±γ2 + γ3)

2 det γ
trK,

(72)(
⇒£u(trε) 	 (Ka − ζ5)γ2 + (K + ζ4)γ3

det γ
trK

)
. (73)

By substituting Eqs. (71)–(73) into Eq. (45), the stress tensor
can be rewritten in the following form:

τ (short)
μν = τ (q)

μν − 2(G − η2)ε〈μν〉 − 2Gη3

(G + η2)T
£uε〈μν〉

−
[

(K − ζ4)trε − (Ka + ζ5)θ

+ ζ6 det γ

[(Ka − ζ5)γ2 + (K + ζ4)γ3]T
£u(trε)

]
hμν.

(74)

These constitutive equations have the same form as those of a
Kelvin-Voigt material (see Appendix B). However, one cannot
yet identify the material at short time scales with a Kelvin-
Voigt material, because they generically obey a different type
of rheology equations.

As discussed in the first subsection, elasticity is charac-
terized by the condition that the intrinsic metric h̄μν does
not evolve, and the rheology equations for elastic materials
are given by K̄μν = 0, or equivalently by £uεμν = Kμν

[6,7,15]. However, this is realized only when the conditions
G + η2 = λ1 and (Ka − ζ5)γ2 + (K + ζ4)γ3 = det γ are sat-
isfied. That is, for generic values of parameters, even if the
observation time is sufficiently shorter than the relaxation
times, the intrinsic metric h̄μν evolves when the induced
metric hμν does (i.e., K̄μν �= 0 if Kμν �= 0). Thus, Maxwell’s
original definition of viscoelasticity [considered only for
the situations where the induced metric is static, Kμν =
(1/2)£uhμν = 0] needs to be modified for generic values of
parameters, such that h̄μν is allowed to evolve when hμν

does.

IV. SIMPLIFIED ISRAEL-STEWART FLUIDS

In this section, as an interesting example, we consider
the case where K′ = η3 = σ3 = ζ6 = 0 and τ

μν

(q) = Phμν .
In this case, from the positivity of matrices η, σ , and
ζ , the conditions η2 = σ2 = ζ4 = ζ5 = 0 also must be im-
posed. Then the conserved currents take the following
form:6

T μν = euμuν + Phμν − 2Gε〈μν〉 −K(trε − aθ )hμν, (75)

nμ = nuμ − Hεμ, (76)

6From this form of the bulk stress and the relation θ 	 (T − T̄ )/T̄ ,
we see that a/T̄ can be identified with the thermal expansion
coefficient.
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and the rheology equations become

£uε〈μν〉 = − 1

τs
ε〈μν〉 + G

λ1
K〈μν〉, (77)

£uεμ = − 1

τσ

εμ − HT

λ2
hν

μ∂ν

(
−μ

T

)
, (78)

£u(trε) = − (γ3ζ1 − γ2ζ2)T

det γ
trε + (γ2ζ3 − γ3ζ2)T

det γ
θ

+ K(aγ2 + γ3)

det γ
trK, (79)

£uθ = (γ2ζ1 − γ1ζ2)T

det γ
trε − (γ1ζ3 − γ2ζ2)T

det γ
θ

− K(aγ1 + γ2)

det γ
trK. (80)

By using the relations

τ〈μν〉 = −2Gε〈μν〉, νμ = −Hεμ,
(81)

� ≡ 1

D
(trτ − trτ(q)) = −K(trε − aθ ),

the rheology equations can be rewritten as

£uτ〈μν〉 = − 1

τs
τ〈μν〉 − 2G2

λ1
K〈μν〉, (82)

£uνμ = − 1

τσ

νμ + H2T

λ2
hν

μ∂ν

(
−μ

T

)
, (83)

£u� = − [(aγ2 + γ3)ζ1 − (aγ1 + γ2)ζ2]T

det γ
�

− K2(a2γ1 + 2aγ2 + γ3)

det γ
trK

+ KT [aζ1(aγ2 +γ3)−ζ2(a2γ1 −γ3)−ζ3(aγ1 +γ2)]

det γ
θ,

(84)

£uθ = (γ1ζ2 − γ2ζ1)T

K det γ
� − K(aγ1 + γ2)

det γ
trK

− [γ1(aζ2 + ζ3) − γ2(aζ1 + ζ2)]T

det γ
θ. (85)

This model gives hyperbolic differential equations for small
perturbations around a hydrostatic equilibrium, as is shown in
Sec. V.

For brevity, we here consider the case when θ is decoupled
from other variables. This can be realized by setting a = γ2 =
ζ2 = 0 in the above equations, and the rheology equations
become

τs£uτ〈μν〉 = −τ〈μν〉 − ηNSK〈μν〉, (86)

τσ £uνμ = −νμ + σNSh
ν
μ∂ν

(
−μ

T

)
, (87)

τb£u� = −� − ζNStrK, (88)

£uθ = −ζ3T

γ3
θ. (89)

Here we have introduced τb ≡ γ1/(ζ1T ), and the vis-
cosity and diffusion coefficients are given in this case
by ηNS = τsG2/λ1 = G2/(η1T ), ζNS = τbK2/γ1 = K2/(ζ1T ),
and σNS = H2/σ1. These equations look like the nonlinear
causal dissipative hydrodynamics proposed in [14]. Although
the nonlinear terms in [14] (e.g., hρ

μνν∇ρu
ν) are important

for numerical simulations of ultrarelativistic dynamics, these
terms, in principle, cannot be treated properly in our first-order
formalism. However, if we do not make the approximation
£u(trε) 	 tr(£uεμν), then Eq. (88) becomes −τbKtr(£uεμν) =
τb[£u� + (1/D)trK� − KK 〈μν〉ε〈μν〉] = −� − ζNStrK and
coincides with Eq. (14) in [14] where the spatial dimension is
set to be D = 1.

If we neglect the nonlinear terms, we then get relations of
Maxwell-Cattaneo type:

πμν = −2ηNSK
〈μν〉 − τsh

μγ hνδuρ∇ρπγ δ,

� = −ζNStrK − τbu
γ ∇γ �, (90)

νμ = σNSh
ν
μ∂ν

(
−μ

T

)
− τσhμ

ν uγ ∇γ νν,

where πμν ≡ τ 〈μν〉 − τ
〈μν〉
(q) . They are the constitutive equa-

tions for the simplified version of the Israel-Stewart model.7

Thus, in this case the rheology equations are equivalent
to the constitutive equations for the simplified Israel-Stewart
model (90), and the [D + 1 + 1 + D(D + 1)/2 + D] dy-
namical variables (excluding θ ) can be determined from
the D + 2 conservation laws (∇μnμ = ∇μT μν = 0) and the
D(D + 1)/2 + D equations (90).

V. HYPERBOLICITY AND DISPERSION RELATIONS

In this section, we study linear perturbations around
a hydrostatic equilibrium in Minkowski space-time. We
exclusively take a coordinate system (xμ) = (x0,xi) in
which the background metric is written as gμν = ημν ≡
diag(−1,1, . . . ,1). A hydrostatic equilibrium is then speci-
fied by the velocity u(0) = u

μ

(0)∂μ ≡ ∂0 (i.e., u
μ

(0) = δ
μ

0 ), the
proper energy density e(0), the number density n(0), and the
vanishing strain tensor E(0)

μν ≡ 0. The induced metric is then
given by h(0)

μν = ημν + u(0)
μ u(0)

ν = diag(0,1, . . . ,1). Note that
from the fundamental relation for the hydrostatic equilib-
rium, s̃(0) = σ̃(0)(ẽ(0),ñ(0),

√
h(0)) ≡ √h(0)s(0)(e(0),n(0)), other

thermodynamic quantities such as the temperature T(0), the
chemical potential μ(0) and the pressure P(0) are determined as

δs̃(0) = 1

T(0)
δẽ(0) − μ(0)

T(0)
δñ(0) + P(0)

T(0)
δ
√

h(0), (91)

or

δs(0) = 1

T(0)
δe(0) − μ(0)

T(0)
δn(0), (92)

7The constitutive equations for a simplified Israel-Stewart fluid is
obtained by setting the viscous-heat coupling coefficients to be zero
in those for an Israel-Stewart fluid (i.e., α0 = α1 = 0 in Eqs. (8a)–(8c)
in [3]).

026316-8



RELATIVISTIC VISCOELASTIC FLUID MECHANICS PHYSICAL REVIEW E 84, 026316 (2011)

with the Euler-Gibbs-Duhem relation

s(0) = e(0)

T(0)
− μ(0)

T(0)
+ P(0)

T(0)
. (93)

A. Linear perturbations around a hydrostatic equilibrium

We now consider linear perturbations around the hydro-
static equilibrium,

gμν = ημν + 0, uμ = δ
μ

0 + δuμ, (94)

hμν = h(0)
μν + η0μδuν + δuμη0ν, (95)

e = e(0) + δe, n = n(0) + δn, Eμν = 0 + Eμν, (96)

and denote their conjugate thermodynamic variables by

T = T(0) + δT , μ = μ(0) + δμ, (97)

P = P(0) + δP . (98)

We only consider the locally isotropic case: τ
μν

(q) = Phμν . Us-
ing the identity −1 = uμuμ = −1 + 2δu0 = −1 − 2δu0, we
can show that δu0 = δu0 = 0, and the acceleration vector aμ =
uν∂νu

μ = ∂0δu
μ has only spatial components: a0 = ∂0δu

0 =
0 and ai = ∂0δu

i . Moreover, from 0 = εμνu
ν = εμ0, εμν also

has only spatial components, εij , in this linear approximation.
Similarly, since 0 = Kμνu

ν = Kμ0, the extrinsic curvature
also has only spatial components, which are expressed as

Kij = 1
2h

μ

i hν
j (∂μuν + ∂νuμ) = 1

2 (∂iδuj + ∂iδuj ), (99)

or

trK = ∂iδu
i, (100)

K〈ij〉 = 1

2

(
∂iδuj + ∂j δui − 2

D
(∂kδu

k)h(0)
ij

)
. (101)

As for the stress tensor (45), by decomposing it as τμν =
τ (0)
μν + δτμν , the zeroth part is given by τ

(0)
μi = P(0)h

(0)
μi , and

from 0 = τμνu
ν = τ

(0)
μi δui + δτμ0 we can show that δτ00 = 0,

δτi0 = −τ
(0)
ij δuj = −P(0)δui , and the spatial components are

written as

δτij = δPh
(0)
ij − 2(G − η2)ε〈ij〉

− η3

T(0)

[
∂iδuj + ∂j δui − 2

D
(∂kδu

k)h(0)
ij

]
− [(K− ζ4)trε

− (Ka + ζ5)θ ]h(0)
ij − ζ6

T(0)
(∂kδu

k)h(0)
ij . (102)

The diffusion current is written as

νμ = −(H − σ2)εμ + σ3h
μν

(0)∂νδ

(
−μ

T

)
. (103)

We now substitute the above expressions to the set of
fundamental equations, consisting of (A) the conservation
laws (43)–(46) and (B) the rheology equations (47)–(49) [or
(54)–(56)].

(A) As for the conservation laws of energy-momentum
tensor, the component along uμ is given by 0 = uν∂μT μν =

∂μ(T μνuν) − T μν∂μuν = −∂μ(euμ) − τμν∂μuν . From this we
obtain

∂μ(euμ) = ∂0δe + e(0)∂iδu
i

= −τμν∂μuν = −τ
μν

(0) ∂μδuν = −P(0)∂iδu
i, (104)

or

∂0δe = −w(0)∂iδu
i. (105)

Here w(0) ≡ e(0) + P(0) is the enthalpy density at the hy-
drostatic equilibrium. As for the components orthogonal
to uμ, from the equations 0 = hλν∂μT μν = hλν∂μ(euμuν) +
hλν∂μτμν = euμ∂μuλ + hλν∂μτμν = eaλ + hν

λ∂
μτμν , we ob-

tain

eai = e(0)∂0δui = −hν
i ∂

μτμν = −∂μδτμi

= −∂0δτ0i − ∂kδτik = P(0)∂
0δui − ∂kδτik, (106)

or

w(0)∂0δui = −∂kδτik

= −∂iδP + 2(G − η2)∂kε〈ik〉

+
(

(D − 2)η3

DT(0)
+ ζ6

T(0)

)
∂i∂kδu

k + η3

T(0)
�δui

+ (K − ζ4)∂i(trε) − (Ka + ζ5)∂iθ, (107)

where � is the spatial Laplacian, � ≡ δij ∂i∂j . The conserva-
tion law of particle number current becomes

0 = ∂μ(nuμ + νμ)

= ∂0δn + n(0)∂iδu
i + σ3�δ

(
−μ

T

)
− (H − σ2)∂iε

i .

(108)

(B) The rheology equations are linearized as

∂0ε〈ij〉 = G + η2

2λ1

(
∂iδuj + ∂j δui − 2

D
(∂kδu

k)h(0)
ij

)
− 1

τs
ε〈ij〉,

(109)

∂0εi = − 1

τσ

εi − (H + σ2)T(0)

λ2
∂iδ

(
−μ

T

)
, (110)

∂0(trε) = − [γ3ζ1 + γ2(K′ − ζ2)]T(0)

det γ
trε

+ [γ2ζ3 − γ3(K′ + ζ2)]T(0)

det γ
θ

+ γ2(Ka − ζ5) + γ3(K + ζ4)

det γ
∂iδu

i, (111)

∂0θ = [γ1(K′ − ζ2) + γ2ζ1]T(0)

det γ
trε

− [γ1ζ3 − γ2(K′ + ζ2)]T(0)

det γ
θ

− γ2(K + ζ4) + γ1(Ka − ζ5)

det γ
∂iδu

i, (112)

where we have used the approximation £uεij 	 ∂0εij , £uεi 	
∂0εi , £u(trε) 	 ∂0(trε), and £uθ 	 ∂0θ .
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Since we are considering locally isotropic materials, the
fundamental thermodynamic relation (25) can be rewritten
with the use of the Euler relation (C6) as

δs = 1

T
δe − μ

T
δn− 1

T
2λ1ε

〈μν〉δε〈μν〉 − 1

T
(γ1trε + γ2θ )δ(trε)

− 1

T
λ2ε

μδεμ − 1

T
(γ3θ + γ2trε)δθ. (113)

If we denote the thermodynamic variables collec-
tively by (ar ) = (e,n,ε〈μν〉,εμ,trε,θ ), the matrix A ≡
−(∂2s/∂ar∂as)|(0) is positive definite from the convexity of
entropy. Here |(0) means that the matrix is evaluated at the
hydrostatic state. In the following discussions, we assume for
brevity that the matrix takes the following form:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 0 0 0 0

A2 A3 0 0 0 0

0 0 A〈μν〉,〈ρσ 〉
4 0 0 0

0 0 0 Aμν

5 0 0

0 0 0 0 A6 A7

0 0 0 0 A7 A8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (114)

where the principal submatrix

As ≡
(

A1 A2

A2 A3

)
=
(− ∂2s

∂e2

∣∣
(0) − ∂2s

∂e∂n

∣∣
(0)

− ∂2s
∂e∂n

∣∣
(0) − ∂2s

∂n2

∣∣
(0)

)

=
(− ∂(1/T )

∂e

∣∣
(0)

∂(μ/T )
∂e

∣∣
(0)

− ∂(1/T )
∂n

∣∣
(0)

∂(μ/T )
∂n

∣∣
(0)

)
(115)

is positive definite. Then the Gibbs-Duhem equation (C7) can
be written as8

∂iδP = s(0)∂iδT + n(0)∂iδμ

= s(0)∂iδ[(1/T )−1] + n(0)∂iδ[(1/T )−1(μ/T )]

= (w(0)A1 + n(0)A2)T(0)∂iδe

+ (w(0)A2 + n(0)A3)T(0)∂iδn, (116)

∂iδ

(
−μ

T

)
= −(A2∂iδe + A3∂iδn), (117)

and we finally obtain the following set of linearized equations
of motion:

∂0δe = −w(0)∂iδu
i, (118)

w(0)∂0δui = 2(G − η2)∂kε〈ik〉 +
(

(D − 2)η3

DT(0)
+ ζ6

T(0)

)
∂i∂kδu

k

+ η3

T(0)
�δui + (K − ζ4)∂i(trε) − (Ka + ζ5)∂iθ

− (w(0)A1 + n(0)A2)T(0)∂iδe

− (w(0)A2 + n(0)A3)T(0)∂iδn, (119)

8Note that the right-hand side of Eq. (C7) can be set to zero for the
linear perturbations around a hydrostatic equilibrium.

∂0δn = −n(0)∂iδu
i + σ3(A2�δe + A3�δn) + (H− σ2)∂iε

i,

(120)

∂0ε〈ij〉 = G + η2

2λ1

(
∂iδuj + ∂j δui − 2

D
(∂kδu

k)h(0)
ij

)
− 1

τs
ε〈ij〉,

(121)

∂0εi = (H+ σ2)T(0)

λ2
(A2∂iδe + A3∂iδn) − 1

τσ

εi, (122)

∂0(trε) = − [γ3ζ1 + γ2(K′ − ζ2)]T(0)

det γ
trε

+ [γ2ζ3 − γ3(K′ + ζ2)]T(0)

det γ
θ

+ γ2(Ka − ζ5) + γ3(K + ζ4)

det γ
∂iδu

i, (123)

∂0θ = [γ1(K′ −ζ2)+γ2ζ1]T(0)

det γ
trε

− [γ1ζ3 −γ2(K′ +ζ2)]T(0)

det γ
θ

− γ2(K + ζ4) + γ1(Ka − ζ5)

det γ
∂iδu

i. (124)

We now consider wave propagations in the xD direction,
demanding that perturbations depend only on x0 and xD:

δui = δui(x
0,xD), εij = εij (x0,xD), (125)

δe = δe(x0,xD), δn = δn(x0,xD). (126)

Then the above equations can be rewritten as follows:

∂0ε〈II 〉 = −G + η2

Dλ1
∂DδuD − 1

τs
ε〈II 〉, (127)

∂0ε〈IJ 〉 = − 1

τs
ε〈IJ 〉 (I �= J ), (128)

∂0ε〈ID〉 = G + η2

2λ1
∂DδuI − 1

τs
ε〈ID〉, (129)

w(0)∂0δuI = 2(G − η2)∂Dε〈ID〉 + η3

T(0)
∂2
DδuI , (130)

∂0εI = − 1

τσ

εI , (131)

∂0δe = −w(0)∂DδuD, (132)
w(0)∂0δuD

= 2(G − η2)∂Dε〈DD〉 +
(

2(D − 1)η3

DT(0)
+ ζ6

T(0)

)
∂2
DδuD

+ (K − ζ4)∂D(trε) − (Ka + ζ5)∂Dθ

− (w(0)A1 + n(0)A2)T(0)∂Dδe

− (w(0)A2 + n(0)A3)T(0)∂Dδn, (133)

∂0δn = −n(0)∂DδuD + σ3
(
A2∂

2
Dδe + A3∂

2
Dδn
)

+ (H − σ2)∂DεD, (134)

∂0ε〈DD〉 = (D − 1)(G + η2)

Dλ1
∂DδuD − 1

τs
ε〈DD〉, (135)

∂0εD = (H + σ2)T(0)

λ2
(A2∂Dδe + A3∂Dδn) − 1

τσ

εD,

(136)

026316-10



RELATIVISTIC VISCOELASTIC FLUID MECHANICS PHYSICAL REVIEW E 84, 026316 (2011)

∂0(trε) = γ2(Ka − ζ5) + γ3(K + ζ4)

det γ
∂DδuD

− [γ3ζ1 + γ2(K′ − ζ2)]T(0)

det γ
trε

+ [γ2ζ3 − γ3(K′ + ζ2)]T(0)

det γ
θ, (137)

∂0θ = −γ2(K + ζ4) + γ1(Ka − ζ5)

det γ
∂DδuD

+ [γ1(K′ − ζ2) + γ2ζ1]T(0)

det γ
trε

− [γ1ζ3 − γ2(K′ + ζ2)]T(0)

det γ
θ, (138)

where I,J = 1, . . . ,D − 1. This set of equations can be further
decomposed according to the transformation properties under
the little group SO(D − 1):

(1) tensor modes: (ε〈II 〉,ε〈IJ 〉);
(2) shear modes: (ε〈ID〉,δuI ,εI );
(3) sound modes: (trε,ε〈DD〉,δuD,δe,δn,εD,θ ).

In the remainder of this section, we study hyperbolicity and
dispersion relations for each type of perturbation modes.

B. Tensor modes

For tensor modes, the set of equations can be written as

∂0ε〈II 〉 = −G + η2

Dλ1
∂DδuD − 1

τs
ε〈II 〉, (139)

∂0ε〈IJ 〉 = − 1

τs
ε〈IJ 〉. (140)

From the identity
∑

I ε〈II 〉 + ε〈DD〉 = 0, the number of inde-
pendent variables of ε〈II 〉 is D − 2. If we define the variables
EIJ by

EIJ ≡
{

ε〈II 〉 − ε〈(D−1)(D−1)〉 (for I = J ),

ε〈IJ 〉 (for I �= J ),
(141)

then the number of independent EIJ is D(D − 1)/2 − 1 =
(D − 2)(D + 1)/2 because E(D−1)(D−1) = 0, and the equa-
tions for EIJ become

0 = ∂0EIJ + 1

τs
EIJ . (142)

Thus, if we consider plane waves propagating in the xD

direction,

δui = δ̃ui(ω,k)eikxD−iωx0
, (143)

εij = ε̃ij (ω,k)eikxD−iωx0
, (144)

we obtain the dispersion relation ω = −i/τs which represents
nonpropagating, purely dissipating modes. Since τs is positive,
the imaginary part of ω is always negative, and thus we find
that the tensor modes are always stable. Such relaxation modes
correspond to stress relaxations observed at rheological time

scales (Tobs ∼ τs) and will disappear at hydrodynamic time
scales (Tobs � τs).

C. Shear modes

For shear modes, we have the equations

0 = (∂0 + τ−1
s

)
ε〈ID〉 − G + η2

2λ1
∂DδuI , (145)

0 = ∂0δuI − 2(G − η2)

w(0)
∂Dε〈ID〉 − η3

w(0)T(0)
∂2
DδuI , (146)

0 = (∂0 + τ−1
σ

)
εI . (147)

Note that εI is decoupled from the other variables, and
Eq. (147) represents its pure relaxation with relaxation time
τσ (�0).

If we set η3 = 0, by redefining the variables by

sI± ≡ ±
√

λ1

w(0)
ε〈ID〉 + 1

2
δuI , (148)

the set of linearized equations for sI± can be written as

(∂0 ∓ cshear∂D)sI± ± sI+ − sI−
2τs

= 0, (149)

for I = 1,2, . . . ,D − 2. These are hyperbolic equations and
the characteristic velocity is given by

cshear ≡
√

ηNS

w(0)τs
. (150)

For generic cases, from Eqs. (145) and (146), we obtain
telegrapher’s equations with Kelvin-Voigt damping,(

∂2
0 + 1

τs
∂0 − η3

w(0)T(0)
∂2
D∂0 − c2

shear∂
2
D

)(
ε〈ID〉
δuI

)
= 0. (151)

Although they are generically nonhyperbolic and have infinite
wave-front velocity as in the standard relativistic fluid mechan-
ics, they can be made into hyperbolic telegrapher’s equations
by setting η3 = 0.9

If we consider the short time limit (τs → ∞), the differen-
tial equations become(

∂2
0 − η3

w(0)T(0)
∂2
D∂0 − c2

shear∂
2
D

)(
ε〈ID〉
δuI

)
= 0. (152)

The wave equations in this form also appear for viscous
solids such as Kelvin-Voigt materials, and reduce to the wave
equations when η3 = 0.

Finally, for plane waves

δui = δ̃ui(ω,k)eikxD−iωx0
, (153)

εij = ε̃ij (ω,k)eikxD−iωx0
, (154)

from (151), we obtain the dispersion relation

�2 +
(

1

τs
+ η3

w(0)T(0)
k2

)
� + c2

sheark
2 = 0, (155)

9In this case, from the non-negativeness of the matrix η, η2 (and thus
det η) must vanish. However, this still gives a positive shear viscosity
if G �= 0, as can be seen from Eq. (65).
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where � ≡ −iω. Since all the coefficients are positive, the real
part of � (or the imaginary part of ω) always takes negative
values, and thus we see that there are no unstable growing
modes in the shear modes. Equation (155) has two solutions,
which are expanded around k = 0 as

ω =
{
− i

τs
+ i(1−rs)c2

shearτsk
2 + i(1−rs)c4

shearτ
3
s k4 + O(k6)

−ic2
shearτsk

2 − i(1 − rs)c4
shearτ

3
s k4 +O(k6),

(156)

with rs ≡ η3/(ηNST(0)). The former represents the relaxation
modes which are not observed at hydrodynamic time scales
(Tobs � τs). The latter represents the hydrodynamic modes
where ω → 0 in the limit k2 → 0, and from the coefficients
of k2, the diffusion coefficient is found to be c2

shearτs =
ηNS/w(0). Moreover, by the comparison with the dispersion

relation of Maxwell-Cattaneo type, the effective relaxation
time associated with the hydrodynamic modes is read off from
the coefficients of k4 as (1 − rs)τs. Indeed, if we set rs = 1,
the effective relaxation time becomes zero and the dispersion
relation becomes purely diffusive; ω = −i(ηNS/w(0))k2.

If we are interested only in the hydrodynamic modes, the
dispersion relation coincides with that of the Israel-Stewart
model up to O(k4) by identifying (1 − rs)τs with the relaxation
time τπ in the Israel-Stewart model. However, if the relaxation
modes are also taken into account, our viscoelastic model has
a richer structure than the Israel-Stewart model, which is the
special case (rs = 0) of the viscoelastic model.

D. Sound modes

Finally, for sound modes, we have the following set of
differential equations:

0 = ∂0δe + w(0)∂DδuD, (157)

0 = ∂0δuD − 2(G − η2)

w(0)
∂Dε〈DD〉 −

(
2(D − 1)η3

Dw(0)T(0)
+ ζ6

w(0)T(0)

)
∂2
DδuD − K − ζ4

w(0)
∂D(trε) + Ka + ζ5

w(0)
∂Dθ

+ (w(0)A1 + n(0)A2)T(0)

w(0)
∂Dδe + (w(0)A2 + n(0)A3)T(0)

w(0)
∂Dδn, (158)

0 = ∂0δn + n(0)∂DδuD − σ3
(
A2∂

2
Dδe + A3∂

2
Dδn
)− (H − σ2)∂DεD, (159)

0 = ∂0ε〈DD〉 − (D − 1)(G + η2)

Dλ1
∂DδuD + 1

τs
ε〈DD〉, (160)

0 = ∂0εD + 1

τσ

εD − (H + σ2)T(0)

λ2
(A2∂Dδe + A3∂Dδn), (161)

0 = ∂0(trε) + [γ3ζ1 + γ2(K′ − ζ2)]T(0)

det γ
trε − γ2(Ka − ζ5) + γ3(K + ζ4)

det γ
∂DδuD − [γ2ζ3 − γ3(K′ + ζ2)]T(0)

det γ
θ, (162)

0 = ∂0θ + γ2(K + ζ4) + γ1(Ka − ζ5)

det γ
∂DδuD − [γ1(K′ − ζ2) + γ2ζ1]T(0)

det γ
trε + [γ1ζ3 − γ2(K′ + ζ2)]T(0)

det γ
θ. (163)

In particular, if we consider the case where η3 = ζ6 = σ3 = 0, the set of equations reduces to the following linear differential
equations:

(∂0 +B0∂D + B1) �Y = 0, (164)

B0 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −K(aγ2+γ3)
det γ 0 0 0 0

0 0 − (D−1)G
Dλ1

0 0 0 0

− K
w(0)

− 2G
w(0)

0 T(0)

w(0)
(w(0)A1 + n(0)A2) T(0)

w(0)
(w(0)A2 + n(0)A3) 0 Ka

w(0)

0 0 w(0) 0 0 0 0

0 0 n(0) 0 0 −H 0

0 0 0 −A2T(0)H
λ2

−A3T(0)H
λ2

0 0

0 0 K(aγ1+γ2)
det γ 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (165)
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B1 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[γ3ζ1+γ2(K′−ζ2)]T(0)

det γ 0 0 0 0 0 − [γ2ζ3−γ3(K′+ζ2)]T(0)

det γ

0 1
τs

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1
τσ

0

− [γ1(K′−ζ2)+γ2ζ1]T(0)

det γ 0 0 0 0 0 [γ1ζ3−γ2(K′+ζ2)]T(0)

det γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, �Y ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

trε

ε〈DD〉
δuD

δe

δn

εD

θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (166)

Here we have defined

c2
s ≡ T(0)

w(0)

(
w2

(0)A1 + 2w(0)n(0)A2 + n2
(0)A3

) = ∂p

∂e

∣∣∣∣
s
n

, (167)

and

M ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
w(0)(aγ2+γ3)

det γ 0 0 0 0 0 0

0
√

w(0)(D−1)
2Dλ1

0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 w(0)

cs
−w(0)A2+n(0)A3√

det Ascs
0 0

0 0 0 n(0)

cs

w(0)A1+n(0)A2√
det A(1)cs

0 0

0 0 0 0 0
√

w(0)

λ2
0

0 0 0 0 0 0
√

w(0)(aγ1+γ2)
a det γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (168)

�Y ′ ≡ M−1 �Y . (169)

We then have

(∂0 + M−1B0M∂D + M−1B1M) �Y ′ = 0, (170)

with

M−1B0M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −M1 0 0 0 0

0 0 −M2 0 0 0 0

−M1 −M2 0 cs 0 0 M3

0 0 cs 0 0 −M4 0

0 0 0 0 0 −M5 0

0 0 0 −M4 −M5 0 0

0 0 M3 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (171)

M−1B1M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M6 0 0 0 0 0 M7

0 1
τs

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1
τσ

0

M8 0 0 0 0 0 M9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (172)

M1 ≡
√
K2(aγ2 + γ3)

w(0) det γ
, (173)

M2 ≡
√

2(D − 1)ηNS

Dw(0)τs
, (174)
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M3 ≡
√
K2a(aγ1 + γ2)

w(0) det γ
, (175)

M4 ≡ H
(
w(0)A2 + n(0)A3

)
cs

√
T(0)

τσw(0)σ1
, (176)

M5 ≡ H
cs

√
det AsT(0)w(0)

τσ σ1
, (177)

M6 ≡ [γ3ζ1 + γ2(K′ − ζ2)]T(0)

det γ
, (178)

M7 ≡ [(K′ + ζ2)γ3 − ζ3γ2]T(0)

det γ

√
aγ1 + γ2

a(aγ2 + γ3)
, (179)

M8 ≡ − [(K′ − ζ2)γ1 + ζ1γ2]T(0)

det γ

√
a(aγ2 + γ3)

aγ1 + γ2
, (180)

M9 ≡ [γ1ζ3 − γ2(K′ + ζ2)]T(0)

det γ
. (181)

The real matrix M−1B0M is symmetric and can be diagonalized. The eigenvalues are calculated to be {0,0,0, ± v±}, where

v2
± ≡ 1

2

(
c2

s + ζNS

w(0)τb
+ 2(D − 1)ηNS

Dw(0)τs
+ A3σNS

τσ

)

± 1

2

√(
c2

s + ζNS

w(0)τb
+ 2(D − 1)ηNS

Dw(0)τs
+ A3σNS

τσ

)2

− 4A3σNS

τσ

(
ζNS

w(0)τb
+ 2(D − 1)ηNS

Dw(0)τs
+ det Asw(0)T(0)

A3

)
(182)

give the characteristic velocities. Since all the eigenvalues are real, we see that the system of differential equations (164) is
hyperbolic.

If we particularly set H = 0 (and thus σNS = 0), the characteristic velocity reduces to

v± =
√

c2
s + ζNS

w(0)τb
+ 2(D − 1)ηNS

Dw(0)τs
(183)

and agrees with the large wave-number limit of the group velocity (which in our case coincides with the front velocity and the
characteristic velocity) in the Müller-Israel-Stewart theory (see, e.g., Eq. (49) in [16]). If we take the long time limit, τb,τs → 0,
the characteristic velocity becomes infinitely large, and thus causality gets violated.

For generic cases (i.e., when we do not impose the conditions η3 = ζ6 = σ3 = 0), from Eqs. (157)–(163), the dispersion
relation for the plane wave

δui = δ̃ui(ω,k)eikxD−iωx0
, (184)

εij = ε̃ij (ω,k)eikxD−iωx0
, (185)

δe = δ̃e(ω,k)eikxD−iωx0
, (186)

δn = δ̃n(ω,k)eikxD−iωx0
, (187)

is obtained as

�7 + (c60 + c62k
2)�6 + (c50 + c52k

2 + c54k
4)�5 + (c40 + c42k

2 + c44k
4)�4 + (c30 + c32k

2 + c34k
4)�3

+ (c22k
2 + c24k

4)�2 + (c12k
2 + c14k

4)� + c04k
4 = 0, (188)

where � = −iω and

c60 = τ−1
s + τ−1

σ + τ−1
+ + τ−1

− , (189)

c62 = ζ6

T(0)w(0)
+ 2(D − 1)η3

DT(0)w(0)
+ A3σ3, (190)

c50 = τsτσ + (τs + τσ )(τ+ + τ−) + τ+τ−
τsτσ τ+τ−

, (191)

c52 = c2
s + ζ6

(
τ−1

s + τ−1
σ

)
T(0)w(0)

+ ζNSτ
−1
b

w(0)
+ 2(D − 1)η3

(
τ̂−1

s + τ−1
σ + τ−1

+ + τ−1
−
)

Dw(0)T(0)
+ A3σ3

(
τ−1

s + τ̂−1
σ + τ−1

+ + τ−1
−
)
, (192)
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c54 = A3σ3

(
ζ6

w(0)T(0)
+ 2(D − 1)η3

Dw(0)T(0)

)
, (193)

c40 = τs + τσ + τ+ + τ−
τsτσ τ+τ−

, (194)

c42 = c2
s

(
τ−1

s + τ−1
σ + τ−1

+ + τ−1
−
)+ ζ6

w(0)T(0)τsτσ

+ ζNS
[
τsτσ + (τs + τσ )τ−1

b τ+τ−
]

w(0)τsτσ τ+τ−

+ 2(D − 1)ηNS[τ̂sτσ + (τ̂s + τσ )(τ+ + τ−) + τ+τ−]

Dw(0)τsτσ τ+τ−
+ A3σNS[τsτ̂σ + (τs + τ̂σ )(τ+ + τ−) + τ+τ−]

τsτσ τ+τ−
, (195)

c44 = A3σ3

(
ζ6
(
τ̂−1
σ + τ−1

s

)
T(0)w(0)

+ ζNSτ
−1
b

w(0)
+ 2(D − 1)η3

(
τ̂−1

s + τ̂−1
σ + τ−1

+ + τ−1
−
)

DT(0)w(0)
+ det AT(0)w(0)

A3

)
, (196)

c30 = 1

τsτσ τ+τ−
, (197)

c32 = c2
s [τsτσ + (τs + τσ )(τ+ + τ−) + τ+τ−]

τsτσ τ+τ−
+ ζNS

(
τs + τσ + τ−1

b τ+τ−
)

w(0)τsτσ τ+τ−

+ 2(D − 1)ηNS(τ̂s + τσ + τ+ + τ−)

Dw(0)τsτσ τ+τ−
+ A3σNS(τs + τ̂σ + τ+ + τ−)

τsτσ τ+τ−
, (198)

c34 = A3σNS

(
ζ6

T(0)w(0)τsτσ

+ ζNS[τsτ̂σ + (τs + τ̂σ )τ−1
b τ+τ−]

w(0)τsτσ τ+τ−

+ 2(D − 1)ηNS[τ̂sτ̂σ + (τ̂s + τ̂σ )(τ+ + τ−) + τ+τ−]

Dw(0)τsτσ τ+τ−
+ det Aσ3T(0)w(0)

(
τ̂−1
σ + τ−1

s + τ−1
+ + τ−1

−
)

A3σNS

)
, (199)

c22 = 1

τsτσ τ+τ−

[
c2

s (τs + τσ + τ+ + τ−) + ζNS

w(0)
+ 2(D − 1)ηNS

Dw(0)
+ A3σNS

]
, (200)

c24 = A3σNS

τsτσ τ+τ−

(
ζNS(τs + τ̂σ + τ−1

b τ+τ−)

w(0)
+ 2(D − 1)ηNS(τ̂s + τ̂σ + τ+ + τ−)

Dw(0)

+ det Aw(0)T(0)[τsτ̂σ + (τs + τ̂σ )(τ+ + τ−) + τ+τ−]

A3

)
, (201)

c12 = c2
s

τsτσ τ+τ−
, (202)

c14 = A3σNS

τsτσ τ+τ−

(
ζNS

w(0)
+ 2(D − 1)ηNS

Dw(0)
+ det Aw(0)T(0)(τs + τ̂σ + τ+ + τ−)

A3

)
, (203)

c04 = det AσNST(0)w(0)

τsτσ τ+τ−
. (204)

Here we have defined non-negative constants

τ̂s ≡ rsτs = η3

ηNST(0)
τs, τ̂σ ≡ σ3

σNS
τσ , (205)

and redefined τb as

τb ≡ ζNS det γ

K2γ+ + Pζζγ

, (206)

γ+ ≡ a2γ1 + 2aγ2 + γ3 � 0, (207)

Pζζγ ≡ (ζ3ζ6 − ζ 2
5

)
γ1 + 2(ζ4ζ5 − ζ2ζ6)γ2

+ (ζ1ζ6 − ζ 2
4

)
γ3 � 0, (208)

which becomes γ1/(ζ1T ) when the parameters are taken as
in Sec. IV. Note that complex parameters τ± appear always
through the combinations τ+ + τ− = 2Reτ+(�0), τ+τ− =
|τ+|2(�0), or τ−1

+ + τ−1
− = 2Reτ+/|τ+|2(�0). One can check

that all the coefficients are positive, and thus at least the
necessary condition for the stability is satisfied. For a full
analysis to be performed, one should further check the Routh-
Hurwitz stability criterion, which we have not carried out yet.

The dispersion relation around k = 0 gives seven solutions,
and four of the seven take the following form:

ω = − i

τ±
+ O(k2), ω = − i

τs
+ O(k2), (209)

ω = − i

τσ

+ O(k2). (210)

They correspond to the relaxation modes, and as the obser-
vation time becomes much longer than the relaxation times
Re τ±, τs, and τσ , these modes fade away in time and will not
be observed eventually.
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The remaining three modes are hydrodynamic modes and
have the following expansion in k:

ω = cs|k| − ic1k
2 +
(

c2 − c2
1

2cs

)
|k|3 + O(k4), (211)

ω = −i
det AσNST(0)w(0)

c2
s

k2 + O(k4), (212)

with

c1 = 1

2

(
ζNS

w(0)
+ 2(D − 1)ηNS

Dw(0)
+ (A3n(0) + A2w(0))2σNST(0)

c2
s w(0)

)
,

(213)

c2 =
(

ζNS(τ+ + τ− − τ−1
b τ+τ−)

2w(0)
+ (D − 1)ηNS(1 − rs)τs

Dw(0)

)
cs

+ T(0)σNS(A3n(0) + A2w(0))2

2c3
s w(0)τσ

×
(

c2
s + ζNS

w(0)τσ

+ 2(D − 1)ηNS

Dw(0)τσ

− det AσNST(0)w(0)

c2
s τσ

)
.

(214)

In particular, if we neglect particle diffusions (H = σNS = 0),
we have

c1 = ζNS

2w(0)
+ (D − 1)ηNS

Dw(0)
, (215)

c2 =
(
ζNS(τ+ + τ− − τ−1

b τ+τ−)

2w(0)
+ (D − 1)ηNS(1 − rs)τs

Dw(0)

)
cs.

(216)

Up to O(k4), this dispersion relation coincides with that of
the Israel-Stewart model if we identify τ+ + τ− − τ−1

b τ+τ−
and (1 − rs)τs as the relaxation times τ� and τπ of the Israel-
Stewart model, respectively (see, e.g., Eq. (47) in [16]).10

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have studied the relativistic viscoelastic
model [13] proposed recently on the basis of Onsager’s linear
regression theory on nonequilibrium thermodynamics. We
first rederived the model using a local argument based on
the current conservation laws and the positivity of entropy
production rate. We then studied in detail the properties of
the model and showed that our model universally reduces to
the standard relativistic Navier-Stokes fluid mechanics if the
observation time is sufficiently longer than the relaxation
times.

We also studied linear perturbations around a hydrostatic
equilibrium in Minkowski space-time. We showed that the
wave equations for the propagation of disturbance become
symmetric hyperbolic for some range of parameters, so that
the model is free of acausality problems. This fact suggests that
the relativistic viscoelastic model can be regarded as a causal

10In order for the correspondence to hold, we need to further choose
the parameters such that τ+ + τ− − τ−1

b τ+τ− and (1 − rs)τs are both
positive.

completion of relativistic Navier-Stokes fluid mechanics,
defining the latter as its long time limit.

Although the wave equations are not hyperbolic for generic
values of parameters, the problem of ill posedness in numerical
simulations will be significantly remedied from the situations
encountered in Navier-Stokes fluid mechanics. To see this,
let us consider a shear mode as an example. As we saw in
Sec. V C, the dispersion relation in the long wavelength limit
is given by Eq. (156),

ω = −i(ηNS/w(0))k
2 − i(ηNS/w(0))

2(1 − rs)τsk
4 + O(k6)

(217)

and has the same structure as that of the Israel-Stewart model
up to O(k6) so long as (0 �)rs < 1. This implies that, even for a
parameter region where the wave equations are not hyperbolic,
the behaviors at short wavelength scales are still remedied to an
extent similar to that of the Israel-Stewart model, and thus the
problems associated with the causality violation are expected
to occur less likely in numerical simulations. It should be
interesting to check this statement with a direct numerical
simulation.

As discussed in Sec. V, the dispersion relations for linear
perturbations with generic parameters exhibit two kinds of
branches. One is the “hydrodynamic branch,” where ω → 0
as k → 0, and corresponds to the poles in retarded Green’s
function in the Kubo formula for dissipative fluid mechanics.
If we neglect the effect of particle diffusion (H = σNS = 0),
these poles in the relativistic theory of viscoelasticity coincide
with the poles of the Israel-Stewart model up to O(k6) for shear
modes and O(k4) for sound modes [see Eqs. (156), (213), and
(214)] by identifying τ+ + τ− − τ−1

b τ+τ− and (1 − rs)τs with
the relaxation times τ� and τπ , respectively, in the Israel-
Stewart model. In the so-called fluid-gravity correspondence
[17,18], such poles are actually found in retarded Green’s
functions calculated at the boundary of an asymptotically
AdS geometry, and the relaxation time is obtained to have
the value τπ = (2 − ln 2)/(2πT ) for strongly coupled N =
4 Super Yang-Mills theory. This suggests that we should
set (1 − rs)τs = (2 − ln 2)/(2πT ) if we want to establish a
mapping between the fluids described by strongly coupled
Yang-Mills theory and those described by our viscoelastic
model.

The other branch (“rheological branch”) gives a behavior
that ω converges to a nonvanishing, pure imaginary value, ω →
−i/τs + O(k2), as k → 0, and thus corresponds to the relax-
ation of strains. These relaxation poles are usually discarded
in the discussion of viscous fluids, because the observation
time for fluids is much longer than the relaxation times and
the relaxation modes disappear at such time scales. However,
if such poles can also be found in retarded Green’s function at
the boundary theory, then the fluid-gravity correspondence
may be understood within a more general framework of
the “viscoelasticity-gravity correspondence.”11 It would be
interesting to pursue the study in this direction. It should

11To establish this, one first would need to investigate whether the
parameters rs and τs can be obtained consistently for sound and shear
modes.
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also be interesting to investigate the viscoelasticity-gravity
correspondence along the line of the recent study relating
the solutions of the Navier-Stokes equations to those of the
Einstein equations [19,20].

As other future directions to be pursued, it should be
important to extend the model such that one can treat
more complicated systems like multicomponent viscoelastic
materials. Such extension is actually straightforward and is
under investigation. Another interesting direction is to extract
the transport coefficients from kinetic theory or to extend the
theory such as to include higher-derivative corrections.
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APPENDIX A: ENTROPIC FORMULATION OF
RELATIVISTIC VISCOELASTIC FLUID MECHANICS

In this Appendix we give a brief review on how the funda-
mental equations [Eqs. (43)–(49)] are obtained from the rela-
tivistic theory of viscoelasticity [13] constructed on the basis
of Onsager’s linear regression theory [9–12]. We use the
same geometrical setup and the same definition of viscoelastic
materials as those given in Sec. II A. See [13] for a more
detailed description.

We assume that the local thermodynamic properties of the
material particle at x (already in its local equilibrium) are spec-
ified by the set of local quantities [bA(x),cI (x),dP (x)]. Here
cI (x) denote the densities of the existing additive conserved
quantities CI . bA(x) denote the “intrinsic” intensive variables
possessed by each material particle (such as strains), and dP (x)
denote the remaining “external” intensive variables which
further need to be introduced to characterize each subsystem
thermodynamically (such as the background electromagnetic
or gravitational fields). We distinguish density quantities from
other intensive quantities, and by multiplying them with the
spatial volume element

√
h, we construct new quantities

which are spatial densities on each time slice. For example,
the entropy density s and the densities cI of conserved
charges are density quantities, and for them we construct
the following spatial densities: s̃ ≡ √

hs, c̃I ≡ √
hcI . The

local equilibrium hypothesis implies that the local entropy
s̃(x) is already maximized at each space-time point x and
is given as a function of the above local variables; s̃(x) =
s̃(bA(x),c̃I (x),dP (x)). If we denote by (εs,εt) the space-time
scale where the local equilibrium is realized, then at space-time
scales larger than (εs,εt), we need to take into account the effect
that the material particles communicate with each other by
exchanging conserved quantities (such as energy-momentum

FIG. 3. Time evolution of material particles in the large region
�x[Ls] [13].

and particle number). The second law of thermodynamics
tells us that, if boundary effects can be neglected, this should
proceed such that the total entropy of the larger region gets
increased.

In order to describe such dynamics mathematically, we first
introduce the space-time scale (Ls,Lt) which is much larger
than the space-time scale (εs,εt) and assign to each space-time
point x = (x0 = t,x) on time slice �t a spatial region �x[Ls]
of linear size Ls (see Fig. 3).

We then consider the total entropy of the region �x[Ls]:

Ŝ(t ; �x[Ls]) ≡
∫

�x [Ls]
dDys̃(bA(t,y),c̃I (t,y),dP (t,y)). (A1)

The irreversible evolutions of intrinsic variables ar (x) ≡
(bA(x),c̃I (x)) at x will proceed toward an equilibrium of
the region �x[Ls]. Due to the condition Ls � εs, we can
assume that the influence from the surroundings of the region
�x[Ls] is not relevant to the dynamics of ar (x) because x

is well inside the region. An equilibrium state of the region
�x[Ls] will be realized when the observation is made for
a long period of time, Lt, and can be characterized by the
condition

δŜ(t ; �x[Ls])

δar (x)
= 0. (A2)

Note that the functional derivative is taken only with respect
to a spatial, D-dimensional unit in the functional. We de-
note the values of ar (x) at the equilibrium by ar

0(x; Ls) ≡
(bA

0 (x; Ls),c̃I
0(x; Ls)). One should note here that, since c̃I (t,y)

are conserved quantities, the variations (A2) with respect to
c̃I -type variables should be taken with total charges kept fixed
at prescribed values:∫

�x [Ls]
dDyc̃I (t,y) ≡ CI (�x[Ls]). (A3)

A simple analysis using the Lagrange multipliers shows
that the condition of global equilibrium is expressed
locally as

∂s̃

∂bA
(x) = 0 and hν

μ(x)∇νβI (x) = 0, (A4)
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where βI is the thermodynamic variable conjugate to c̃I that
is defined by

βI (x) ≡ ∂s̃

∂c̃I
(x). (A5)

The total entropy of the region �x[Ls] at an equilibrium is
given by

Ŝ0(t ; �x[Ls]) ≡
∫

�0
x [Ls]

dDys̃
(
bA

0 (t,y),c̃I
0(t,y),dP (t,y)

)
,

(A6)

where �0
x[Ls] is a hypersurface orthogonal to the velocity

field at the equilibrium, u
μ

0 ≡ p
μ

0 /e0. When the material can
be regarded as being at an equilibrium at spatial infinity, we
can fix the labeling s of the new time slices {�0

s } at the
equilibrium with the labeling t of the original time slices {�t }
by setting s = t if �0

s conforms with �t at spatial infinity. If
we denote coordinates corresponding to the new foliation {�0

t }
by (x ′μ) = (x ′0 = t,x ′i), then the velocity field u0 = u

μ

0 ∂ ′
μ will

be expressed in the following form:

u0 = 1

N0
∂t + 1

Ni
0

∂ ′
i . (A7)

This expression defines the new lapse N0 and the new shifts
Ni

0 at the equilibrium that are realized at spacetime scale
(Ls,Lt). For configurations other than the equilibrium, the total
entropy Ŝ(t ; �x[Ls]) is smaller than that of the equilibrium
Ŝ0(t ; �x[Ls]), so that if we denote their difference by

�Ŝ(t ; �x[Ls]) ≡ Ŝ(t ; �x[Ls]) − Ŝ0(t ; �x[Ls]), (A8)

�Ŝ is always nonpositive.
In the previous paper [13], it is proposed that the difference

�Ŝ can be effectively written in the following form at the low-
est order in the derivative expansion for linear nonequilibrium
thermodynamics:

�Ŝ(t ; �x[Ls])

= −1

2

∫
�0

x [Ls]
dDyN−1

0

√−g((b − b0)A ∇μβI )

×
(

�AB �νJ
A

�
μI

B �μI,νJ

)(
(b − b0)B

∇νβJ

)
. (A9)

Here the scalar function N0 is the lapse at the equilibrium

defined in Eq. (A7), the coefficient (
�AB �νJ

A

�
μI

B �μI,νJ ) is a symmetric,

positive semidefinite matrix, and all the elements are spatial
tensors, �

μI

A uμ = 0 = �μI,νJ uν . The integral region can be
replaced by �x[Ls] because the difference is of higher orders
in the derivative expansion. See the appendix in [13] for a
derivation of (A9) for simple cases. The functional form of the
total entropy, Ŝ(t ; �x[Ls]) = Ŝ0(t ; �x[Ls]) + �Ŝ(t ; �x[Ls]),
is called the entropy functional in [13].

We now consider Onsager’s linear regression theory [9–12]
assuming that the total entropy is given with this entropy
functional. In Onsager’s treatment the irreversible evolutions
of thermodynamic variables ar (x) are given by

[ȧr (x)]irr = Lrsfs(x). (A10)

Here fs(x) is the thermodynamic force defined by

fs(x) = δ�Ŝ(t ; �x[Ls])

δas(x)
, (A11)

and in the relativistic nonlinear thermodynamics, the dot
should be defined as ȧr ≡ N£ua

r [13], where £u is the Lie
derivative with respect to the velocity u = uμ(x)∂μ. Lrs are
the so-called phenomenological coefficients and can be shown
to satisfy Onsager’s reciprocal relation [9–11]

Lrs = (−1)|a
r |+|as |Lsr , (A12)

where the index |ar | expresses how the variables transform
under time reversal, ar (x) → (−1)|a

r |ar (x).12 The Curie prin-
ciple says that Lrs can be block diagonalized with respect
to the transformation properties of the indices (r,s) under
spatial rotations and the parity transformation [21], that is,
under the subgroup O(D) of the local Lorentz group O(D,1)
in local inertial frames. For example, when ar constitute
a contravariant vector, (ar ) ≡ (aμ), the equations of linear
regression should be set for each of the normal and tangential
components to the time slice through x:

[ȧ(x)]μirr⊥(x) = L
μν

⊥

[
δ�Ŝ

δaν(x)

]
⊥, (A13)

[ȧ(x)]μirr‖(x) = L
μν

‖

[
δ�Ŝ

δaν(x)

]
‖, (A14)

where for a contravariant vector vμ we define v
μ

⊥ ≡ (−uμuν)vν

and v
μ

‖ ≡ hμ
ν vν (and similarly for covariant vectors). Covari-

ance and positivity further impose the condition that L
μν

⊥ and
L

μν

‖ should be expressed as L
μν

⊥ = L⊥uμuν (L⊥ > 0) and
L

μν

‖ = L‖hμν (L‖ > 0), respectively.
If we further know the reversible evolutions of thermo-

dynamic variables, [ȧr (x)]rev, which are not accompanied by
entropy productions, then the dynamics of the system can be
determined as

ȧr (x) = [ȧr (x)]rev + [ȧr (x)]irr

= [ȧr (x)]rev + Lrs δ�Ŝ(t ; �x[Ls])

δas(x)
. (A15)

For viscoelastic materials, the relevant thermodynamic
variables are the following:

bA bA
0 c̃I βI dP (∂s̃/∂dP )

εμν 0 p̃μ −uμ/T gμν

√
hT

μν

(q) /2T

εμ 0 ñ −μ/T

θ 0

where T
μν

(q) ≡ euμuν + τ
μν

(q) is the quasiconservative energy-
momentum tensor with τ

μν

(q) the quasiconservative stress tensor.

12When the background fields dP change as dP → dP
T under

time reversal, the reciprocal relation is expressed as Lrs(dP ) =
(−1)|a

r |+|as |Lsr (dP
T ).
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The entropy functional is then written as

�Ŝ(t ; �x[Ls]) = −1

2

∫
�0

x [Ls]
dDy

√−gN−1
0

[
(ε〈μν〉 ∇〈μ(∂s̃/∂p̃ν〉))

(
�

〈μν〉,〈ρσ 〉
1 �

〈μν〉,
2〈ρσ 〉

�
〈ρσ 〉
2〈μν〉, �3〈μν〉,〈ρσ 〉

)(
ε〈ρσ 〉

∇〈ρ(∂s̃/∂p̃σ 〉
))

+ (εμ ∂μ

(
∂s̃/∂ñ

)
)

(
�

μν

1 �
μν

2

�
μν

2 �
μν

3

)(
εν

∂ν(∂s̃/∂ñ)

)
+ (trε θ ∇μ(∂s̃/∂p̃μ))

⎛⎜⎝�̂s
1 �̂s

2 �̂s
4

�̂s
2 �̂s

3 �̂s
5

�̂s
4 �̂s

5 �̂s
6

⎞⎟⎠
⎛⎜⎝ trε

θ

∇μ(∂s̃/∂p̃μ)

⎞⎟⎠
⎤⎥⎦ ,

= −1

2

∫
�0

x [Ls]
dDy

√−gN−1
0

[
(ε〈μν〉 (−1/T )K〈μν〉)

(
�

〈μν〉,〈ρσ 〉
1 �

〈μν〉,
2〈ρσ 〉

�
〈ρσ 〉
2〈μν〉, �3〈μν〉,〈ρσ 〉

)(
ε〈ρσ 〉

(−1/T )K〈ρσ 〉

)

+ (εμ ∂μ(−μ/T ))

(
�

μν

1 �
μν

2

�
μν

2 �
μν

3

)(
εν

∂ν(−μ/T )

)
+ (trε θ (−1/T )trK)

⎛⎜⎝�̂s
1 �̂s

2 �̂s
4

�̂s
2 �̂s

3 �̂s
5

�̂s
4 �̂s

5 �̂s
6

⎞⎟⎠
⎛⎝ trε

θ

(−1/T )trK

⎞⎠
⎤⎥⎦ ,

(A16)

where the coefficient matrices are symmetric and positive
semidefinite, and their indices are all orthogonal to uμ.13 Note
that for this parametrization, the contributions from the rotation
∇[μuν] are discarded. Since the matrices must be invariant
tensors, we can assume that they take the following form:14(

�
〈μν〉,〈ρσ 〉
1 �

〈μν〉,〈ρσ 〉
2

�
〈μν〉,〈ρσ 〉
2 �

〈μν〉,〈ρσ 〉
3

)
= 2

(
�t

1 �t
2

�t
2 �t

3

)
N0h

〈μ
μ′ h

ν〉
ν ′ h

μ′ρhν ′σ ,

(A17)(
�

μν

1 �
μν

2

�
μν

2 �
μν

3

)
=
(

�v
1 �v

2

�v
2 �v

3

)
N0h

μν, (A18)⎛⎜⎝�̂s
1 �̂s

2 �̂s
4

�̂s
2 �̂s

3 �̂s
5

�̂s
4 �̂s

5 �̂s
6

⎞⎟⎠ =

⎛⎜⎝�s
1 �s

2 �s
4

�s
2 �s

3 �s
5

�s
4 �s

5 �s
6

⎞⎟⎠N0, (A19)

where (
�t

1 �t
2

�t
2 �t

3
), (

�v
1 �v

2

�v
2 �v

3
), and (

�s
1 �s

2 �s
4

�s
2 �s

3 �s
5

�s
4 �s

5 �s
6

) are positive semidefinite.

The irreversible evolutions of thermodynamic variables then
become

[ε̇〈μν〉]irr ≡ 1√
h

Lε〈μν〉ε〈ρσ 〉 δ�Ŝ

δερσ

, (A20)

[ε̇μ]irr⊥ ≡ 1√
h

L
εμεν

⊥

[
δ�Ŝ

δεν

]
⊥

≡ 0, (A21)

[ε̇μ]irr‖ ≡ 1√
h

L
εμεν

‖

[
δ�Ŝ

δεν

]
‖
, (A22)

(
[(trε)·]irr

[θ̇]irr

)
≡ 1√

h

(
Ltrεtrε Ltrεθ

Ltrεθ Lθθ

)( δ�Ŝ
δ(trε)

δ�Ŝ
δθ

)
, (A23)

13We actually need to impose the latter condition in the Landau-
Lifshitz frame. One can show that if this condition is relaxed, the
energy-momentum tensor comes to have terms related to a heat flux,
which should not appear in the Landau-Lifshitz frame.
14Note that �

〈μν〉,〈ρσ 〉
k ε〈ρσ 〉 = 2�t

kε
〈μν〉 (k = 1,2,3).

[ ˙̃pμ]irr⊥ ≡
√

hL
p̃μp̃ν

⊥

[
δ�Ŝ

δp̃ν

]
⊥
, (A24)

[ ˙̃pμ]irr‖ ≡
√

hL
p̃μp̃ν

‖

[
δ�Ŝ

δp̃ν

]
‖
, (A25)

[ ˙̃n]irr ≡
√

hLññ δ�Ŝ

δñ
. (A26)

We now make the following irreducible decompositions of the
phenomenological constants under the group O(D) in a local
inertial frame:

Lε〈μν〉ε〈ρσ 〉 ≡ Lth
μ′
〈μhν ′

ν〉hμ′ρhν ′σ , (A27)

L
εμεν

‖ ≡ Lvhμν, (A28)

Ltrεtrε ≡ Ls
1, Ltrεθ ≡ Ls

2, (A29)

Lθθ ≡ Ls
3, L

p̃μp̃ν

⊥ ≡ L⊥uμuν, (A30)

L
p̃μp̃ν

‖ ≡ L‖hμν, Lññ ≡ M. (A31)

Then the irreversible evolutions of thermodynamic variables
can be written as [13]

N−1[ε̇〈μν〉]irr = −2Lt�t
1ε〈μν〉 + (2Lt�t

2/T )K〈μν〉, (A32)

N−1[ε̇μ]irr = −Lvhν
μ

[
�v

1εν + �v
2∂ν(−μ/T )

]
, (A33)

N−1[(trε)·]irr = −(Ls
1�

s
1 + Ls

2�
s
2

)
trε − (Ls

1�
s
2 + Ls

2�
s
3

)
θ

+ (Ls
1�

s
4 + Ls

2�
s
5

) 1

T
trK, (A34)

N−1[θ̇]irr = −(Ls
2�

s
1 + Ls

3�
s
2

)
trε − (Ls

2�
s
2 + Ls

3�
s
3

)
θ

+ (Ls
2�

s
4 + Ls

3�
s
5

) 1

T
trK, (A35)

1√−g
[ ˙̃pν]irr⊥ = −c⊥L⊥(−uνuλ)∇μ

[
2�t

2ε
〈μλ〉 − 2

T
�t

3K
〈μλ〉

+
(

�s
4trε + �s

5θ − 1

T
�s

6trK

)
hμλ

]
, (A36)
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1√−g
[ ˙̃pν]irr‖ = −c‖L‖hνλ∇μ

[
2�t

2ε
〈μλ〉 − 2

T
�t

3K
〈μλ〉

+
(

�s
4trε + �s

5θ − 1

T
�s

6trK

)
hμλ

]
, (A37)

1√−g
[ ˙̃n]irr = −

√
h

(
− ∂2s̃

∂ñ2

)
M

×∇μ

[
�v

2h
μνεν + �v

3h
μν∂ν

(
−μ

T

)]
. (A38)

Here, in order to evaluate δ�Ŝ/δp̃μ, we have used the
decomposition of the matrix ∂2s̃/∂p̃μ∂p̃ν (negative-definite
for each irreducible component) as

√
h

∂2s̃

∂p̃μ∂p̃ν

= −c⊥uμuν − c‖hμν, (A39)

with positive quantities c⊥ and c‖.
If we assume that Lp̃ ≡ c⊥L⊥ = c‖L‖ and Lñ ≡√

h(−∂2s̃/∂ñ2)M are constant, then Eqs. (A36)–(A38) are
rewritten as

[ ˙̃pν]irr = −√−g∇μτ (d)
μν , [ ˙̃n]irr = −√−g∇μν(d)

μ , (A40)

where the dissipation currents are given by

τ (d)
μν ≡ Lp̃

[
2�t

2ε〈μν〉 − (2/T )�t
3K〈μν〉

+(�s
4trε + �s

5θ − (1/T )�s
6trK

)
hμν

]
, (A41)

ν(d)
μ ≡ Lñ

[
�v

2εμ + �v
3h

ν
μ∂ν(−μ/T )

]
. (A42)

On the other hand, as for the isentropic evolutions, we
assume that the evolutions of the densities of conserved
quantities are given by

[ ˙̃pν]rev = −√−g∇μτ (r)
μν, [ ˙̃n]rev = −√−g∇μν(r)

μ , (A43)

with the reversible currents of the following form:15

τ (r)
μν ≡ τ (q)

μν − 2Gε〈μν〉 − K(trε − aθ )hμν, (A44)

ν(r)
μ ≡ −Hεμ. (A45)

As for the evolutions of the strains Eμν = (εμν,εμ,θ ), we set
them to be in the most generic form:

N−1[ε̇〈μν〉]rev = 2GLt

Lp̃T
K〈μν〉, (A46)

N−1[ε̇μ]rev = −LvH
Lñ

hν
μ∂ν

(
−μ

T

)
, (A47)(

N−1[(trε)·]rev

N−1[θ̇ ]rev

)
= −L−1

p̃

(
Ls

1 Ls
2

Ls
2 Ls

3

)(
K′θ − K

T
trK

−K′trε + K
T

trK

)
.

(A48)

Combining Eqs. (A40)–(A42) and Eqs. (A43)–(A45), and
using the formulas ˙̃pν = √−g∇μ(uμpν) = √−g∇μ(euμuν)

15At the end of this appendix, we comment on how these reversible
parts are determined in the entropic formulation.

and ˙̃n = √−g∇μ(nuμ), we obtain
√−g∇μ(euμuν) = ˙̃pν = [ ˙̃pν]rev + [ ˙̃pν]irr

= −√−g∇μ
(
τ (r)
μν + τ (d)

μν

)
, (A49)

√−g∇μ(nuμ) = ˙̃n = [ ˙̃n]rev + [ ˙̃n]irr

= −√−g∇μ
(
ν(r)

μ + ν(d)
μ

)
. (A50)

We thus find that (A36)–(A38) [or Eqs. (A40)–(A42)] and
Eqs. (A43)–(A45) can be summarized as current conserva-
tions:

∇μT μν = 0, ∇μnμ = 0, (A51)

where each of the conserved currents,

T μν ≡ euμuν + τμν, nμ ≡ nuμ + νμ, (A52)

consists of the convective current (pνuμ = euμuν or nuμ) and
the additional current (τμν or νμ), the latter being further
decomposed into the reversible and the dissipative currents:

τμν ≡ τ
μν

(r) + τ
μν

(d) , νμ ≡ ν
μ

(r) + ν
μ

(d). (A53)

Furthermore, one can easily show that the evolution equa-
tions on Eμν = (εμν,εμ,θ ) [Eqs. (A32)–(A35)] together with
the explicit form of the reversible and the dissipative currents
[Eqs. (A41), (A42), (A44), and (A45)] can be rewritten into
the following set of equations:(

− 2λ1
T

£uε〈μν〉
τ〈μν〉 − τ

(q)
〈μν〉

)
= 2(G + η)

(
ε〈μν〉

− 1
T
K〈μν〉

)
, (A54)(

− λ2
T

£uεμ

νμ

)
= (H + σ )

(
εμ

hν
μ∂ν

(−μ

T

)) , (A55)⎛⎝− 1
T
γ

(
£u(trε)

£uθ

)
1
D

(trτ − trτ(q))

⎞⎠ = (K + ζ )

⎛⎝ trε
θ

− 1
T

trK

⎞⎠ , (A56)

where

λ1 ≡ Lp̃T

2Lt
, λ2 ≡ LñT

Lv
, (A57)

γ ≡
(

γ1 γ2

γ2 γ3

)
≡
[

1

Lp̃T

(
Ls

1 Ls
2

Ls
2 Ls

3

)]−1

, (A58)

η ≡ Lp̃

(
�t

1 �t
2

�t
2 �t

3

)
, σ ≡ Lñ

(
�v

1 �v
2

�v
2 �v

3

)
, (A59)

ζ ≡ Lp̃

⎛⎜⎝�s
1 �s

2 �s
4

�s
2 �s

3 �s
5

�s
4 �s

5 �s
6

⎞⎟⎠ , G ≡
(

0 G
−G 0

)
, (A60)

H ≡
(

0 H
−H 0

)
, K ≡

⎛⎝ 0 K′ K
−K′ 0 −Ka

−K Ka 0

⎞⎠ . (A61)

Equations (A54)–(A61) totally agree with Eqs. (36)–(42),
from which Eqs. (43)–(49) follow, as we see in Sec. II C.
This is what we promised to show at the beginning of this
Appendix.

We close this appendix with a comment on how the
reversible evolutions are determined. They are actually de-
termined by the requirement that the reversible evolutions
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do not produce entropy and the final form of the total
evolutions (reversible ones plus irreversible ones) should
be given as in Eqs. (A54)–(A61). As an example, let us
consider the irreversible evolution of ε〈μν〉 and the quantity
τ〈μν〉 − τ

(q)
〈μν〉:

N−1[ε̇〈μν〉]irr = −2Lt�t
1ε〈μν〉 + 2Lt�t

2

T
K〈μν〉, (A62)

τ〈μν〉 − τ
(q)
〈μν〉 = −2Gε〈μν〉 + 2Lp̃�t

2ε〈μν〉 − 2Lp̃�t
3

T
K〈μν〉.

(A63)

By multiplying the first equation by a factor −Lp̃/Lt, the
equations can be rewritten with a symmetric matrix as(

−Lp̃

Lt N
−1[ε̇〈μν〉]irr

τ〈μν〉 − τ
(q)
〈μν〉

)

=
[(

0 0
−2G 0

)
+ 2Lp̃

(
�t

1 �t
2

�t
2 �t

3

)](
ε〈μν〉

− 1
T
K〈μν〉

)
. (A64)

The second term with a symmetric positive-semidefinite ma-
trix represents irreversible processes with entropy production.
Thus, in order for the first term not to produce entropy,
we need to introduce the reversible part in ε̇〈μν〉 such that
the resulting form can be written with an antisymmetric
matrix. This consideration determines the reversible evolution
uniquely as(

−Lp̃

Lt N
−1[ε̇〈μν〉]rev

0

)
=
(

0 2G
0 0

)(
ε〈μν〉

− 1
T
K〈μν〉

)
. (A65)

Noting that N−1ε̇〈μν〉 = £uε〈μν〉, we see that the total evolution
is actually given as in (A54). The remaining equations can be
obtained in a similar way.

APPENDIX B: CONSTITUTIVE EQUATIONS IN
RHEOLOGICAL MODELS

The theory of elasticity is based on Hooke’s law which
states that that stresses are proportional to strains in elastic
materials. On the other hand, the theory of viscous fluids is
based on Newton’s law, which states that viscous stresses are
proportional to velocity gradients in fluids and is described
by the Navier-Stokes equations. However, for more general
materials these theories are not applicable, and a class of
such materials is called viscoelastic materials and studied
in the area of rheology. The relation between stresses and
strains for a given material is called the constitutive equations,
which play a fundamental role in the study of rheology.
In this Appendix, we list a few well-known materials with
their constitutive equations and compare them with the
viscoelastic materials discussed in the bulk of the present
paper.

1. Hookean materials

The simplest constitutive equations constitute Hooke’s law.
We first assume that, on each time slice �t , every material
particle knows its own natural shape described by the reference
metric h̄μν , which measures distances in a material when it is
free of elastic strains. This metric has the same meaning as

FIG. 4. The bulk part (left) and shear part (right) for a Hookean
material.

the intrinsic metric in the main text, though it is not dynamical
here (£uh̄μν = 0). When we discuss nonrelativistic dynamics,
we will set it to be h̄μν = diag(0,1, . . . ,1) in a laboratory
frame, as is taken in standard textbooks (e.g., [5]). Although
we consider the strain tensor Eμν in the main text, we here
assume that elastic strains are purely spatial and only consider
the elastic strain tensor defined by εμν ≡ (1/2)(hμν − h̄μν).

Hooke’s law can then be expressed as

τμν = −K(μν)(ρσ )ερσ (K(μν)(ρσ ) � 0), (B1)

where K(μν)(ρσ ) is a constant tensor, and ( ) denotes the
symmetrization of indices with the normalization (( )) = ( ).
For isotropic elastic materials which locally has no preferred
direction, the coefficient K(μν)(ρσ ) can be expressed as the sum
of the irreducible components hμνhρσ and (1/2)(hμρhνσ +
hμσhνρ − (2/D)hμνhρσ ), and we have

τμν = −K(trε)hμν − 2Gε〈μν〉, (B2)

where K and G are the bulk and the shear modulus, re-
spectively. Relativistic motions of such elastic materials in
gravitational fields are discussed in, for example, [15].

Since we are considering the linear approximation in εμν ,
this stress tensor can also be written as

τμν = −K(trε)h̄μν − 2Gε〈μν〉, (B3)

where tr and ε〈μν〉 are defined by

trε = εμνh̄
μν, ε〈μν〉 = εμν − 1

D
(trε)h̄μν. (B4)

Then, if we take the nonrelativistic approximation with h̄μν =
diag(0,1, . . . ,1), we reproduce the standard Hookean stress
tensor

τij = −K(δklεkl)δij − 2G
(

εij − 1

D
(δklεkl)δij

)
. (B5)

The constitutive equations for a Hookean material are
schematically represented by a spring, as depicted in Fig. 4.
To understand the diagram, we consider a Hookean material
in D = 1 spatial dimension. The material can be obtained
by connecting in series tiny springs with a weight of mass
m at each end (see Fig. 5). Since the actual length between
two adjacent weights at x = xn ≡ nl (n ∈ Z) and x = xn+1

is given by
√

h11(xn)l, and since the natural length is
given by

√
h̄11(xn)l, the stretch of the spring is given by

FIG. 5. Weights of mass m are connected to the spring with spring
constant k.
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FIG. 6. The bulk part (left) and the shear part (right) for a
Navier-Stokes (or Newtonian) fluid. A dashpot yields a viscous stress
proportional to the time derivative of the induced metric.

(
√

h11 −
√

h̄11)l 	 (ε11/
√

h̄11)(xn), where ε11 = (1/2)(h11 −
h̄11). Then the equation of motion for the weight at x = xn can
be written as

ma1(xn) = −kl
ε11√
h̄11

(xn−1) + kl
ε11√
h̄11

(xn), (B6)

where a1(xn) is the acceleration of the weight at x = xn in the
x1 direction. Then in the continuum limit l → 0 with e0 ≡
m/
√

h̄11l and K ≡ kl kept fixed at finite values, the equation
becomes

e0a1(x) = −∂1
[−K(trε(x))δ1

1

]
, (B7)

so long as we take a coordinate system in which the intrinsic
metric h̄11 is spatially constant. If we define the energy density
e(x) ≡ m/

√
h11l and neglect the difference (e(x) − e0)a1(x),

which is of higher orders in ε11, we obtain the Euler equation

e(x)a1(x) = −∂1τ
1
1 , (B8)

with the stress tensor τ 1
1 = −K(trε)δ1

1. This stress tensor
coincides with (B3) in D = 1 dimension, and in this sense
the left diagram in Fig. 4 represents (the bulk part of) the
constitutive equations for a Hookean material. On the other
hand, the right diagram in Fig. 4 is simply a schematic
generalization for the shear part and does not have any physical
meaning other than the information that the shear part of the
stress tensor is given by −2Gε〈μν〉.

2. Navier-Stokes (Newtonian) fluids

Newton’s viscosity law says that the viscous stress tensor
is proportional to velocity gradients, and in our notations this
can be written as

τ
μν

(d) = −ζ (μν)(ρσ )Kρσ (ζ (μν)(ρσ ) � 0), (B9)

because the extrinsic curvature Kμν = (1/2)£uhμν can also
be expressed as velocity gradients, Kμν = (1/2)hρ

μhσ
ν (∇ρuσ +

∇σ uρ). In particular, for simple fluids (that do not have any
specific directions locally) we have

τ
μν

(d) = −ζ (trK)hμν − 2ηK 〈μν〉, (B10)

where ζ (�0) and η(�0) are the bulk and the shear viscosity,
respectively. These constitutive equations can be interpreted
as representing the resistance due to the time derivative of
the induced metric, Kμν = (1/2)£uhμν , and are schematically
represented by a dashpot as in Fig. 6.

For simple fluids, the reversible part of the stress tensor, τμν

(r) ,
should be proportional to hμν by definition, and we write it as
τ

μν

(r) = Phμν . Then the total stress tensor for simple viscous
fluids is given by

τμν = τ
μν

(r) + τ
μν

(d) = Phμν − ζ (trK)hμν − 2ηK 〈μν〉. (B11)

Materials with the constitutive equations of this form are called
Navier-Stokes (or Newtonian) fluids.

FIG. 7. The bulk part (left) and shear part (right) for a Kelvin-
Voigt material.

3. Kelvin-Voigt materials

If an elastic material (so that £uh̄μν = 0) further obeys
Newton’s viscosity law, the stress tensor is given in the
following form:

τμν = −(Ktrε + ζ trK)hμν − 2Gε〈μν〉 − 2ηK〈μν〉. (B12)

Such materials are called Kelvin-Voigt materials and are
sometimes used to explain creep phenomena in viscoelastic
materials. Relativistic motions of such materials are discussed
in, for example, [22]. Since Kelvin-Voigt materials have
fixed intrinsic metric (0 ≡ £uh̄μν = Kμν − £uεμν), we have
Kμν = £uεμν and the stress tensor can be rewritten in the
following form:

τμν = −(Ktrε + ζ£utrε)hμν − 2Gε〈μν〉 − 2η£uε〈μν〉. (B13)

The constitutive equations for a Kelvin-Voigt material thus can
be represented by the diagrams in Fig. 7. Since a spring and
a dashpot are connected in parallel in each diagram, the total
stress is given as the sum of the stress of each component.

Unlike Hookean materials, the stress-strain relation is
process-dependent. However, for Kelvin-Voigt materials the
stress tensor at each moment can be determined only by
measuring the induced metric hμν and its temporal derivative
Kμν at the moment, and we do not need to know the preceding
history of the strains.

For more generic materials, the stress tensor indeed depends
on the whole preceding history of the strains. The simplest
among such materials are Maxwell materials, described below.

4. Maxwell materials

The constitutive equations for a Maxwell material are
depicted in Fig. 8. Since a spring and a dashpot are connected
in series, the stress of the spring and the stress of the dashpot
should be equal. As is already explained, the stress of the
spring is given by

τμν = −K(trε)hμν − 2Gε〈μν〉. (B14)

Recall that the induced metric hμν measures the actual shape
of each material particle (i.e., the total length of the diagram),
while the intrinsic metric h̄μν measures the natural shape of
each material particle (i.e., the length of the dashpot plus the
natural length of the spring). Thus, the stress of the dashpot,

FIG. 8. The bulk part (left) and the shear part (right) for a Maxwell
material.
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FIG. 9. The bulk part (left) and the shear part (right) for a Zener
material.

which is proportional to the temporal derivative of h̄μ (i.e., the
temporal derivative of the length of the dashpot), is given by

τμν = −ζ (trK̄)hμν − 2ηK̄〈μν〉. (B15)

Since these stresses are equal, from Eqs. (B14) and (B15), we
obtain the equations

trK̄ = (K/ζ )trε, K̄〈μν〉 = (G/η)ε〈μν〉. (B16)

Since K̄μν is the temporal derivative of h̄μν , K̄μν =
(1/2)£uh̄μν , these equations describe the dynamics of h̄μν and
are called the rheology equations in the main text. Note that
the structure of a Maxwell material is critically different from
that of a Kelvin-Voigt material in that the intrinsic metric h̄μν

of the former is dynamical.
We should also emphasize that even if we measure the shape

of a viscoelastic material, hμν , and its derivative Kμν at a given
moment, we cannot readily determine the value of the stress
tensor τμν at the moment because there is no way to know the
values of strains εμν when h̄μν is dynamical. However, if we
observe the evolution of hμν during a finite interval of time,
the initial value of h̄μν can be obtained, and by solving the
rheology equations we can determine the value of the intrinsic
metric h̄μν at each moment.

5. Zener materials

We next consider Zener materials or the standard linear
solid model whose constitutive equations are given by the
diagrams in Fig. 9. This model includes Kelvin-Voigt materials
and Maxwell materials as limiting cases (K2 = G2 = 0 and
K1 = G1 = 0, respectively). However, as is clear from Fig. 9,
if a Zener material is left intact after an initial deformation,
it will get back to its original natural shape. In other words,
this kind of material does not posses permanent strains unlike
Maxwell materials, and in this sense Zener materials are said
to be solidlike.

If we want to describe the relativistic dynamics of a Zener
material using our theory of viscoelasticity, we need to extend
the framework, introducing another nondynamical intrinsic
metric h̄(2)

μν in addition to the original dynamical intrinsic metric

h̄μν . Here h̄(2)
μν measures the natural length of the lower spring

in Fig. 9, while h̄μν measures the length of the dashpot plus
the natural length of the upper spring.

If we consider more generic materials, we accordingly
should introduce more additional intrinsic metrics (dynamical
or nondynamical). Such generalizations correspond to consid-
ering multielement models (such as the generalized Maxwell
model) known in the study of rheology. In this paper we only
consider the cases with a single intrinsic metric, and such
generalizations will be discussed elsewhere.

6. Viscoelastic materials considered in this paper

As for the rheological model discussed in this paper, we
here consider for brevity the case when the effects of thermal
expansion can be neglected (ζ2 = ζ5 = a = γ2 = K′ = 0).
Then the stress tensor and the rheology equations are given
by

τμν = τ (q)
μν − 2(G − η2)ε〈μν〉 − (2η3/T )K〈μν〉

− [(K − ζ4)trε + (ζ6/T )trK]hμν, (B17)

£uε〈μν〉 = −η1T

λ1
ε〈μν〉 + G + η2

λ1
K〈μν〉, (B18)

£u(trε) = −ζ1T

γ1
trε + K + ζ4

γ1
trK. (B19)

These equations can be summarized as in Fig. 10. In particular,
one can show that Maxwell’s original definition is realized if
we set K = γ1 − ζ4 and G = λ1 − η2 (see Sec. III C). The
corresponding diagrams are given in Fig. 11. The Maxwell
model can be obtained if we additionally set ζ6 = η3 = 0,
which is the case where the simplified Israel-Stewart model is
obtained, as shown in Sec. IV.

APPENDIX C: EULER AND GIBBS-DUHEM RELATIONS

In this appendix we consider the case τ
μν

(q) = Phμν . Then
the variation equation of entropy, Eq. (25), is given by

δs̃ = −uν

T
δp̃ν − μ

T
δñ + P

T
δ
√

h + ẽ

2T
uμuνδgμν

−
√

h

T
2λ1ε

〈μν〉δε〈μν〉 −
√

h

T
(γ1trε + γ2θ )δ(trε)

−
√

h

T
λ2ε

μδεμ −
√

h

T
(γ3θ + γ2trε)δθ. (C1)

FIG. 10. Schematic structure of the bulk part (left) and the shear part (right). Note that the contribution of τ (q)
μν is omitted for simplicity.
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FIG. 11. A three-element model where a dashpot is connected in parallel with a Maxwell material.

Here, if we consider the variation δ = uμ∇μ, we obtain

√
huμ∂μs =

√
h

T
uμ(∂μe − μ∂n) −

√
h

T
2λ1ε

〈μν〉uμ∇με〈μν〉 −
√

h

T
(γ1trε + γ2θ )uμ∂μ(trε)

−
√

h

T
λ2ε

μuμ∇μεμ −
√

h

T
(γ3θ + γ2trε)uμ∂μθ. (C2)

On the other hand, if we consider the variation δ = £u, we obtain

√
h∇μ(suμ) = −

√
huν

T
∇μ(pνu

μ) −
√

hμ

T
∇μ(nuμ) +

√
hP

T
∇μuμ −

√
h

T
2λ1ε

〈μν〉£uε〈μν〉 −
√

h

T
(γ1trε + γ2θ )uμ∂μ(trε)

−
√

h

T
λ2ε

μ£uεμ −
√

h

T
(γ3θ + γ2trε)uμ∂μθ. (C3)

Subtracting Eq. (C2) from Eq. (C3), we obtain the following equation:

s̃trK = ẽ − μs̃ + √
hP

T
trK −

√
h

T
2λ1

(
tr(ε2K) − 4

D
(trε)tr(εK) + 4

D2
(trK)(trε)2

)
−

√
h

T
λ2ε

μενKμν. (C4)

We can neglect the terms in the second through fourth lines because they are of higher orders, and thus we obtain the equation

(e + P − T s − μn)trK = 0. (C5)

Since this should hold for any processes in our linear approximations, the following relation must hold:

e + P − T s − μn = 0. (C6)

This has the same form with the standard Euler relation although the energy density e and the entropy density s here
contain contributions from the strain tensor Eμν = (εμν,εμ,θ ). From this and Eq. (C1), we can derive the Gibbs-Duhem-like
equation:

sδT + nδμ − δP = −2λ1ε
〈μν〉δε〈μν〉 − (γ1trε + γ2θ )δ(trε) − λ2ε

μδεμ − (γ3θ + γ2trε)δθ. (C7)

In the limit where the strains relax completely (Eμν → 0), this reduces to the standard Gibbs-Duhem equation for simple
fluids.
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