
INVITED PAPERS 489

Progress of Theoretical Physics, Vol. 109, No. 4, April 2003

Holographic Renormalization Group

Masafumi Fukuma,1 So Matsuura2 and Tadakatsu Sakai3

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2Yukawa Institute for Theoretical Physics, Kyoto University,

Kyoto 606-8502, Japan
3Raymond and Beverly Sackler Faculty of Exact Sciences,

School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv 69978, Israel

(Received December 20, 2002)

The holographic renormalization group (RG) is reviewed in a self-contained manner.
The holographic RG is based on the idea that the radial coordinate of a space-time with
asymptotically AdS geometry can be identified with the RG flow parameter of boundary field
theory. After briefly discussing basic aspects of the AdS/CFT correspondence, we explain
how the concept of the holographic RG emerges from this correspondence. We formulate the
holographic RG on the basis of the Hamilton-Jacobi equations for bulk systems of gravity
and scalar fields, as introduced by de Boer, Verlinde and Verlinde. We then show that the
equations can be solved with a derivative expansion by carefully extracting local counterterms
from the generating functional of the boundary field theory. The calculational methods used
to obtain the Weyl anomaly and scaling dimensions are presented and applied to the RG
flow from the N = 4 SYM to an N = 1 superconformal fixed point discovered by Leigh and
Strassler. We further discuss the relation between the holographic RG and the noncritical
string theory and show that the structure of the holographic RG should persist beyond the
supergravity approximation as a consequence of the renormalizability of the nonlinear σ-
model action of noncritical strings. As a check, we investigate the holographic RG structure
of higher-derivative gravity systems. We show that such systems can also be analyzed based
on the Hamilton-Jacobi equations and that the behavior of bulk fields are determined solely
by their boundary values. We also point out that higher-derivative gravity systems give rise
to new multicritical points in the parameter space of boundary field theories.

§1. Introduction

The idea that there should be a close relation between gauge theories and string
theory has a long history.1)–3) In a seminal work by ’t Hooft,2) this relation is ex-
plained in terms of the double-line representation of gluon propagators in SU(N)
gauge theories. There a Feynman diagram is interpreted as a string world-sheet by
noting that each graph depends on the gauge coupling and the number of colors as

(g2
YM)−V +EN I = λ−V +EN2−2g = (g2

YM)2g−2λI . (1.1)

Here λ = g2
YMN is the ’t Hooft coupling, and V , E and I are the numbers of vertices,

propagators and index loops of the Feynman diagram, respectively. We also used
the Euler relation V − E + I = 2− 2g with genus g. In the ’t Hooft limit, N →∞
with λ fixed, a gauge theory can be regarded as a string theory with the string
coupling gs ∝ 1/N ∝ g2

YM, and λ is identified with some geometrical data of the
string background. To be more precise, consider the partition function of a gauge
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theory
F =

∑
g,I

(g2
YM)2g−2λIFg,I =

∑
g

(g2
YM)2g−2Fg(λ). (1.2)

There is then the question of whether one can find a string theory that reproduces
perturbatively each coefficient Fg(λ). In Ref. 4), a quantitative check for this cor-
respondence between Chern-Simons theory on S3 and a topological A model on a
resolved conifold is presented. However, it is a highly involved problem to prove such
a correspondence in more realistic gauge theories.

The AdS/CFT correspondence is a manifestation of the idea of ’t Hooft. By
studying the decoupling limit of coincident D3 and M2/M5 branes, Maldacena5) ar-
gued that superconformal field theories with the maximal amount of supersymmetry
(SUSY) are dual to string or M theory on AdS. Soon after the ground-breaking work
of Maldacena, this conjecture was formulated into a more precise statement by Gub-
ser, Klebanov and Polyakov6) and by Witten7) asserting that the classical action of
bulk gravity should be regarded as the generating functional of the boundary confor-
mal field theory. Since then, the correspondence has been investigated extensively
and a large amount of evidence supporting the conjecture have been accumulated
(for a review, see Ref. 8)). As a typical example, consider the duality between the
N = 4 super Yang-Mills (SYM) theory in four dimensions and the Type IIB string
theory on AdS5 × S5. The IIB supergravity solution of N D3-branes reads9)

ds2 = f
−1/2
3

(−dt2 + dx2
1 + · · ·+ dx2

3

)
+ f

1/2
3 (dy2

1 + · · ·+ dy2
6),

(
f3 ≡ 1 +

λl4s
r4

)
(1.3)

where r ≡
√
y2
1 + · · ·+ y2

6 , λ ≡ 4πNgs, and ls =
√
α′ and gs are the string length

and the string coupling, respectively. The decoupling limit is defined by ls → 0 with
U = rl−2

s = fixed. It turns out that the metric reduces to that of AdS5 × S5:

l−2
s ds2 =

U2

λ1/2
ηijdx

idxj +
λ1/2

U2
dU2 + λ1/2dΩ2

5 . (1.4)

By introducing l = λ1/4 ls and z = λ1/2 U−1, this metric can be rewritten as

ds2 =
l2

z2

(
dz2 + ηij dx

idxj
)

+ l2 dΩ2
5 , (1.5)

which shows that AdS5 and S5 have the same curvature radius, l.∗) On the other
hand, the low energy effective theory on the N coincident D3-branes is the N = 4
SU(N) SYM theory. From the viewpoint of open/closed string duality, it is plau-
sible that these theories are dual to one another. In fact, both have the symmetry
SU(2, 2|4). Furthermore, we find below a more stringent check of the duality by
comparing the chiral primary operators of SYM and the Kaluza-Klein (KK) spectra
of IIB supergravity compactified on S5.

∗) Their scalar curvatures are given by RAdS5 = −20/l2 and RS5 = +20/l2, respectively.
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Holographic Renormalization Group 491

Recall that the IIB supergravity description is reliable only when the effects of
both quantum gravity and massive excitations of a closed string are negligible. The
former condition is equivalent to∗)

l � lPlanck ⇔ N � 1, (1.6)

and the latter to

l� ls ⇔ gsN � 1. (1.7)

This implies that the dual SYM is in the strong coupling regime.
One of the most significant aspects of the AdS/CFT correspondence is that it

provides a framework to study the renormalization group (RG) structure of the dual
field theories.10)–29) In this scheme of the holographic RG, the extra radial coordinate
in the bulk is regarded as parametrizing the RG flow of the dual field theory; i.e.,
the evolution of bulk fields along the radial direction is considered as describing the
RG flow of the coupling constants in the boundary field theory.

One of the main purposes of this article is to review various aspects of the
holographic RG using the Hamilton-Jacobi (HJ) formulation. A systematic study
of the holographic RG based on the HJ equation was initiated by de Boer, Verlinde
and Verlinde.30) (For a review of their work see Ref. 31).)∗∗) In this formulation,
we first perform the ADM Euclidean decomposition of the bulk metric, regarding
the coordinate normal to the AdS boundary, τ , as Euclidean time. Working in the
first-order formalism, we obtain two constraints, the Hamiltonian and momentum
constraints, which ensure the invariance of the classical action of bulk gravity under
residual diffeomorphisms after the choice of the time-slice is made. The usual HJ
procedure applied to these constraints leads to functional equations for the classical
action. These are called the flow equation and play a central role in the study of the
holographic RG. One of the advantages of this HJ formulation is that the HJ equation
directly characterizes the classical action of bulk gravity without the need to solve
the equations of motion. In Ref. 30), a five-dimensional bulk gravity theory with
scalar fields is considered, and it is shown that the flow equation yields the Callan-
Symanzik equation of the four-dimensional boundary theory. They also calculated
the Weyl anomaly in four dimensions and found that the result agrees with those
given in Ref. 33) (see also Ref. 34),35)). For a review of the Weyl anomaly, see Ref.
36) .

The investigations in this article are based on a series of works by the present
authors.37)–40) We here summarize the main results briefly. In Ref. 37) bulk gravity
systems with various scalar fields is investigated with arbitrary dimensionality.37)

After deriving the flow equation of this system as described above, we showed that
the equation can be solved systematically with the use of a derivative expansion if we
assign proper weights to the generating functional as well as to local counterterms.
From this result, we derived the Callan-Symanzik equation of the d-dimensional dual

∗) The lPlanck is the ten-dimensional Planck scale, which is given by lPlanck = g
1/4
s ls.

∗∗) The use of the Hamilton-Jacobi equation was proposed by Polyakov some time ago in a

slightly different context.32)
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field theory. We also computed the Weyl anomaly and find a precise agreement with
that given in the literature. It was argued that the ambiguity of local counterterms
does not affect the uniqueness of the Weyl anomaly.38)

The study was extended to bulk gravity with higher-derivative interactions in
Ref. 39). Higher-derivative interactions generically are introduced into the low-
energy effective action of string theory by integrating out the massive modes of closed
strings or due to the presence of orientifold planes.42) On the other hand, according
to the AdS/CFT correspondence, these interactions are interpreted in dual field the-
ories as 1/λ corrections, or for orthogonal and symplectic gauge groups, as 1/N (not
1/N2) corrections.42) Therefore the study of a higher-derivative gravity theory is
important in order to justify the AdS/CFT correspondence beyond the supergravity
approximation. We found that such evolution of classical solutions that maintains
the holographic RG structure of boundary field theories can be investigated by using
a Hamilton-Jacobi-like analysis, and that the systematic method proposed in Ref.
37) can also be applied to solving the flow equation. We computed a 1/N correction
to the Weyl anomaly of four-dimensional N =2 USp(N) supersymmetric gauge the-
ory via higher-derivative gravity on the dual AdS that was proposed in Ref. 41). (For
an earlier work on a computation of 1/N corrections to Weyl anomalies, see Refs.
42), 43).) The result is found to be consistent with a field theoretic computation.
This implies that the AdS/CFT correspondence is valid beyond the supergravity ap-
proximation. In a higher-derivative gravity theory, new interesting phenomena of the
holographic RG develop. For example, one can show that adding higher-derivative
interactions to the bulk gravity action leads to the appearance of new multicritical
points in the parameter space of boundary field theories.40) For other works on the
HJ formulation in the context of the holographic RG, see Refs. 45)–54).

The expectation that the structure of the holographic RG should persist beyond
the supergravity approximation can be further confirmed by formulating the string
theory in terms of noncritical strings. In fact, as explained in §4, the Liouville
field ϕ of the noncritical string theory can be naturally identified with the RG flow
parameter in the holographic RG. Furthermore, various assumptions made in the
holographic RG (like the regularity of fields inside the bulk) have direct counterparts
in the noncritical string theory. It is further discussed in §4 that as a consequence
of the renormalizability of the nonlinear σ-model action of noncritical strings, the
behavior of bulk fields should be holographic to all order in the expansion in α′; i.e.,
it should be determined solely by their boundary values.

The organization of this paper is the following. In §2, we give a review of
basic aspects of the AdS/CFT correspondence. We outline how the notion of the
holographic RG comes out in the AdS/CFT correspondence. As an example of a
holographic description of RG flows, we consider a flow from the N = 4 SYM to an
N = 1 superconformal fixed point discovered by Leigh and Strassler.55) In §3, we
formulate the Hamilton-Jacobi equation of bulk gravity and derive the flow equation.
We solve it in terms of a derivative expansion by introducing the weights. From this
solution, we derive the Callan-Symanzik equation and the Weyl anomaly. Section 4 is
devoted to a discussion of the relation between the holographic RG and non-critical
strings, and it is argued that the structure of the holographic RG should persist
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beyond the supergravity approximation as a consequence of the renormalizability
of the nonlinear σ-model action of noncritical strings. In §5, we consider the HJ
formulation of a higher-derivative gravity theory. We first discuss a new feature
of the holographic RG that appears there. We next derive the flow equation of
the higher-derivative system and solve it by using the derivative expansion. We
show that this computation gives a consistent 1/N correction to the Weyl anomaly
of N = 2 USp(N) supersymmetric gauge theory in four dimensions. In §6, we
summarize the results of this article and discuss some future directions regarding the
AdS/CFT correspondence and the holographic RG. We also make a brief comment
on field redefinitions of bulk fields in ten-dimensional supergravity in the context of
the AdS/CFT correspondence. In particular, we show that the holographic Weyl
anomaly is invariant under a redefinition of the ten-dimensional metric of the Type
IIB supergravity theory. In the Appendices, we give some useful formulae and results.

§2. Review of the AdS/CFT correspondence

In this section, we present a review of the AdS/CFT correspondence5) and the
holographic renormalization group (RG). We first discuss a prescription given by
Gubser, Klebanov and Polyakov6) and by Witten7) to compute correlation functions
of the dual CFT. Based on these observations, we arrive at the idea of the holographic
RG. Here the IR/UV relation10) in the AdS/CFT correspondence plays a central role.
As an application, we calculate the scaling dimensions of the scaling operators of the
CFT. We discuss in some detail a typical example of the AdS/CFT correspondence,
the duality between the four-dimensional N = 4 SU(N) SYM theory and Type IIB
supergravity on AdS5 × S5. In order to check this duality, we show the one-to-one
correspondence between the Kaluza-Klein spectra on S5 and the local operators in
the short chiral primary multiplets of the N = 4 SU(N) SYM theory.

2.1. AdS/CFT correspondence and the IR/UV relation

The AdS/CFT correspondence states that a classical (super)gravity theory on a
(d+ 1)-dimensional anti-de Sitter space-time (AdSd+1) is equivalent to a conformal
field theory (CFTd) at the d-dimensional boundary of the AdS space-time.5)–7) To
explain this, we first introduce some basic ingredients.

The AdSd+1 of curvature radius l has the metric

ds2 = ĝAdS
µν dXµdXν

=
l2

z2

(
dz2 + ηijdx

idxj
)

= dτ2 + e−2τ/lηijdx
idxj , (2.1)

where Xµ = (xi, z) or Xµ = (xi, τ) with µ = 1, · · · , d + 1 and i = 1, · · · , d. The
two parametrizations of the radial coordinate, z and τ , are related as z = l eτ/l, and
the ranges of z and τ are 0 < z < ∞ and −∞ < τ < ∞, so that the boundary is
located at z = 0, or τ = −∞. For the AdSd+1 with Lorentzian signature, we take
ηij to be the flat Minkowski metric ηij = diag [−1,+1, · · · ,+1]. In the following, we
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instead consider the Euclidean version of AdSd+1 (the Lobachevski space) by taking
ηij = δij , which generalizes the Poincaré metric of the upper half plane. The AdSd+1

has constant negative curvature, R̂ = −d(d + 1)/l2, and nonvanishing cosmological
constant, Λ = −d(d− 1)/2 l2.

The bosonic part of the action of (d + 1)-dimensional supergravity with the
metric ĝµν(X) and scalars φ̂a(X) has generically the following form:∗)

1
2κ2

d+1

S[ĝµν , φ̂
a] =

1
2κ2

d+1

∫
dd+1X

√
ĝ

[
V
(
φ̂
)− R̂+

1
2
ĝµν Lab(φ̂) ∂µφ̂

a ∂νφ̂
b

]
.

(2.2)

Throughout this article, we extract the (d+1)-dimensional Newton constant 16πGN
d+1

= 2κ2
d+1 from the action in order to simplify many expressions. The scalar potential

is expanded as

V (φ̂) = 2Λ+
∑

a

1
2
m2

a φ̂
aφ̂a + · · · , (2.3)

after the diagonalization of the mass-squared matrix. AdS gravity is obtained by
substituting the AdS metric ĝAdS into the bulk action S with the cosmological con-
stant Λ set as

Λ = −d(d− 1)/2 l2. (2.4)

We consider classical solutions φ a(x, z) of the bulk scalar fields φ̂a(x, z) in this
AdSd+1 background. We impose boundary conditions on the scalar fields such that
φa(x, z = 0) = φa(x), and we also require that they be regular inside the bulk
(z → +∞). The system is then completely specified solely by the boundary values
φa(x), and thus, if we plug the classical solutions into the action (2.2), we obtain the
classical action which is a functional of the boundary values:

S[φa(x)] ≡ S
[
ĝµν(x, z)= ĝAdS

µν (x, z), φ̂a(x, z)=φa(x, z)
]
. (2.5)

A naive form of the statement of the AdS/CFT correspondence is∗∗) that the classical
action (2.5) is the generating functional of a conformal field theory existing on the
d-dimensional boundary of the AdS space-time.

exp
(
− 1

2κ2
d+1

S[φa(x)]
)

=

〈
exp

(∫
ddxφa(x)Oa(x)

)〉
CFT

, (2.6)

where Oa(x) are scaling operators of the CFT.
∗) We use the convention that (d + 1)-dimensional bulk fields are written with hats, whereas

d-dimensional boundary fields are not; e.g.; �Φ(X) = �Φ(x, z) and Φ(x). When a bulk field satisfies

the equations of motion, we put a bar on it, e.g., Φ(X) = Φ(x, z). The bulk action is written in a

bold face font, �, while the classical action (to be defined later) is written in a normal font, S.
∗∗) This statement is elaborated on below following Refs. 6), 7).
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This statement can be understood as a simple consequence of the theorem that
an isometry of AdSd+1, f : AdSd+1 → AdSd+1, induces a d-dimensional conformal
transformation at the boundary. In fact, if this theorem holds, then by using the
diffeomorphism invariance of the bulk action (2.2), one can easily show that the
classical action S[φa(x)] is conformally invariant; that is,

S[ρ∗φa(x)] = S[φa(x)], (2.7)

where ρ ≡ f ∣∣
∂(AdS)

is a conformal transformation on the boundary ∂(AdS). Thus, if
we formally define “connected n-point functions” by〈
Oa1(x1) · · · Oan(xn)

〉
CFT
≡ δ

δφ a1(x1)
· · · δ

δφ an(xn)

(
− 1

2κ2
d+1

S[φa(x)]

)∣∣∣∣∣
φa=0

,

(2.8)

then they are actually invariant under the d-dimensional conformal transformations:〈
ρ∗Oa1

(x1) · · · ρ∗Oan(xn)
〉

CFT
=
〈
Oa1(x1) · · · Oan(xn)

〉
CFT

. (2.9)

We here give a proof of the theorem in an extended form from the above:
Theorem6)

Let Md+1 be a (d+1)-dimensional manifold with boundary whose metric is asymptoti-
cally AdS near the boundary.∗) Then any diffeomorphism which becomes an isometry
near the boundary induces a d-dimensional conformal transformation at the bound-
ary.
proof
Let us consider an infinitesimal diffeomorphism Xµ → Xµ + ε̂ µ(x, z). Since this does not
move the position of the boundary off z = 0, ε̂ µ(x, z) can be expanded around z = 0 as

ε̂ i(x, z) = ξi(x) +O(z2), ε̂ z(x, z) = z · ζ(x) +O(z3). (2.10)

If this diffeomorphism is further an isometry near the boundary, the change of the metric
should take the form

δ
�ε ĝij(x, z) = O(1), δ

�ε ĝiz(x, z) = O(z), δ
�ε ĝzz(x, z) = O(1), (2.11)

around z = 0. A simple calculation shows that Eq. (2.11) leads to the condition that ε̂ i(x, z)
and ε̂ z(x, z) have the expansion

ε̂ i(x, z) = ξi(x)− z2

2d
ηij ∂j∂kξ

k(x) +O(z4),

ε̂ z(x, z) =
z

d
∂iξ

i(x) +O(z3) (2.12)

around z = 0 and that ξi(x) satisfies the d-dimensional conformal Killing equation

∂iξj(x) + ∂jξi(x) =
2
d
∂kξ

k(x) ηij . (ξi(x) ≡ ηij ξ
j(x)) (2.13)

∗) We say that a metric has an asymptotically AdS geometry when there exists a parametrization

near the boundary (z = 0) such that �gij = z−2 ηij + O(1), �giz = O(z) and �gzz = z−2 + O(1).
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This means that ξi(x) generates a d-dimensional conformal transformation at the boundary.
(Q.E.D.)

However, the naive form of the classical action (2.5) is not well-defined, since
the integration over z generally diverges. This is due to the infinite volume of
the AdS space-time and the finite cosmological constant in the Lagrangian density:
S ∼ ∫

AdS d
d+1x

√
ĝ [2Λ+ · · · ] → ∞. Thus, we must make a proper regularization

for the integration in order to make physical quantities finite. Here we introduce an
IR cutoff parameter z0 to restrict the bulk to the region z0 ≤ z <∞:∗)

1
2κ2

d+1

S
[
ĝAdS

µν (x, z) φ̂a(x, z)
]

=
1

2κ2
d+1

∫ ∞

z0

dz

∫
ddx

√
ĝAdS

[
const +

1
2
m2

a φ̂
aφ̂a

+
1
2
ĝµν
AdS Lab(φ̂) ∂µφ̂

a ∂ν φ̂
b

]
. (2.14)

We solve the equations of motion for φ̂a(x, z) by imposing boundary conditions at
the new d-dimensional boundary, z = z0:

φ a(x, z=z0) = φa(x). (2.15)

The classical action is then properly defined by substituting the classical solutions
φa(x, z) into the action (2.14), which is also a functional of φa(x):

S = S[φa(x); z0] ≡ S
[
ĝµν(x, z)= ĝAdS

µν (x, z), φ̂a(x, z)=φ a(x, z)
]
. (2.16)

At this new boundary z = z0, the conformal invariance disappears, since this sym-
metry exists only at the original boundary, z = 0. In fact, we show below that the IR
cutoff z0 in the bulk gives a UV cutoff Λ0 = 1/z0 of the boundary theory (the IR/UV
relation). Furthermore, in order to obtain a finite classical action around the original
conformal fixed point (z0→ 0), we need to tune the boundary values accordingly,
so that φa(x) = φa(x; z0). This procedure corresponds to the fine tuning of bare
couplings encountered in usual quantum field theories. As we see in the next section
in a more general setting, this fine tuning exactly corresponds to the (Euclidean)
time evolution of the classical solutions, i.e. φa(x; z0) = φ a(x, z0). Thus, tracing the
classical solutions as the position of the boundary z0 changes gives a renormalization
group flow of the boundary field theory. This is the basic idea of the holographic
renormalization group.10)–29)

We now explain why the cutoff parameter z0 can be regarded as a UV cutoff
parameter, from the viewpoint of the boundary field theory.10) We consider a bulk
scalar field φ̂(x, z) on (Euclidean) AdSd+1 with the metric

ds2 =
l2

z2

(
dz2 + δij dx

idxj
)
, (2.17)

and assume that the mass m of the scalar is much larger than the typical scale of the
AdS; m� l−1. Then, according to the AdS/CFT correspondence described above,

∗) The constant in the equation below is given by 2Λ− �RAdS = −d(d−1)/l2+d(d+1)/l2 = 2d/l2.
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the two-point function of the operator O, which is coupled to φ̂ at the boundary
z = z0, is evaluated as〈

O(x)O(y)
〉

z0

∼
∑

paths connecting X andY

exp
(
−m× (

length of path
))
, (2.18)

where X = (xi, z = z0) and Y = (yi, z = z0). In the situation m � l−1, we can
evaluate this with the geodesic and obtain〈

O(x)O(y)
〉

z0

∼ exp
(−mD(X, Y )

)
, (2.19)

where D(X, Y ) represents the geodesic distance between X and Y in AdSd+1. For
the AdS metric (2.17), the geodesic distance is given by

D(X, Y ) = l · ln


(
|x− y|+

√
|x− y|2 + z2

0

)2

z2
0

 , (2.20)

where |x− y|2 ≡ δij(xi − yi)(xj − yj). So the two-point function becomes〈
O(x)O(y)

〉
z0

∼ z2ml
0(

|x− y|+
√
|x− y|2 + z2

0

)2ml

∼ 1
|x− y|2ml

for |x− y| � z0. (2.21)

This means that the two-point function actually exhibits scaling behavior in the
region |x − y| � z0 with scaling dimension ∆ = ml. In other words, (2.21) implies
that z0 gives a short-distance scale around which the scaling becomes broken, and
thus Λ0 = 1/z0 can be regarded as a UV cutoff of the boundary field theory.

If we take into account the backreactions from bulk scalar fields to bulk gravity,
we need to consider a wide class of metric which has an asymptotically AdS geometry
near the boundary.∗) This leads us to introduce for the classical solutions of the
induced metric of the bulk metric ĝµν(x, z) the boundary conditions at the new
boundary

gij(x, z0) = gij(x), (2.22)

together with the regularity of gij(x, z) inside the bulk (z → +∞). The classical
action is defined by substituting the classical solutions of the bulk metric and the
bulk scalar fields into the bulk action:∗∗)

S
[
gij(x), φa(x)

] ≡ S
[
gµν(x, z), φ̄

a(x, z)
]
. (2.23)

∗) This condition is required for gravity to describe a continuum theory at the boundary.
∗∗) In §3, we prove that the classical action is independent of the coordinate z0 of the boundary

as a result of the diffeomorphism invariance along the radial direction.
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The classical action can be divided into nonlocal and local parts as

1
2κ2

d+1

S
[
gij(x), φa(x)

]
= −Γ [gij(x), φa(x)

]
+

1
2κ2

d+1

Sloc

[
gij(x), φa(x)

]
. (2.24)

The nonlocal part can be regarded as the generating functional of d-dimensional
quantum field theory (QFTd) in the curved background with metric gij(x). The
local part is the local counterterms. This should actually be expressed in a local
form, since singular behavior near the boundary is translated into the short distance
singularity of QFTd.

In summary, by introducing the cutoff z0 into the AdS/CFT correspondence, we
obtain the following duality:

SUGRAd+1 with IR cutoff z0 ⇐⇒ QFTd with UV cutoff Λ0 = z−1
0 . (2.25)

2.2. Calculation of scaling dimensions

Here we calculate the scaling dimension of an operator of the d-dimensional CFT
that is coupled to a scalar field in the background of the AdS space-time.6), 7)

We consider a single scalar field on the d-dimensional Euclidean AdS space-time
of radius l. To determine the scaling dimension of the dual operator, we calculate the
two-point function of the operator using the prescription described in the previous
subsection. As the action of the scalar, we take

1
2κ2

d+1

S
[
ĝAdS

µν (x, z), φ̂(x, z)
]

=
1

2κ2
d+1

∫
dd+1X

√
ĝAdS

[
1
2
ĝµν
AdS ∂µφ̂ ∂ν φ̂+

m2

2
φ̂2
]

+
(
φ̂-independent terms

)
=

ld−1

4κ2
d+1

∫
ddx

∫ ∞

z0

dz

zd−1

[(
∂zφ̂

)2
+
(
∂iφ̂

)2
+
l2m2

z2
φ̂2

]

=
ld−1

4κ2
d+1

∫
ddx

∫ ∞

z0

dz

[
−φ̂

(
∂2

z φ̂−
d− 1
z

∂zφ̂+ ∂2
i φ̂−

1
zd−1

l2m2

z2
φ̂
)

+ ∂z

(
1

zd−1
φ̂ ∂zφ̂

)
+ ∂i

(
1

zd−1
φ̂ ∂iφ̂

)]
, (2.26)

where z0 is the cutoff parameter to regularize the infinite volume of the AdS space-
time. Using the equation of motion for φ̂ given by

∂2
z φ̂−

d− 1
z

∂zφ̂+ ∂2
i φ̂−

l2m2

z2
φ̂ = 0, (2.27)

the classical action reads

S = ld−1

∫
ddx

[ 1
zd−1

φ∂zφ
]z=∞
z=z0

, (2.28)

where φ is the solution of (2.27).
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To solve the equation of motion (2.27), we Fourier-expand the field φ(x, z) as

φ(x, z) =
∫

ddk

(2π)d
λk e

ikixi
φk(z).

(
φk(z=z0) = 1

)
(2.29)

It turns out that φk(z) can be expressed in terms of a modified Bessel function as∗)

φk(z) =
zd/2Kν (kz)

z
d/2
0 Kν (kz0)

,
(
ν ≡

√
l2m2 + d2/4

)
(2.30)

where k ≡
√
k2

1 + · · · k2
d. By substituting (2.30) into (2.28), we obtain the classical

action

1
2κ2

d+1

S [λk] =
2ld−1

4κ2
d+1

∫
ddk

(2π)d

ddq

(2π)d
λk λq (2π)d δd(k + q)F(k), (2.31)

where∗∗)

F(k) ≡
[
φk(z)

1
zd−1

∂zφk(z)
]z=∞
z=z0

= −
( 1
zd−1

∂z lnφk(z)
)∣∣∣∣

z=z0

. (2.32)

Writing the boundary value of the scalar as φ(x, z0) =
∫

ddk
(2π)d λk e

ikx, the Fourier

transform of the two-point function
〈O(x)O(y)

〉
CFT

is given by∗∗∗)〈
OkOq

〉
CFT
≡
∫
ddx ddy e−ikx−iqy

〈
O(x)O(y)

〉
CFT

=
δ

δλ−k

δ

δλ−q

(
− 1

2κ2
d+1

S
[
λk

]) ∣∣∣∣∣
leading non-analytic part in k

= −(2π)d 2ld−1

2κ2
d+1

δd(k + q)F(k)

∣∣∣∣∣
leading non-analytic part in k

. (2.33)

Using the identities

Kν =
π

2 sinπν
(I−ν − Iν) , (2.34)

Iν =
(z

2

)ν
∞∑

k=0

(z/2)2k

k!Γ (k + ν + 1)
, (2.35)

∗) Another modified Bessel function, Iν (kz), is not suitable, because we require the classical

solution to be regular in the limit z → ∞.
∗∗) Here we have used φk(z = z0) = 1.

∗∗∗) The analytic terms in F give contact terms that only yields a contribution with a δ-function-

like support to the two-point functions.
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and (2.30), the leading term of (2.32) in z0 is evaluated as

F(k) = 2z−d
0

Γ (1− ν)
Γ (ν)

(
kz0
2

)2ν

+
(
analytic in k2

)
. (2.36)

Thus the connected two-point function (2.33) is given by〈
OkOq

〉
CFT

= N δd(k + q) |k|2ν , (2.37)

where N is a numerical factor. This is equivalent to〈
O(x)O(y)

〉
CFT

=
∫

ddk

(2π)d

ddq

(2π)d
eikx+iqy

〈
OkOq

〉
CFT

∝ 1
|x− y|d+2ν

. (2.38)

We thus find that the scaling dimension ∆ of the operator O is given by

∆ =
d

2
+ ν =

1
2

(
d+

√
d2 + 4m2l2

)
, (2.39)

or

∆ (∆− d) = m2l2. (2.40)

Note that Eq. (2.39) gives ∆ ∼ ml in the limit that m � l−1, which is consistent
with the expression (2.21).

2.3. Example

As discussed in the Introduction, the duality between Type IIB supergravity
on AdS5 × S5 and the four-dimensional N = 4 SU(N) SYM theory is one of the
typical examples of the AdS/CFT correspondence. As evidence for this duality, we
review the one-to-one correspondence between the chiral primary operators of the
four-dimensional N = 4 SU(N) SYM theory and the Kaluza-Klein modes of IIB
supergravity compactified on S5.7), 8),56)–58)

The four-dimensional N = 4 SU(N) SYM theory is constructed from an N =
4 vector multiplet, that is, six real scalar fields φI (I = 1, · · · , 6), four complex
Weyl spinor fields λαA (A = 1, · · · , 4), and a vector field Ai. Each of these fields
belong to the adjoint representation of SU(N). This theory has 16 real supercharges,(
QA

α , Qα̇A

)
, and the supersymmetry transformations for these fields are59)

[
QA

α , φ
I
]

=
(
γI
)AB

λαB,{
QA

α , λβB

}
= − i

2
(
σij

)
αβ
δA

BFij + 2i
(
γIJ

)A

B

[
φI , φJ

]
,{

QA
α , λ

B
α̇

}
= 2iσi

αα̇

(
γI
)AB Diφ

I ,[
QA

α , Ai

]
= i (σi)αα̇ λ

A
β̇ ε

α̇β̇, (2.41)
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where

Γ I =
(

0 (γI)AB

(γI)AB 0

)
(2.42)

are the gamma matrices for SO(6) and (γIJ)A
B ≡ 1

2

(
γIγJ − γJγI

)A

B
. The opera-

tions of Qα̇A are similar.
The spectra of the operators in this theory include all the gauge invariant quan-

tities that can be constructed from the fields described above. Here we concentrate
our attention on the local operators that can be written as a single-trace of products
of the fields in the N = 4 vector multiplet.∗)

The four-dimensional N = 4 SU(N) SYM theory is a superconformal field
theory as a consequence of the large supersymmetry. The generators of the super-
conformal transformation consist of the supersymmetry generators

{
Mij , Pi, Q

A
α

}
,

the dilatation D, the special conformal transformation Ki and its superpartner SA
α .

One also needs to introduce the generators R of the R-symmetry group SU(4). The
algebra also contains the bosonic conformal algebra {Mij , Pi,Ki, D} as a subalgebra.
Below we give some relations characterizing the algebra, which are necessary for our
discussion:

[D,Q] = − i
2
Q, [D,S] = +

i

2
S,

[D,Pi] = −iPi, [D,Ki] = +iKi,

[D,Mij ] = 0, {Q,S} ∼M +D +R. (2.43)

(For the complete set of (anti-)commutation relations of the generators, see Ref.
63).)

We are interested in representations of the superconformal algebra whose confor-
mal dimensions are suppressed from below. Let us start with the bosonic conformal
subalgebra {Mij , Pi,Ki, D}. From the assumption that the conformal dimensions are
suppressed from below, there is a state | O′ 〉 that is characterized by the property

Ki

∣∣O′ 〉 = 0. (2.44)

We can generate a tower of states from the this state by acting on it with the gener-
ator Pi, which is called the primary multiplet. The state | O′ 〉 is called the primary
state and the other states in the multiplet are called the descendants. Recalling the
fact that the generator Pi raises the conformal weight by 1 [see (2.43)], the primary
state is the lowest weight state in the multiplet.

There is also the same structure in an irreducible representation of the super-
conformal algebra; that is, there is a state that is characterized by the property

S|O〉 = 0, K|O〉 = 0, (2.45)

and a tower of states is constructed from this state by acting with the generators
(Q,Q) and Pi, which raise the conformal weight by 1/2 and 1, respectively. We call

∗) Although we have also multi-trace operators that appear in operator product expansions of

single-trace operators, we do not consider them here, since they can be ignored in the large N limit.

(For a discussion of multi-trace operators in the AdS/CFT correspondence, see, Refs. 60)–62).)
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the state | O 〉 the superconformal-primary state and other states in the multiplet the
descendants. We note that the multiplet is divided into several primary multiplets of
the bosonic conformal subalgebra whose primary states are obtained by acting with
the supercharges on the superconformal-primary state.

Among primary operators∗) in the N = 4 SU(N) SYM theory, we are especially
interested in the chiral primary operators that are eliminated by some combinations
of 16 supercharges, not only by the actions S. From the method of construction
of primary multiplets described above, we can easily see that a multiplet that is
constructed from a chiral primary operator contains a smaller number of states than a
general superconformal-primary multiplet. As discussed in Ref. 64), the last equation
of (2.43) gives a relation among the conformal dimension, the representation of the
Lorentz group and the representation of the R-symmetry [SU(4)] of a chiral primary
operator. This means that the conformal dimension of a chiral primary operator is
determined only by the superconformal algebra, being independent of the coupling
constant. Thus the chiral primary operators are appropriate in comparing their
properties with those of the dual supergravity theory, since the description in terms
of classical supergravity is reliable only in the region where the ’t Hooft coupling
is large [see Eq. (1.7)], for which perturbative calculation of SYM is not applicable.
(For detailed discussions of the representation theory of extended superconformal
algebras, see, for example, Refs. 63)–70).)

Let us now discuss the structure of the chiral primary operators that are rep-
resented as the single trace of the fields in the N = 4 vector multiplet, following
the presentation given in Ref. 8). By definition, the lowest component of the chiral
primary multiplet is characterized by the fact that it cannot be obtained by acting
on any other operator with supercharges. The supersymmetric transformation of the
N = 4 vector multiplet (2.41) suggests that the chiral primary operators of interest
are described by the trace of a symmetric product of only the scalar fields.∗∗) In fact,
as discussed in Ref. 63), a scalar primary operator with conformal dimension n which
belongs to the representation of SU(4) with Dynkin index (0, n, 0) is eliminated by
half of the 16 supercharges. This means that the lowest component of the chiral
primary multiplet is given by71), 72)

On ≡ tr
(
φ(I1 · · ·φIn)

)
− (traces), n = 2, · · · , N . (2.46)

For example, O2 represents for the set of operators of the form tr
(
φIφJ

) − 1
6δ

IJ

tr
(∑6

K=1 φ
KφK

)
. The conformal dimension of the operator On is n because we can

evaluate it in the zero coupling limit of the SYM theory. The maximum value of n
is N because the trace of a symmetric product of more than N commuting matrices
can always be written as a sum of products of On (n ≤ N).

∗) We do not distinguish between states and local operators because, in a conformal field theory,

there is a one-to-one correspondence between them.8)

∗∗) We note that the fields in the N = 4 vector multiplet are eliminated by half of the 16

supercharges by definition. We must symmetrize the product, because the right-hand side of (2.41)

contains the commutators of the φI .
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In the following, we examine the content of the chiral primary multiplet built
from the On. We note that any state in the multiplet belongs to a representation
of both the superconformal algebra and the R-symmetry SU(4). Recalling that D
and Mij commute, it is convenient to label the state by the conformal weight, ∆,
the left and right spins, (j1, j2), and the Dynkin index of the SU(4), (p, q, r).∗) For
example, On and the supercharges are labeled as

∆ SU(2)L × SU(2)R SU(4) weight

On n (0, 0) (0, n, 0) 0

QA
α

1
2 (1

2 , 0) (0, 0, 1) +1
2

Qα̇A
1
2 (0, 1

2) (1, 0, 0) −1
2

. (2.47)

Here, in order to keep track of the operation of supercharges, we have introduced
an additive weight by assigning +1/2 to QA

α and −1/2 to Qα̇A. The operators in
the multiplet are obtained by acting on the On with Q and Q, and their labels are
determined by those of the fields in the N = 4 vector multiplet,

SU(2)L × SU(2)R SU(4) weight

φI (0, 0) (0, 1, 0) 0

λαA (1
2 , 0) (1, 0, 0) +1

2

λ
A
α̇ (0, 1

2) (0, 0, 1) −1
2

Ai (1
2 ,

1
2) (0, 0, 0) ±1

, (2.48)

and the supersymmetry transformation (2.41).
As an example, we explicitly construct the operators with conformal weights

n+ 1/2 and n+ 1 by operating with the supercharges on the lowest operator On.8)

1) ∆ = n+ 1/2
The states with conformal dimension n+ 1/2 are obtained by operating with the
supercharges once on the lowest state |On〉, that is, Qα|On〉 and Qα̇|On〉. Their
explicit expressions are∗∗)

λ(1)
α ≡ tr

(
λαA φ

I2 · · ·φIn
)

and λ
(1)†
α̇ = tr

(
λ

A
α̇ φ

I2 · · ·φIn

)
. (2.49)

They are spinor fields and their complex conjugate, whose SU(4) Dynkin index
and labels of the superconformal algebra are summarized in the following table:

SU(2)L × SU(2)R SU(4) weight

complex λ(1)
α (1

2 , 0) + (0, 1
2) (1, n− 1, 0) + (0, n− 1, 1) ±1

2

.

(2.50)
∗) The dimension of the irreducible representation of SU(4) with Dynkin index (p, q, r) is given

by57) d(p, q, r) ≡ (p+ 1) (q + 1) (r + 1)
�
1 + p+q

2

� �
1 + q+r

2

� �
1 + p+q+r

3

�
, which gives the degeneracy

of the state.
∗∗) In this subsection, we assume that fields in a trace are always symmetrized.
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2) ∆ = n+ 1
These states with conformal weight n+1 are obtained by operating with two super-
charges. When we operate with supercharges of the same chirality, the irreducible
representations are obtained by either symmetrizing or antisymmetrizing the su-
percharges. In the first case, we obtain Q(αQβ)|On〉 and its complex conjugate,
which are self-dual and anti-self-dual two-form fields, respectively:

B
(1)
ij ≡ (σij)

αβ tr
((
σkl

)
αβ
Fkl φ

I2 · · ·φIn

)
+ · · · ,

B
(1)†
ij = (σij)

α̇β̇ tr
((
σkl

)
α̇β̇
Fkl φ

I2 · · ·φIn

)
+ · · · . (2.51)

In the second case, we obtain εαβQαQβ|On〉 and its complex conjugate, which are
scalar fields and their complex conjugates, respectively:

ϕ(2) ≡ εαβ tr
(
λαA λβB φ

I3 · · ·φIn
)

+ · · · ,
ϕ(2)† = εα̇β̇ tr

(
λ

A
α̇ λ

B
β̇ φ

I3 · · ·φIn

)
+ · · · . (2.52)

Contrastingly, when we operate with supercharges of different chiralities, the ob-
tained states, QαQα̇|On〉, are real vector fields:

A
(1)
i ≡ (σi)

αα̇ tr
(
λαA λ

B
α̇ φ

I3 · · ·φIn
)

+ · · · . (2.53)

Their SU(4) Dynkin index and the labels of the superconformal algebra are sum-
marized as follows:

SU(2)L × SU(2)R SU(4) weight

complex B(1)
ij (1, 0) + (0, 1) (0, n− 1, 0) + (0, n− 1, 0) ±1

complex ϕ(2) (0, 0) (2, n− 2, 0) + (0, n− 2, 2) ±1

real A(1)
i (1

2 ,
1
2) (1, n− 2, 1) 0

.

(2.54)
Repeating the same operation, all the states in the multiplet can be constructed.

We summarize the results in Table I, where we write only the primary states of the
bosonic conformal subalgebra in the multiplet. For example, such states that are
obtained by acting with more than eight supercharges do not appear because such
states must vanish or become descendants of the primary multiplets of the bosonic
conformal subalgebra. In Table I, for n = 2 and 3 the states with negative Dynkin
indices should be ignored.

On the other hand, the bosonic sector of ten-dimensional Type IIB supergravity
consists of a graviton, a complex scalar, a complex two-form field and a real four-form
field, whose five-form field strength is self-dual, while the fermionic sector consists of
a chiral complex gravitino and a chiral complex spinor of opposite chirality.73) The
Kaluza-Klein spectra on S5 are obtained by expanding the fields in the spherical
harmonics of S5. Here we demonstrate the simplest example of the calculation,
that is, the harmonic expansion of a complex scalar field B in the ten-dimensional
space-time M10.
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Table I. The primary states in the short chiral primary multiplet built on the lowest state (2.46).

The operator On corresponds to the scalar operator ϕ(1). We denote the representations of the

Lorentz group by the symbols ϕ, λα, Ai, Bij , ψiα and hij , which correspond to states with

the left and right spins (0, 0), ( 1
2
, 0) + (0, 1

2
), ( 1

2
, 1

2
), (1, 0) + (0, 1), (1, 1

2
) + ( 1

2
, 1) and (1, 1),

respectively. The triplet (p, q, r) is the Dynkin index of the R-symmetry group SU(4).

∆ SO(1, 3) SU(4) weight

n real ϕ(1) (0, n, 0) 0

n+ 1
2

complex λ
(1)
α (1, n− 1, 0) + (0, n− 1, 1) ± 1

2

n+ 1

complex ϕ(2)

complex B
(1)
ij

real A
(1)
i

(2, n− 2, 0) + (0, n− 2, 2)

(0, n− 1, 0) + (0, n− 1, 0)

(1, n− 2, 1)

±1

±1

0

n+ 3
2

complex λ
(2)
α

complex λ
(3)
α

complex ψ
(1)
iα

(1, n− 2, 0) + (0, n− 2, 1)

(2, n− 3, 0) + (0, n− 3, 2)

(0, n− 2, 1) + (1, n− 2, 0)

± 3
2

± 1
2

± 1
2

n+ 2

complex ϕ(3)

complex A
(2)
i

real ϕ(4)

complex B
(2)
ij

real hij

(0, n− 2, 0) + (0, n− 2, 0)

(1, n− 3, 1) + (1, n− 3, 1)

(2, n− 4, 2)

(0, n− 3, 2) + (2, n− 3, 0)

(0, n− 2, 0)

±2

±1

0

0

0

n+ 5
2

complex λ
(4)
α

complex λ
(5)
α

complex ψ
(2)
iα

(0, n− 3, 1) + (1, n− 3, 0)

(1, n− 4, 2) + (2, n− 4, 1)

(1, n− 3, 0) + (0, n− 3, 1)

± 3
2

± 1
2

± 1
2

n+ 3

complex ϕ(5)

complex B
(3)
ij

real A
(3)
i

(0, n− 4, 2) + (2, n− 4, 0)

(0, n− 3, 0) + (0, n− 3, 0)

(1, n− 4, 1)

±1

±1

0

n+ 7
2

complex λ
(6)
α (0, n− 4, 1) + (1, n− 4, 0) ± 1

2

n+ 4 real ϕ(6) (0, n− 4, 0) 0

The equation of motion is given by

1√−G
∂M

(√−GGMN∂NB
)

= 0, (2.55)

where GMN is the metric of M10. We assume that the manifold M10 has a structure
AdS5×S5 with the same curvature radius l. By introducing the coordinates XM =
(Xµ, ya) and writing the metric of AdS5 and unit S5 as ĝµν and hab, respectively,
the equation of motion (2.55) is decomposed into the AdS5-part and the S5-part as
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follows:

1√−ĝ(X)
∂µ

(√
−ĝ(X)ĝµν(X)∂νB(X, y)

)
+

1
l2

1√
h(y)

∂a

(√
h(y)hab(y)∂bB(X, y)

)
= 0. (2.56)

Here ∂µ ≡ ∂/∂Xµ and ∂a ≡ ∂/∂ya. Next we decompose the scalar field B(X, y) into
the scalar harmonics of unit S5 as

B(X, y) ≡
∞∑

j=0

Aj∑
m=1

ϕjm(X)Yjm(y) ,
(
Aj =

1
12

(j + 3)(j + 2)2(j + 1)
)

(2.57)

where Yjm(y) is the eigenfunction of the Laplacian of unit S5,

1√
h(y)

∂a

(√
h(y)hab(y)∂bYjm(y)

)
= −j(j + 4)Yjm(y). (2.58)

Substituting (2.57) into the equation of motion (2.56), we obtain the equation which
ϕjm(X) satisfies,

1√−ĝ(X)
∂µ

(√
−ĝ(X)ĝµν(X)∂νϕjm(X)

)
− j(j + 4) l−2ϕjm(X) = 0. (2.59)

Thus the Kaluza-Klein modes composed of the scalar fields B consist of a tower of
scalar fields of mass squared m2

j = j(j + 4) l−2 (j = 0, 1, 2, · · · ) with multiplicity Aj :{{
ϕjm

}Aj

m=1
;m2

j = j(j + 4) l−2
∣∣ j = 0, 1, 2, · · ·

}
. (2.60)

Thus, using the formula (2.39), the conformal weights of the corresponding scal-
ing operators read

∆j =
1
2

(
4 +

√
42 +m2

j l
2
)

= j + 4 , (j = 0, 1, 2, · · · ) (2.61)

which exactly corresponds to the scalar operator ϕ(3) in Table I if we set n = j+2. In
fact, for given j (= n− 2), the degeneracy of the complex scalar modes ϕ(3) is given
by the dimension of the representation of SU(4) with the Dynkin index (0, j, 0), that
is, 1

12(j + 3)(j + 2)2(j + 1), which is equal to the degeneracy of the Kaluza-Klein
modes (2.60).

The complete Kaluza-Klein spectra of Type IIB supergravity compactified on
S5 are summarized in TABLE III of Ref. 73). To compare their masses with the
conformal weights of scalar operators in the chiral multiplets of the N = 4 SU(N)
SYM theory, we tabulate the conformal weights of all the scalar states in the chiral
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multiplets below:

SU(4) conformal weight

real ϕ(1) (0, n, 0) (n ≥ 2), ∆ = 2, 3, · · · , N ,

complex ϕ(2) (2, n− 2, 0) + (0, n− 2, 2) (n ≥ 2), ∆ = 3, 4, · · · , N + 1 ,

complex ϕ(3) (0, n− 2, 0) + (0, n− 2, 0) (n ≥ 2), ∆ = 4, 5, · · · , N + 2 ,

real ϕ(4) (2, n− 4, 2) (n ≥ 4), ∆ = 6, 7, · · · , N + 2 ,

complex ϕ(5) (2, n− 4, 0) + (0, n− 4, 2) (n ≥ 4), ∆ = 7, 8, · · · , N + 3 ,

real ϕ(6) (0, n− 4, 0) (n ≥ 4), ∆ = 8, 9, · · · , N + 4 .
(2.62)

If we apply the formula (2.39) to the conformal dimensions of the scalar operators
in (2.62), one can show that the mass spectra of the Kaluza-Klein scalar modes in
TABLE III of Ref. 73) are reproduced.

In Ref. 74), the Kaluza-Klein spectra for S5 compactification are classified by
unitary irreducible representations of the superalgebra SU(2, 2|4), which is the max-
imal supersymmetric extension of the isometry group of the geometry AdS5 × S5,
SU(2, 2)× SU(4). The result is given in Table 1 of that work. It is seen that there
exists a one-to-one correspondence between the Kaluza-Klein spectra in Table 1 of
Ref. 74) and the short chiral multiplets in Table I of this article.

The fascinating coincidence of the short chiral primary multiplets ofN = 4 SU(N)
SYM with the Kaluza-Klein spectra IIB supergravity compactified on S5 is strong
evidence of the AdS/CFT correspondence.

2.4. Holographic RG

In this subsection, we review a holographic description of RG flows in terms
of supergravity. As mentioned in §2.1 and discussed in detail in the next section,
the basic idea is that the evolution of bulk fields along the radial direction can be
identified with RG flows of the dual field theories. When our interest is in an RG flow
that connects a UV and an IR fixed point, the dual supergravity description is given
by a background that interpolates between two different asymptotic AdS regions
along the radial direction. As an example, we focus on the holographic RG flow
from N = 4 SU(N) SYM4 to the N = 1 Leigh-Strassler (LS) fixed point,55) which
is investigated in Ref. 16).∗) The content of this subsection is re-investigated in §3.6,
after we develop tools to investigate the holographic RG based on the Hamilton-
Jacobi equations.

Let us start by recalling the field theory stuff. The matter content of N = 4
SYM in the N = 1 superspace formulation reads:

SU(3)× U(1)R

Wα 11

ΦI 32/3

∗) For analogous discussions in two-dimensional field theories, see Refs. 79), 80).
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Here, Wα and ΦI (I = 1, 2, 3) are, respectively, the N = 1 vector multiplet and
hypermultiplets. The LS fixed point can be realized by adding a mass perturbation
to N = 4 SYM as

W +∆W = trΦ1[Φ2, Φ3] +
m

2
trΦ2

3 (2.63)

and choosing the anomalous dimensions of ΦI as

γ1 = γ2 = −1
4
, γ3 =

1
2
. (2.64)

One can then see that the theory flows to anN = 1 IR fixed point with SU(2)×U(1)′R
global symmetry, because the exact beta function75) vanishes:

β(g) = −g
3N

8π2

3−∑3
i=1(1− 2γi)

1− g2N/8π2
. (2.65)

Note that U(1)′R is different from U(1)R. We study the UV and IR fixed points by
computing the Weyl anomalies. It is argued in Ref. 76) that N = 1 superconformal
invariance relates the Weyl anomaly with the U(1)R anomaly as

〈T i
i〉g, v =

c

16π2

(1
3
R2 − 2R2

ij +R2
ijkl

)
− a

16π2

(
R2 − 4R2

ij +R2
ijkl

)
+

c

6π2
V 2

ij ,

(2.66)

〈∂i(
√
gJ i)〉g, v = −a− c

24π2

(
R2 − 4R2

ij +R2
ijkl

)
+

5a− 3c
9π2

VijṼ
ij . (2.67)

Here, gij is the background metric and vi the background gauge field coupled to
the R-current J i. Also, Vij is the field strength of vi, Rijkl is the Riemann tensor,
and Ṽij is the dual of Vij . The Adler-Bardeen theorem guarantees that a and c do
not undergo higher-loop corrections. Therefore the coefficients of the Weyl anomaly
can be computed exactly in a perturbative manner. It is then straightforward to
compute a− c and 5a− 3c in the UV and IR fixed points:

aIR

aUV
=

cIR
cUV

=
27
32
, aUV = cUV, aIR = cIR. (2.68)

We now show that the dual supergravity analysis reproduces this relation. We
first recall the computation of Weyl anomalies in terms of supergravity.33) It is found
that the Weyl anomaly of the dual CFTd takes the form

a = c ∝ ld−1, (2.69)

where l is the radius of the AdSd+1. The UV fixed point is dual to AdS5 × S5, so
that we get lUV = (4πgsN)1/4. On the other hand, the background dual to the IR
fixed point should be such that it has eight supercharges as well as an SU(2)×U(1)
gauge group. In fact, it is shown in Ref. 77) that N = 8 gauged supergravity in five
dimensions allows this solution. Using this result, one can obtain the radius of the
new AdS background, which yields the relation (2.68) (see also §3.6.).

In order to keep track of the whole RG trajectory using supergravity, we have to
find a IIB background that interpolates along the radial direction between AdS5×S5
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corresponding to the UV fixed point and AdS5×K5 with K5 being a compact man-
ifold that admits the necessary symmetries mentioned above. Such a solution is
constructed in Ref. 78) up to some unknown functions. Because the background is
complicated, it is difficult to obtain information regarding the dual gauge theories
from it. One promising method that may help in realizing a global understanding
of holographic RG flows is to take the Penrose limit. The Penrose limit of a back-
ground is taken by considering a null geodesic on it and then defining an appropriate
coordinate transformation that reduces to the null geodesic equations in some limit.
Therefore the Penrose limit amounts to probing the local geometry near the null
geodesic, and the original background often becomes greatly simplified. In fact, it
is pointed out in Ref. 81) that the Penrose limit of AdS5 × S5 yields the pp-wave
background82) that is maximally supersymmetric and the mass spectra of the string
theory on which can be calculated exactly in the light-cone gauge.83) The Penrose
limit of the Pilch-Warner solution78) is studied in Ref. 84). For another application
of the Penrose limit to the study of the holographic RG flows, see e.g. Ref. 85).

Another intriguing aspect of the holographic RG is that supergravity allows
one to define a “c-function” that obeys an analog of Zamolodchikov’s c-theorem.86)

Recalling the formula of the two-dimensional Weyl anomaly
〈
T i

i

〉 ∝ cR with central
charge c, it is natural to identify the coefficient of the Weyl anomaly as the central
charge of the conformal field theory in arbitrary dimensions. Together with Eq.
(2.69), we thus define the central charge of the CFT dual to AdS gravity of radius l
as33)

c ∼ ld−1. (2.70)

To define the c-function, we consider a five-dimensional geometry with the metric

ds2 = dτ2 +
1

a(τ)2
ηij dx

idxj . (2.71)

When a(τ) = eτ/l, this denotes AdSd+1 of radius l. This leads us to define the
c-function as16)

c(τ) ∝
(
−1

K̂(τ)

)d−1

, K̂(τ) = −d d

dτ
log a(τ). (2.72)

For AdSd+1 of radius l, this actually gives c(τ) ∝ ld−1 = const, in agreement with the
definition (2.70). In order to show that c(τ) is a monotonically decreasing function
of τ , we employ the null energy condition:

R̂µν ξ̂
µ ξ̂ν = −d− 1

d

dK̂

dτ
≥ 0 for any null vector ξ̂µ. (2.73)

Note that the inequality saturates for AdS that corresponds to a fixed point of the
dual theory. It is not easy to verify a higher-dimensional analog of the Zamolodchikov
theorem in a purely field theory context (for a review, see Ref. 87)). The dual
supergravity description provides us with a powerful framework for this.
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§3. Holographic RG and Hamilton-Jacobi formulation

In this section, we discuss the formulation of the holographic RG based on the
Hamilton-Jacobi equation.30), 37)

3.1. Hamilton-Jacobi constraint and the flow equation

We start by recalling the Euclidean ADM decomposition that parametrizes a
(d+ 1)-dimensional metric as

ds2 = ĝµν dX
µdXν

= N̂(x, τ)2dτ2 + ĝij(x, τ)
(
dxi + λ̂i(x, τ)dτ

)(
dxj + λ̂j(x, τ)dτ

)
. (3.1)

Here Xµ = (xi, τ), with i = 1, · · · , d, and N̂ and λ̂i are the lapse and the shift
function, respectively. The signature of the metric ĝµν is taken to be (+ · · ·+). As
discussed in the previous sections, the Euclidean time τ is identified with the RG
parameter of the d-dimensional boundary field theory, and the evolution of bulk
fields in τ is identified with the RG flow of the coupling constants of the boundary
theory. In the following analysis, we exclusively consider scalar fields as such bulk
fields.

The Einstein-Hilbert action with bulk scalars φ̂a(x, τ) on a (d+ 1)-dimensional
manifold Md+1 with boundary Σd = ∂Md+1 at τ = τ0 is given by

S
[
ĝµν(x, τ), φ̂a(x, τ)

]
=
∫

Md+1

dd+1X
√
ĝ

(
V (φ̂)− R̂+

1
2
Lab(φ̂) ĝµν ∂µφ̂

a ∂ν φ̂
b

)
− 2

∫
Σd

ddx
√
g K ,

(3.2)

which is expressed in the ADM parametrization as

S
[
ĝij(x, τ), φ̂a(x, τ), N̂(x, τ), λ̂i(x, τ)

]
=
∫
ddx

∫ ∞

τ0

dτ
√
ĝ
[
N̂
(
V (φ̂)− R̂+ K̂ijK̂

ij − K̂2
)

+
1

2N̂
Lab(φ̂)

(( ˙̂
φa − λ̂i∂iφ̂

a
)( ˙̂
φb − λ̂i∂iφ̂

b
)

+ N̂2 ĝij ∂iφ̂
a ∂jφ̂

b
) ]

≡
∫
ddx

∫ ∞

τ0

dτ
√
ĝLd+1

[
ĝ, φ̂, N̂ , λ̂

]
, (3.3)

where · = ∂/∂τ . Here R̂ and ∇̂i are the scalar curvature and the covariant derivative
with respect to ĝij , respectively. K̂ij is the extrinsic curvature of each time-slice
parametrized by τ ,

K̂ij =
1

2N̂

(
˙̂gij − ∇̂iλ̂j − ∇̂jλ̂i

)
, (3.4)

and K̂ is its trace, K̂ = ĝij K̂ij . The boundary term in Eq. (3.2) needs to be
introduced to ensure that the Dirichlet boundary conditions can be imposed on the
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system consistently.88) In fact, the second derivative of ĝij in τ appears in the first
term of Eq. (3.2), but it can be written as a total derivative and canceled with the
boundary term.

As far as classical solutions are concerned, the action (3.3) is equivalent to the
following action in first-order form:

S
[
ĝij , φ̂

a, π̂ij , π̂a, N̂ , λ̂
i
] ≡ ∫

ddx dτ
√
ĝ
[
π̂ij ˙̂gij + π̂a

˙̂
φa + N̂Ĥ+ λ̂iP̂ i

]
, (3.5)

with

Ĥ = H(ĝij , φ̂
a, π̂ij , π̂a

)
≡ 1
d− 1

(
π̂i

i

)2 − π̂2
ij −

1
2
Lab(φ̂) π̂a π̂b + V (φ̂)− R̂+

1
2
Lab(φ̂) ĝij ∂iφ̂

a ∂bφ̂
j ,

P̂ i = P i
(
ĝij , φ̂

a, π̂ij , π̂a

)
≡ 2 ∇̂j π̂

ij − π̂a ∇̂iφ̂a. (3.6)

In fact, the equations of motion for π̂ij and π̂a give the relations

π̂ij = K̂ij − ĝijK̂, π̂a =
1

N̂
Lab(φ̂)

( ˙̂
φ b − λ̂i ∂iφ̂

b
)
, (3.7)

and by substituting this expression into Eq. (3.5), (3.3) is obtained. Here N̂ and λ̂i

simply behave as Lagrange multipliers, and thus we have the following Hamiltonian
and momentum constraints:

1√
ĝ

δS

δN̂
= Ĥ = 0, (3.8)

1√
ĝ

δS

δλ̂i

= P̂ i = 0. (3.9)

Note that these constraints generate reparametrizations of the form τ → τ + δτ(x),
xi → xi + δxi(x) for each time-slice (τ = const). One can easily show that they are
of the first class under the canonical Poisson brackets for gij(x), πij(x), φa(x) and
πa(x). Thus, up to gauge equivalent configurations generated by H(x) and P i(x),
the τ -evolution of the bulk fields is uniquely determined, being independent of the
values of the Lagrange multipliers N and λi, at the initial time-slice.

Let gij(x, τ) and φ̄a(x, τ) be the classical solutions of the bulk action with the
boundary conditions∗)

gij(x, τ=τ0) = gij(x), φ̄a(x, τ=τ0) = φa(x). (3.10)

We also define πij(x, τ) and πa(x, τ) to be the classical solutions of π̂ij(x, τ) and
π̂a(x, τ), respectively. We then substitute these classical solutions into the bulk

∗) Generally, two boundary conditions are needed for each field, since the equations of motion

are second-order differential equations in τ . Here, one of the two is assumed to be already fixed

by demanding regular behavior of the classical solutions inside Md+1 (τ → +∞)5)–7) (see also Ref.

89)).
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action to obtain the classical action which is a functional of the boundary values,
gij(x) and φa(x):

S
[
gij(x), φ(x); τ0

] ≡ S
[
gij(x, τ), φ̄

a(x, τ), πij(x, τ), πa(x, τ), N(x, τ), λi(x, τ)
]

=
∫
ddx

∫
τ0

dτ
√
g
[
πij ġij + πa

˙̄φa
]
. (3.11)

Here we have used the Hamiltonian and momentum constraints H = P i = 0. One
can see that the variation of the action (3.3) is given by

δS
[
g(x), φ(x); τ0

]
= −

∫
ddx
√
g

[(
πij(x, τ0) ġij(x, τ0) + πa(x, τ0) ˙̄φa(x, τ0)

)
δτ0

+ πij(x, τ0) δgij(x, τ0) + πa(x, τ0) δφ̄a(x, τ0)

]

= −
∫
ddx
√
g
[
πij(x, τ0) δgij(x) + πa(x, τ0) δφa(x)

]
, (3.12)

since δgij(x, τ0) = δgij(x) − ġij(x, τ0) δτ0, etc. It thus follows that the classical
conjugate momenta evaluated at τ = τ0 are given by

πij(x) ≡ πij(x, τ0) =
−1√
g

δS

δgij(x)
, πa(x) ≡ πa(x, τ0) =

−1√
g

δS

δφa(x)
. (3.13)

Since δτ0 disappears on the right-hand side of (3.12), we find that

∂

∂τ0
S
[
gij(x), φa(x); τ0

]
= 0; (3.14)

that is, the classical action S is independent of the coordinate value of the boundary,
τ0. Thus, the classical action S = S

[
g(x), φ(x)

]
is specified only by the constraint

equations

H(gij(x), φa(x), πij(x), πa(x)
)

= 0,

Pi
(
gij(x), φa(x), πij(x), πa(x)

)
= 0, (3.15)

with πij(x) and πa(x) given by (3.13). From the first equation (the Hamiltonian
constraint), we obtain the flow equation of de Boer, Verlinde and Verlinde,30){

S, S
}
(x) = Ld(x), (3.16)

with

{
S, S

}
(x) ≡

(
1√
g

)2
[
− 1
d− 1

(
gij

δS

δgij

)2

+
(
δS

δgij

)2

+
1
2
Lab(φ)

δS

δφa

δS

δφb

]
,

(3.17)
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and

Ld(x) ≡ V (φ)−R+
1
2
Lab(φ) gij ∂iφ

a ∂jφ
b. (3.18)

The second equation (the momentum constraint) ensures the invariance of S under
d-dimensional diffeomorphisms along the fixed time-slice τ = τ0:∫

ddx

(
δεgij

δS

δgij
+ δεφ

a δS

δφa

)
=
∫
ddx

[
(∇iεj +∇jεi)

δS

δgij
+ εi ∂iφ

a δS

δφa

]
= 0,

(3.19)

with εi(x) an arbitrary function.

3.2. Solution to the flow equation

In this subsection, we discuss a systematic prescription for solving the flow equa-
tion (3.16).

As discussed in §2.1, when the boundary is shifted to τ = τ0 from the original
boundary τ =−∞ (or z = 0) of AdS space, the conformal symmetry disappears at
the new boundary, and thus the boundary field theory should be regarded as a cutoff
theory. The limit τ0→−∞ yields an IR divergence, because of the infinite volume of
the bulk geometry, and thus we need to subtract this divergence from the classical
action. However, as discussed in §2.1, this divergence can also be regarded as coming
from the short distance singularity for the boundary field theory (IR/UV relation).
Since we are also taking into account the back reaction from matter fields to gravity,
the required counterterm should be a local functional of the d-dimensional fields
gij(x) and φa(x). This consideration leads us to decompose the classical action into
the following form:

1
2κ2

d+1

S
[
g(x), φ(x)

]
=

1
2κ2

d+1

Sloc

[
g(x), φ(x)

]− Γ [g(x), φ(x)
]
. (3.20)

Here, Sloc

[
g(x), φ(x)

]
is the local counterterm, and Γ

[
g(x), φ(x)

]
is now regarded as

the generating functional with respect to the source fields φa(x) that live in a curved
background with metric gij(x).

We carry out a derivative expansion of the local counterterm in the following
way:

Sloc[g(x), φ(x)] =
∫
ddx

√
g(x)Lloc(x) =

∫
ddx

√
g(x)

∑
w=0,2,4,···

[Lloc(x)
]
w
.

(3.21)

The order of derivatives is counted with respect to the weight w,37) which is defined
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additively from the following rule:∗)

weight

gij(x), φa(x), Γ [g, φ] 0

∂i 1

R, Rij , ∂iφ
a∂jφ

b, · · · 2

δΓ/δgij(x), δΓ/δφa(x) d

.

The separation of a local counterterm Sloc from the generating functional Γ is usually
ambiguous for higher weights, and we here assign a vanishing weight to Γ , since
this greatly simplifies the analysis of Γ .37) The last line of the table is a natural
consequence of this assignment, since δΓ =

∫
ddx

(
δφ(x) × δΓ/δφ(x) + · · · ) and

ddx gives the weight w = −d. Then, substituting the above equation into the flow
equation (3.16) and comparing terms of the same weight, we obtain a sequence of
equations that relate the bulk action (3.3) to the classical action (3.20). They take
the following forms:37)

Ld =
[{
Sloc, Sloc

}]
0
+
[{
Sloc, Sloc

}]
2
, (3.22)

0 =
[{
Sloc, Sloc

}]
w
, (w = 4, 6, · · · , d− 2) (3.23)

0 = 2
[{
Sloc, Γ

}]
d
− 1

2κ2
d+1

[{
Sloc, Sloc

}]
d
, (3.24)

0 = 2
[{
Sloc, Γ

}]
w
− 1

2κ2
d+1

[{
Sloc, Sloc

}]
w
, (w = d+ 2, · · · , 2d− 2) (3.25)

0 =
[{
Γ, Γ

}]
2d
− 2

2κ2
d+1

[{
Sloc, Γ

}]
2d

+
1

(2κd+1)2
[{
Sloc, Sloc

}]
2d
, (3.26)

0 = 2
[{
Sloc, Γ

}]
w
− 1

2κ2
d+1

[{
Sloc, Sloc

}]
w
. (w = 2d+ 2, · · · ) (3.27)

Equations (3.22) and (3.23) determine [Lloc]w (w = 0, 2, · · · , d− 2), which together
with Eq. (3.24) in turn determine the non-local functional Γ . Although [Lloc]d enters
the expression, we see below that this does not produce any physically relevant effect.

By parametrizing [Lloc]0 and [Lloc]2 as

[Lloc]0 = W (φ), (3.28)

[Lloc]2 = −Φ(φ)R +
1
2
Mab(φ) gij ∂iφ

a ∂jφ
b, (3.29)

one can easily solve (3.22) to obtain37),∗∗)

V (φ) = − d

4(d− 1)
W (φ)2 +

1
2
Lab(φ) ∂aW (φ) ∂bW (φ) , (3.30)

∗) A scaling argument of this kind is often used in supersymmetric theories to restrict the form

of low energy effective actions (see e.g. Ref. 90)).
∗∗) The expression for d = 4 can be found in Ref. 30).
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−1 =
d− 2

2(d− 1)
W (φ)Φ(φ)− Lab(φ) ∂aW (φ) ∂bΦ(φ) , (3.31)

1
2
Lab(φ) = − d− 2

4(d− 1)
W (φ)Mab(φ)− Lcd(φ) ∂cW (φ)Γ (M)

d;ab (φ) , (3.32)

0 = W (φ)∇2 Φ(φ) + Lab(φ) ∂aW (φ)Mbc(φ)∇2φc . (3.33)

Here ∂a = ∂/∂φa, and Γ
(M)c
ab (φ) ≡ M cd(φ)Γ (M)

d;ab (φ) is the Christoffel symbol con-
structed from Mab(φ). For pure gravity (Lab = 0,Mab = 0), for example, setting
V = 2Λ = −d(d− 1)/l2, we find∗)

W = − 2 (d− 1)
l

, Φ =
l

d− 2
. (3.34)

Here Λ is the bulk cosmological constant, and when the metric is asymptotically
AdS, the parameter l is identified with the radius of the asymptotic AdSd+1.

When d ≥ 4, we need to solve Eq. (3.23). For the pure gravity case, for example,
by parametrizing the local term of weight 4 as

[Lloc]4 = XR2 + Y RijR
ij + ZRijklR

ijkl, (3.35)

Eq. (3.23) with w = 4 can be expressed as

0 ≡
[{
Sloc, Sloc

}]
4

= − W

2(d− 1)

(
(d− 4)X − d l3

4(d− 1)(d− 2)2

)
R2

− W

2(d− 1)

(
(d− 4)Y +

l3

(d− 2)2

)
RijR

ij − d− 4
2(d− 1)

WZ RijklR
ijkl

+
(

2X +
d

2(d− 1)
Y +

2
d− 1

Z

)
∇2R, (3.36)

from which we find

X =
d l3

4(d− 1)(d− 2)2(d− 4)
, Y = − l3

(d− 2)2(d− 4)
, Z = 0, (3.37)

and
[
{Sloc, Sloc}

]
6

can be calculated easily as[{
Sloc, Sloc

}]
6

= Φ

[(
−4X +

d+ 2
2(d− 1)

Y

)
RRij R

ij +
d+ 2

2(d− 1)
XR3 − 4Y RikRjlRijkl

+(4X + 2Y )Rij∇i∇jR− 2Y Rij∇2Rij +
(

2(d− 3)X +
d− 2

2
Y

)
R∇2R

]
∗) The sign of W is chosen to be in the branch where the limit φ → 0 can be taken smoothly

with Lab(φ) and Mab(φ) positive definite.

Downloaded from https://academic.oup.com/ptp/article-abstract/109/4/489/1875868
by Kyoto University Library user
on 13 March 2018



516 M. Fukuma, S. Matsuura and T. Sakai

+ (contributions from [Lloc]6)

= l4
[
− 3d+ 2

2(d− 1)(d− 2)3(d− 4)
RRij R

ij +
d(d+ 2)

8(d− 1)2(d− 2)3(d− 4)
R3

+
4

(d− 2)3(d− 4)
Rik RjlRijkl − 1

(d− 1)(d− 2)2(d− 4)
Rij ∇i∇jR

+
2

(d− 2)3(d− 4)
Rij ∇2Rij − 1

(d− 1)(d− 2)3(d− 4)
R∇2R

]
+ (contributions from [Lloc]6). (3.38)

Also, from the flow equation of weight d, (3.24), we find

2√
g
gij

δΓ

δgij
− βa(φ)

1√
g

δΓ

δφa
= − 1

2κ2
d+1

2(d− 1)
W (φ)

[
{Sloc, Sloc}

]
d
, (3.39)

with
βa(φ) ≡ 2(d− 1)

W (φ)
Lab(φ) ∂bW (φ). (3.40)

It is crucial that βa can be identified with the RG beta function. To see this, we
recall that an RG flow in boundary field theory is described by a classical solution
in the bulk. Here we consider the classical solutions gij(x, τ) and φ̄a(x, τ) with the
boundary conditions

gij(x, τ0) = gij(x) ≡ 1
a2
δij , φ̄a(x, τ0) = φa(x) ≡ φa.

(
a, φ : const

)
(3.41)

This represents the most generic background that preserves the d-dimensional
Poincaré (or Euclidean) symmetry. Since we set the fields to constant values, the
system is now perturbed finitely. Furthermore, since a defines the unit length of the
d-dimensional space, this perturbation should describe the system with cutoff length
a, which corresponds to the time τ = τ0 in the RG flow. From Eq. (3.7) and the
Hamilton-Jacobi equation (3.13), we obtain

d

dτ
gij(x, τ)

∣∣∣
τ=τ0

=
1

d− 1
W (φ)

1
a2
δij , (3.42)

d

dτ
φ̄a(x, τ)

∣∣∣
τ=τ0

= −Lab(φ) ∂bW (φ). (3.43)

We then assume that the classical solutions take the following form for the general
τ with a(τ0) = a:

gij(x, τ) =
1

a(τ)2
δij , φ̄a(x, τ) = φa(a(τ)). (3.44)

Note that a(τ) can be identified with the cutoff length at τ . It then follows from
(3.42) and (3.43) that

a
dτ

da
= − 2(d− 1)

W (φ)
, (3.45)

a
d

da
φa(a) =

2(d− 1)
W (φ)

Lab(φ) ∂bW (φ). (3.46)
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Comparing the latter with Eq. (3.40), we thus conclude that the functions βa(φ) in
(3.39) are actually the beta functions of the holographic RG:∗)

βa(φ) = a
d

da
φa(a). (3.47)

Equation (3.39) is one of the key ingredients in the study of the holographic RG.
In fact, we will show that this yields the Weyl anomalies and the Callan-Symanzik
equation in the dual field theory.

3.3. Holographic Weyl anomaly

We first note that (2/
√
g) δΓ/δgij(x) gives the vacuum expectation value of the

energy momentum tensor in the background gij(x) and φa(x):

2√
g

δΓ
[
g, φ

]
δgij(x)

=
〈
T ij(x)

〉
g,φ
. (3.48)

Thus, if we choose the couplings φa such that their beta functions vanish, Eq. (3.39)
shows that its right-hand side gives the Weyl anomaly:

Wd(x) ≡
〈
T i

i(x)
〉∣∣∣

β(φ)=0
= − 1

2κ2
d+1

2(d− 1)
W (φ)

[
{Sloc, Sloc}

]
d

∣∣∣∣∣
β(φ)=0

. (3.49)

Before turning to a computation of the holographic Weyl anomaly, we here
would like to clarify the relation between the uniqueness of Weyl anomalies and the
ambiguity of the solution of the flow equation, which is argued in Ref. 38).

Generically, the Weyl anomaly has the form

Wd = − 1
2κ2

d+1

2(d− 1)
W (φ)

([{
Sloc, Sloc

}′]
d

+ 2
{
Sloc;−d, Sloc; 0

}) ∣∣∣
β(φ)=0

, (3.50)

where {Sloc, Sloc}′ is the part of {Sloc, Sloc} that does not include contributions from
[Lloc]d, and we have introduced∗∗)

Sloc; w−d ≡
∫
ddx

√
g(x) [Lloc]w. (3.51)

The first term on the right-hand side of (3.50) is written only with
[Lloc

]
0
, · · · ,[Lloc

]
d−2

, all of which can be determined by the flow equation. On the other hand,
the second term contains

[Lloc

]
d
, which cannot be determined by the flow equation.

However, this can be absorbed into the effective action Γ . In fact, by using the
relations

δSloc;−d

δgij
=
√
g

2
W (φ) gij ,

δSloc;−d

δφa
=
√
g ∂aW (φ), (3.52)

∗) Note that our RG flow moves to IR region as a increases. Therefore, the sign of βa is opposite

to the usual one.
∗∗) The weight shifts by an amount −d after the integration, because the weight of ddx is −d.
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we find that

2
2(d− 1)
W (φ)

{
Sloc;−d, Sloc; 0

}
= − 2√

g
gij
δSloc; 0

δgij
+ βa(φ)

1√
g

δSloc; 0

δφa
, (3.53)

and we can therefore rewrite the flow equation (3.39) as

2√
g
gij

δ

δgij

(
Γ − 1

2κ2
d+1

Sloc; 0

)
− βa(φ)

1√
g

δ

δφa

(
Γ − 1

2κ2
d+1

Sloc; 0

)

= − 1
2κ2

d+1

2(d− 1)
W (φ)

[{
Sloc, Sloc

}′]
d
. (3.54)

Thus, we have seen that the contribution from the term
[Lloc

]
d

can be absorbed
into Γ by redefining it as Γ ′ = Γ − (1/2κ2

d+1)Sloc; 0. Note that Γ ′ still has vanishing
weight.

Instead of redefining Γ , one can modify the Weyl anomaly without making any
essential change. To show this, we first note that the second term in Eq. (3.53) can
be written as the total derivative:

2 gij
δSloc; 0

δgij
= −√g∇iJ i

d , (3.55)

with J i
d some local current. In fact, for infinitesimal Weyl transformations, we have

Sloc; 0[eσ(x)g(x), φ(x)]− Sloc; 0[g(x), φ(x)] =
∫
ddxσ(x) gij

δSloc;0

δgij
. (3.56)

One can easily understand that Sloc; 0[g(x), φ(x)] is invariant under constant Weyl
transformations [gij(x) → eσgij(x), φa(x) → φa(x), with σ constant], so that the
left-hand side of Eq. (3.56) can generally be written as∫

ddx ∂iσ(x)
√
gJ i

d , (3.57)

with some local function J i
d . By integrating this by parts and comparing the result

with the right-hand side of Eq. (3.56), one obtains Eq. (3.55). Thus we have shown
that Eq. (3.39) can be rewritten in the following form:

2√
g
gij

δΓ

δgij
− βa(φ)

1√
g

δΓ

δφa

= − 1
2κ2

d+1

2(d− 1)
W (φ)

[{
Sloc, Sloc

}′]
d
−∇iJ i

d + βa(φ)
1√
g

δSloc; 0

δφa
. (3.58)

This implies that when we take Γ as the generating functional, the Weyl anomaly
Wd has an ambiguity that can always be made into a total derivative term [since we
set βa(φ) = 0].

Now that the flow equation is found to provide us with a unique form of Weyl
anomalies, we consider two simple examples to illustrate how the above prescription
works.
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5D dilatonic gravity37)

We normalize the Lagrangian with a single scalar field as follows:

L4 = −12
l2
−R+

1
2
gij ∂iφ∂jφ. (3.59)

Then, assuming that the functions W (φ),M(φ) and Φ(φ) are all independent in φ,
we can solve Eqs. (3.30)–(3.32) with V = −d(d − 1)/l2 = −12/l2 and L = 1, and
obtain

W = −6
l
, Φ =

l

2
, M =

l

2
; (3.60)

that is,

Sloc[g, φ] =
∫
d4x
√
g

(
−6
l
− l

2
R+

l

2
gij∂iφ∂jφ

)
. (3.61)

We can calculate
[
{Sloc, Sloc}

]
4

easily, finding

W4 =
l

2κ2
5

[
{Sloc, Sloc}

]
4

=
l3

2κ2
5

(
− 1

12
R2 +

1
4
RijR

ij +
1
12
Rgij ∂iφ∂jφ

−1
4
Rij ∂iφ∂jφ+

1
24

(
gij ∂iφ∂jφ

)2 +
1
8
(∇2φ

)2)
. (3.62)

This is in exact agreement with the result in Ref. 91).
In the duality between IIB supergravity on AdS5 × S5 and the large N SU(N)

SYM4, the radii of AdS5 and S5 both have l = (4πgsN)1/4 ls. This gives the five-
dimensional Newton constant

1
2κ2

5

=
Vol(S5)

2κ2
10

=
π3 l5

128π7g2
s

. (3.63)

Thus, by setting φ = 0, we obtain

W4 =
l8

128π4g2
s

(
− 1

12
R2 +

1
4
RijR

ij

)
=

N2

2 (4π)2

(
− 1

3
R2 +RijR

ij

)
, (3.64)

which exactly gives the large N limit of the Weyl anomaly of the the large N SU(N)
SYM4.36),∗)

7D pure gravity37)

∗) The Weyl anomaly of four-dimensional field theories is perturbatively calculated36) as

W4 =
c

(4π)2

�1

3
R2 − 2R2

ij +R2
ijkl

�
− a

(4π)2
�
R2 − 4R2

ij +R2
ijkl

�
, (3.65)
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By using the value in Eq. (3.37) with d = 6, the local part of the weight up to
four is given by

Sloc[g] =
∫
d6x
√
g

(
−10
l
− l

4
R+

3l3

320
R2 − l3

32
RijR

ij

)
. (3.67)

From the flow equation of weight w = 6, we thus find

W6 = − l

2κ2
7

[{
Sloc, Sloc

}]
6

=
l5

2κ2
7

(
1

128
RRijR

ij − 3
3200

R3 − 1
64
RikRjlRijkl

+
1

320
Rij∇i∇jR− 1

128
Rij∇2Rij +

1
1280

R∇2R

)
, (3.68)

which is in perfect agreement with the six-dimensional Weyl anomaly given in
Ref. 33).

3.4. Callan-Symanzik equation

Next, we derive the Callan-Symanzik equation.30) Acting on Eq. (3.39) with the
functional derivative

δ

δφa1(x1)
δ

δφa2(x2)
· · · δ

δφan(xn)
, (3.69)

and then setting φa = 0, we obtain the relation[
−2gij(x)

δ

δgij(x)
+ βa(φ(x))

δ

δφa(x)

] 〈Oa1(x1)Oa2(x2) · · · Oan(xn)
〉

+
n∑

k=1

δ(x− xk)∂ak
βb(φ(x))

〈Oa1(x1) · · · Ob(xk) · · · Oan(xn)
〉

= 0. (3.70)

Recall that Γ is the generating functional of correlation functions with φa regarded
as an external field coupled to the scaling operator Oa(x). By integrating it over Rd

and considering the finite perturbation

gij(x) =
1
a2
δij , φa(x) = φa, (with a, φa constant) (3.71)

we end up with the Callan-Symanzik equation,[
a
∂

∂a
+ βa(φ)

∂

∂φa

] 〈Oa1(x1)Oa2(x2) · · · Oan(xn)
〉

−
n∑

k=1

γb
ak

(φ)
〈Oa1(x1) · · · Ob(xk) · · · Oan(xn)

〉
= 0. (3.72)

with

a =
1

360

�
nS + (11/2)nF + 62nV

�
, c =

1

120

�
nS + 3nF + 12nV

�
. (3.66)

Here nS, nF and nV are the numbers of real scalars, Majorana fermions and vectors, respectively.

The result (3.64) can be obtained by setting nS = 6(N2 − 1), nF = 4(N2 − 1) and nV = N2 − 1 and

taking the large N limit.
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Here γb
a(φ) = −∂aβ

b(φ) is a matrix of anomalous dimension.

3.5. Anomalous dimensions

Here we show that one can generalize to arbitrary dimensions the argument
in Ref. 30) that the scaling dimensions can be calculated directly from the flow
equation.37) First, we assume that the bulk scalars are normalized as Lab(φ̂) = δab

and that the bulk scalar potential V (φ̂) has the expansion

V (φ̂) = 2Λ+
1
2

∑
a

m2
a φ̂

2
a +

1
3!

∑
a,b,c

gabc φ̂aφ̂bφ̂c + · · · , (3.73)

with Λ = −d(d−1)/2l2. Then it follows from (3.30) that the superpotential W takes
the form

W (φ) = −2(d− 1)
l

+
1
2

∑
a

λa φ
2
a +

1
3!

∑
a,b,c

λabc φaφbφc + · · · , (3.74)

with

lλa =
1
2

(
−d+

√
d2 + 4m2

a l
2
)
, (3.75)

gabc =
(
d

l
+ λa + λb + λc

)
λabc. (3.76)

The beta functions can then be evaluated easily and are found to be

βa = −
∑

a

lλa φa − 1
2

∑
b,c

λabc φbφc + · · · . (3.77)

Thus, equating the coefficient of the first term with d−∆a, where ∆a is the scaling
dimension of the operator coupled to φa, we obtain

∆a = d+ lλa =
1
2

(
d+

√
d2 + 4m2

a l
2
)
. (3.78)

This exactly reproduces the result given in Refs. 5)–7) (see also §2.2).

3.6. c-function revisited

We here make a comment on how the the holographic c-function can be formu-
lated within the framework developed in this section. For the Euclidean invariant
metric ĝij(x, τ) = a(τ)−2δij , the trace of the extrinsic curvature can be written

K̂(τ) = ĝij 1
2
d

dτ
ĝij = −d d

dτ
ln a =

d

2(d− 1)
W
(
φ̂(τ)

)
, (3.79)

so that the holographic c-function can be rewritten in the form(−1

K̂

)d−1

∼
(

−1

W
(
φ̂(τ)

))d−1

≡ c(φ̂(τ)). (3.80)
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Thus, by introducing the “metric” of the coupling constants as

Gab(φ) ≡ 1
2

( −1
W (φ)

)d−1

Lab(φ), (3.81)

the beta functions can be expressed as

βa(φ̂)
(

= a
d

da
φ̂a

)
= −Gab

(
φ̂
)
∂b c

(
φ̂
)
. (3.82)

In this Euclidean setting, the monotonic decreasing of the c-function can be directly
seen by assuming that Lab(φ) (and thus Gab(φ) also) is positive definite:

a
d

da
c
(
φ̂(a)

)
= βa

(
φ̂
)
∂ac

(
φ̂
)

= −Gab
(
φ̂
)
∂ac

(
φ̂
)
∂bc

(
φ̂
) ≤ 0. (3.83)

The equality here holds when and only when the beta functions vanish.
Let us apply this analysis to the holographic RG flow from the N = 4 SU(N)

SYM4 to the N = 1 LS fixed point,16) which was mentioned in §2.4. The vector
multiplet of the N = 4 theory can be decomposed into a single N = 1 vector mul-
tiplet V = (Ai(x), λ(x)) and three N = 1 chiral multiplets ΦI = (ϕI(x), ψI(x))
(I = 1, 2, 3), each field of which belongs to the adjoint representation of SU(N)
and has the superpotential W(Φ) = tr([Φ1, Φ2]Φ3). The theory can be deformed by
adding to the superpotential the N = 1 invariant mass term δW(Φ) = (m/2) tr(Φ3)2.
This gives rise to an additional term in the potential, which can be written schemat-
ically as V = m tr[(ϕ3)3+(λ3)2] + m2 tr[(ϕ3)2], and the LS fixed point is obtained
by taking the limit m→∞. On the other hand, such deformations have a dual de-
scription in the N = 8 gauged supergravity theory, and, in particular, perturbations
with the operators O1(x) = tr[(ϕ3)3+(λ3)2] and O2(x) = tr[(ϕ3)2] can be treated
by considering the time development of two scalar (bulk) fields φ̂a(x, τ) (a = 1, 2),
whose superpotential is given by16)

W (φ̂) = e−�φ2/
√

6
[
cosh φ̂1 ·

(
e
√

6 �φ2/2 − 2
)
− 3 e

√
6 �φ2/2 − 2

]
. (3.84)

We here have normalized the scalar fields such that they have a kinetic term with
Lab(φ̂) = δab. The scalar potential is then given by

V
(
φ̂
)

=
1
2

(
∂aW

(
φ̂
))2 − 1

3

(
W
(
φ̂
))2

. (3.85)

The forms of W (φ) and V (φ) are depicted in Figs. 1 and 2. The origin (φa) = (0, 0)
corresponds to the UV N = 4 fixed point, and, as can be seen from the figures, there
appear other fixed points at (φ∗a) = (± ln 3, (2/

√
6) ln 2) (the two new fixed points are

related by the Z2 transformation φ1 → −φ1), which is the LS fixed point. Around
the origin, the superpotential is expanded as

W = −6− 1
2

(φ1)2 − (φ2)2 + · · · , (3.86)
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Fig. 1. Superpotential W (φ). The fixed points are at (± ln 3, (2/
√

6) ln 2).
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Fig. 2. Scalar potential V (φ). The fixed points (± ln 3, (2/
√

6) ln 2) are saddle points, so that one

direction is relevant and the other irrelevant.

from which one finds that

l = 1, λ1 = −1, λ2 = −2, (3.87)

and thus the values of their mass squared in the bulk gravity are calculated to be
m2

1 = −3 and m2
2 = −4, respectively. The scaling dimensions are then obtained

from the standard formula to be ∆1 = 3 and ∆2 = 2, which are precisely the scaling
dimensions of O1 and O2 in the N = 4 super Yang-Mills theory. On the other hand,
around the IR fixed point, the superpotential is expanded as W = −4 · 22/3 + · · · ,
from which one finds that the radius changes from l = 1 to l∗ = 3 · 2−5/3. The
mass-squared matrix ∂a∂b V (φ∗) can be calculated easily as

(
∂a∂b V (φ∗)

)
=

213/4

32

(
3

√
6√

6 1

)
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→ 213/4

32

(
2−√7 0

0 2 +
√

7

)
, (diagonalized) (3.88)

so that by using ∆∗ = 2 +
√

4 +m2 (l∗)2, the scaling dimensions are calculated
as ∆∗

1 = 1 +
√

7 (< 4) and ∆∗
2 = 3 +

√
7 (> 4). This shows that at the IR fixed

point the operators acquire large anomalous dimensions, and one of the two becomes
irrelevant. The ratio of the central charge can be calculated as before, and we find

cIR
cUV

=
c
(
φ∗)
c(0)

=
(−1/W (φ∗)
−1/W (0)

)3

=
(
l∗

l

)3

=
27
32
, (3.89)

which certainly is less than unity and agrees with the previous result. Note that the
ridge from the N = 4 fixed point to the N = 1 fixed point is given by the curve that
has the shape φ2 = (φ1)2 around the origin. This is an expected result, since such
a ridge should preserve the N = 1 symmetry, and the two scalars are expressed as
φ1 � m and φ2 � m2 around the origin.16)

3.7. Continuum limit

In this subsection, we describe a direct prescription for taking continuum limits
of boundary field theories which is such that counterterms can be extracted easily.∗)
The following argument is based on Ref. 37).

Let gij(x, τ) and φ̄a(x, τ) be the classical trajectories of ĝij(x, τ) and φ̂a(x, τ)
with the boundary conditions

gij(x, τ0) = gij(x), φ̄a(x, τ0) = φa(x). (3.90)

Recall that the classical action is given as a functional of the boundary values gij(x)
and φa(x), obtained by substituting these classical solutions into the bulk action:

S
[
gij(x), φa(x)

]
=
∫
ddx

∫
τ0

dτ
√
gLd+1

[
g(x, τ), φ̄(x, τ)

]
. (3.91)

Also, recall that the fields gij(x) and φa(x) are regarded as the bare sources at the
cutoff scale corresponding to the flow parameter τ0. Although the classical action is
actually independent of τ0 due to the Hamilton-Jacobi constraint, we still need to
tune the fields gij(x) and φa(x) as functions of τ0 so that the low energy physics is
fixed and described in terms of finite renormalized couplings.

In the holographic RG, such renormalization can be easily carried out by tuning
the bare sources back along the classical trajectory in the bulk (see Fig. 3). That
is, if we would like to fix the couplings at the “renormalization point” τ = τR to be(
gR(x), φR(x)

)
and to require that physics does not change as the cutoff moves, we

only need to take the bare sources to be

gij(x; τ0) = gij(x, τ0), φa(x; τ0) = φ̄a(x, τ0). (3.92)

∗) For an earlier work on counterterms, see, e.g., Ref. 15).
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ττRτ0−∞

(
gij(x), φa(x)

)

(
ĝij(x, τ), φ̂a(x, τ)

)

(
gij(x, τ), φa(x, τ)

)
(
gR ij(x), φa

R(x)
)

IR UV

renormalization point

II I

Fig. 3. The evolution of the classical solutions
�
gij(x, τ), φ̄

a(x, τ)
�

along the radial direction τ . The

region I is defined by τ ≥ τR, and the region II is defined by τ0 ≤ τ < τR.

The classical action with these running bare sources can be easily evaluated by
using Eq. (3.92) as follows:

S
[
gij(x; τ0), φa(x; τ0)

]
=
∫
ddx

∫
τ0

dτ
√
gLd+1

[
g(x, τ), φ̄(x, τ)

]
=
∫
ddx

(∫
τR

dτ +
∫ τR

τ0

dτ

)√
gLd+1

= SR

[
gR(x), φR(x)

]
+ SCT

[
gR(x), φR(x); τ0, τR

]
. (3.93)

Here SR is given by integrating
√
gLd+1 over the region I in Fig. 3, and it obeys the

Hamiltonian constraint, which ensures that SR does not depend on τR. Similarly,
SCT is given by integrating

√
gLd+1 over the region II. It also obeys the Hamilto-

nian constraint and thus does not depend on the coordinates of the boundaries of
integration, τR and τ0, explicitly. However, in this case, their dependence implicitly
enters SCT through the condition that the boundary values at τ = τ0 be on the
classical trajectory through the renormalization point:

SCT = S
[
gR(x), φR(x); g(x, τ0), φ(x, τ0)

]
= S

[
gR(x), φR(x); g(x, τ0; gR, τR), φ̄(x, τ0;φR, τR)

]
. (3.94)

It is thus natural to interpret SCT

[
gR, φR; τ0, τR

]
as the counterterm, and the nonlo-

cal part of SR

[
gR, φR

]
gives the renormalized generating functional of the boundary

field theory, ΓR

[
gR, φR

]
, written in terms of the renormalized sources.

Since, as pointed out above, SR

[
gR, φR

]
also satisfies the Hamiltonian constraint,

it will yield the same form of the flow equation, with all the bare fields replaced by
the renormalized fields. This suggests that the holographic RG exactly describes the
so-called renormalized trajectory,92) which is a submanifold in the parameter space,
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consisting of the flows driven by relevant perturbations from an RG fixed point at
τ0 = −∞.

There is another scheme of renormalization that was systematically developed
by Henningson and Skenderis.33),∗) A detailed comparison of their scheme with that
presented in this subsection is given in Ref. 37).

§4. Holographic RG and the noncritical string theory

In this section, we show that the structure of the holographic RG can be nat-
urally understood within the framework of noncritical string theory. In particular,
we demonstrate that the Liouville field ϕ can be understood to be the (d + 1)-st
coordinate appearing in the holographic RG:

ϕ (Liouville) ←→ τ = Xd+1. (4.1)

4.1. Noncritical string theory

We first summarize the basic results for noncritical strings. The noncritical
string theory93), 94) is a world-sheet theory in which only the two-dimensional dif-
feomorphism (Diff2) is imposed as a gauge symmetry, while the usual critical string
theory has the gauge symmetry Diff2 ×Weyl. The nonlinear σ-model action of the
noncritical string theory can be written as

SNLσ[xi(ξ), γab(ξ)] =
1

4πα′

∫
d2ξ
√
γ
(
γab gij(x(ξ)) ∂ax

i(ξ) ∂bx
j(ξ)

+T (x(ξ)) + α′Rγ Φ(x(ξ)) + · · · ) . (4.2)

Here ξ = (ξa) = (ξ1, ξ2) represents the coordinates of the world-sheet, and γab(ξ) is
the intrinsic metric on the world-sheet. xi (i = 1, 2, · · · , d) are the coordinates of the
d-dimensional target space, and gij(x), T (x) and Φ(x) are, respectively, the metric,
tachyon and dilaton fields in the target space. The partition function is defined as

Z =
∫ Dxi(ξ)Dγab(ξ)

Vol(Diff2)
exp

(−SNLσ[xi(ξ), γab(ξ)]
)
. (4.3)

One can see from the above expression that the slope parameter α′ plays the role of
the expansion parameter (α′ ∼ �).

A convenient gauge fixing is the conformal gauge, for which we set the intrinsic
metric γab(ξ) as

γab(ξ) = eϕ(ξ) · γ̂ab(ξ), (4.4)

where we have introduced a (fixed) fiducial metric γ̂ab(ξ), and the field ϕ(ξ) is called
the Liouville field. This gauge fixing actually is not complete and leaves a residual
gauge symmetry consisting of local conformal isometries with respect to γ̂ab,

Dγab(ξ)
Vol(Diff2)

=
Dϕ(ξ)

Vol(Conf2)
e−SLiouville[ϕ(ξ), �gab(ξ)], (4.5)

∗) For a recent discussion based on the Hamilton-Jacobi equation, see, e.g., Ref. 54).
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where SLiouville is a local functional written in terms of ϕ(ξ) and the fiducial metric
ĝ(ξ).

As is the case for any scalar field on the world-sheet, the Liouville field ϕ can
be regarded as an extra-dimensional coordinate. This interpretation can be pursued
further if we change the measure of ϕ from the original one,

Dϕ(ξ) ↔ ||δϕ||2γ ≡
∫
d2ξ
√
γ (δϕ)2 =

∫
d2ξ

√
γ̂ eϕ (δϕ)2, (4.6)

to the translationally invariant one,94)

D̂ϕ(ξ) ↔ ||δϕ||2
�γ ≡

∫
d2ξ

√
γ̂ (δϕ)2. (4.7)

Making this change induces a Jacobian factor that can be absorbed into the the bare
fields gij(x), T (x) and Φ(x), due to the renormalizability of the NLσ-model. We
thus obtain the following expression for the partition function:

Z =
∫ DxiDϕ

Vol(Conf2)
e−SNLσ e−SLiouville

=
∫ D̂xi D̂ϕ

Vol(Conf2)
e−�SNLσ[xi,ϕ; �γab], (4.8)

where the effective action ŜNLσ[xi, ϕ; γ̂ab] now has the form

ŜNLσ =
1

4πα′

∫
d2ξ

√
γ̂
[
γ̂ab

(
∂aϕ∂bϕ + ĝij(x, φ) ∂ax

i ∂bx
j
)

+ T̂ (x, ϕ) + α′R
�γ · Φ̂(x, ϕ) + · · ·

]
. (4.9)

Here we have rescaled ϕ such that its kinetic term is in canonical form. The above
expression shows that one can introduce a (d+ 1)-dimensional space with the coor-
dinates Xµ = (xi, ϕ) (i = 1, · · · , d) and the metric

ds2 = ĝµν(x, ϕ) dXµ dXν ≡ (dϕ)2 + ĝij(x, ϕ) dxi dxj. (4.10)

The coefficients here cannot take arbitrary values, since we must impose conformal
symmetry on the effective action, which is equivalent to choosing the coefficients
such that their beta functions vanish. One can easily show that the equation β = 0
can be derived as the equation of motion of the following effective action of the target
space:

S =
∫
ddx dϕ

√
ĝ e−2�Φ

(
2Λ0 − R̂− 4(∇̂Φ̂)2 + (∇̂T̂ )2 +m2

0 T̂
2 +O(α′)

)
, (4.11)

with 2Λ0 = 2(d − 25)/3α′ and m2
0 = −4/α′. Since the residual conformal isometry

can be translated into the Weyl symmetry, the above analysis shows that the d-
dimensional noncritical string theory is equivalent to a d-dimensional critical string
theory.
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4.2. Holographic RG in terms of noncritical strings

As is further investigated in the following sections, one of the basic assumptions
in the holographic RG is that the (Euclidean) time development should be regular
inside the bulk. It turns out that this corresponds to the so-called Seiberg condi-
tion95) in the noncritical string theory. Let us consider a (d+1)-dimensional bosonic
string theory in the linear dilaton background,96) although this does not possess a
geometry that asymptotically becomes the AdS geometry:

ĝij = δij, Φ̂ = Qϕ. (4.12)

The coefficient Q is determined from the conformal invariance as Q2 = −Λ0/2 =
(25 − d)/6α′. Then the tachyon vertex with Euclidean momentum kµ = (ki, α) is
expressed by

T̂ = ei kix
i+α ϕ

= e
�Φ · ei kix

i+(α−Q)ϕ. (4.13)

Here we extract the factor e�Φ = eQ ϕ, which comes from the curvature arising when
an infinitely long cylinder is inserted in the world-sheet. Thus the momentum along
the cylinder is effectively kµ|cylinder = (ki, α−Q), so that the convergence of the wave
function inside the bulk (ϕ→ +∞) is equivalent to the Seiberg condition α−Q < 0.

Furthermore, the bulk IR cutoff τ ≥ τ0 (or ϕ ≥ ϕ0) is equivalent to the small-
area cutoff of the world-sheet.97) In fact, when the (d+ 1)-dimensional target space
is asymptotically AdS, the integration over the zero mode of ϕ(ξ) diverges near
ϕ = −∞. This divergence can be regularized by introducing the cutoff ϕ0, as we did
in the preceding sections:∫ ∞

−∞
dϕ

∫
D̂′ϕ(ξ) e−�SNLσ ⇒

∫ ∞

ϕ0

dϕ

∫
D̂′ϕ(ξ) e−�SNLσ . (4.14)

On the other hand, the area of the world-sheet can be expressed in terms of the zero
mode through the volume element

√
γ = eαϕ, so that this cutoff actually sets a lower

bound on the area:

A =
∫ √

γ =
∫
eαϕ ≥

∫
eαϕ0 = Amin. (4.15)

Thus, the holographic RG describes the development of string backgrounds as the
minimum area of the world-sheet is changed, which is equivalent, after Legendre
transformation, to development with respect to the two-dimensional cosmological
constant.

The above two features can be best seen when one sets up the holographic RG
within the framework of noncritical string theory, although it is mathematically
equivalent to the critical string theory. Using a translationally invariant measure
for the Liouville field ϕ is necessary in order for ϕ to be interpreted as the RG
flow parameter. Moreover, these two features are realized automatically in (old)
matrix models. In fact, in such matrix models, there exists a bare cosmological
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term that gives rise to a Liouville wall, so that any physically meaningful wave
functions are regular inside the bulk of the target space, which is equivalent to the
Seiberg condition. Furthermore, the continuum limit is obtained by fine tuning
couplings such that contributions from surfaces with large areas survive. In fact, the
contributions from surfaces with small areas are always non-universal and can be
discarded in taking the continuum limit. The cutoff on a (physically) small area is
naturally set by introducing the renormalized cosmological constant term.

The nonlinear σ-model action SNLσ[xi, γab] with finitely many “couplings” gij(x),
Φ(x) and T (x) gives a renormalizable theory, which means that these couplings de-
termine the structure of the (d + 1)-dimensional target space Xµ = (xi, ϕ) for any
value of α′. Actually, the dependence of the renormalized fields on ϕ is completely
determined by the conformal symmetry on the world-sheet. This observation im-
plies that the holographic RG structure should be preserved for all orders in the α′
expansion. Below we give some evidence supporting this expectation.

§5. Holographic RG for higher-derivative gravity

In this section, we investigate gravity systems with higher-derivative interac-
tions and discuss their relationship to boundary field theories.39), 40) As we show
in §5.2, for a higher-derivative system, in order to determine the classical behavior
uniquely we need more boundary conditions than those without higher-derivative
interactions. Thus, it may seem that the holographic principle does not work for
higher-derivative gravity. The main aim of this section is to demonstrate that the
holographic structure persists for such systems by showing that the behavior of bulk
fields can be specified only by their boundary values. This finding is not surprising
because higher-derivative terms in string theory come from α′ corrections; as we
have seen in the case of non-critical strings, the renormalizability of the nonlinear
σ-model action ensures that the holographic structure exists for that system.

As a preliminary exercise, we first analyze a system that has Euclidean symme-
try at each time-slice. We introduce a parametrization with which one can easily
investigate the global structure of the holographic RG of the boundary field theories.
We show that there appear new multicritical fixed points in addition to the origi-
nal conformal fixed points existing in the AdS/CFT correspondence. After grasping
the basic ideas, we then formulate the holographic RG for higher-derivative gravity
in terms of the Hamilton-Jacobi equation, and show that bulk gravity always ex-
hibits holographic behavior, even with higher-derivative interactions. We also apply
this formulation to a computation of the Weyl anomaly and show that the result is
consistent with a field theoretic calculation.

5.1. Holographic RG structure in higher-derivative gravity

In this subsection, we exclusively consider a bulk metric with d-dimensional
Euclidean invariance. We introduce a parametrization that allows us to easily inves-
tigate the global structure of the holographic RG of the boundary field theory.

The bulk metric with d-dimensional Euclidean symmetry can be written in the
following form by setting ĝij = e−2q(τ) δij, N̂ = N(τ) and λ̂i = 0 in the ADM
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decomposition (3.1):∗)

ds2 = N(τ)2dτ2 + e−2q(τ) δij dx
idxj. (5.1)

For this metric, the unit length in the d-dimensional time-slice at τ is given by
a = eq(τ). Since the unit length should grow monotonically under the RG flow,
dq(τ)/dτ must be positive in order for the bulk metric to have a chance to describe
the holographic RG flow of the boundary field theories.

We consider two kinds of gauge fixings (or parametrizations of time). One is the
temporal gauge, which is obtained by setting N(τ) = 1:

ds2 = dτ2 + e−2q(τ)δijdx
idxj . (5.2)

The other is a gauge fixing that can be made only when the above stated condition,

dq(τ)
dτ

> 0, (−∞ < τ <∞) (5.3)

is satisfied. Then q itself can be regarded as a new time coordinate. We call this
parametrization the block spin gauge .40),∗∗) By writing q(τ) as t, the metric in this
gauge is expressed as∗∗∗)

ds2 = Q(t)−2dt2 + e−2t δij dx
idxj. (5.4)

Since the two parametrizations of time (temporal and block spin) are related as

t = q(τ), (5.5)

together with the condition (5.3), the coefficient Q(t) is given by

Q(t) =
dq(τ)
dτ

∣∣∣∣
τ=q−1(t)

, (> 0) (5.6)

which we call a “higher-derivative mode.”†) Note that a constant Q (≡ 1/l) gives
the AdS metric of radius l,

ds2 = dτ2 + e−2τ/l dx2
i , (temporal gauge)

= l2dt2 + e−2t dx2
i , (block spin gauge) (5.7)

with the boundary at τ = −∞ (or t = −∞).
∗) q(τ), N(τ), etc., are bulk fields, but in this and the next subsections, we do not place hats

(or bars) on (the classical solutions of) these bulk fields, in order to simplify expressions.
∗∗) In this gauge, the unit length in the d-dimensional time slice at t is given by a(t) = a0e

t,

with a positive constant a0. If we consider the time translation t→ t+ δt, the unit length changes

as a → eδta. In other words, one step of time evolution directly describes that of the block spin

transformation of the d-dimensional field theory.
∗∗∗) This form of the metric sometimes appears in the literature (see, e.g., Ref. 98)).

†) Q actually appears as a new canonical variable in the Hamiltonian formalism of R2 gravity,

as seen in the next subsection.
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Here we show that the condition (5.3) places a restriction on the possible geom-
etry by solving the Einstein equation both in the temporal and block spin gauges.
In the temporal gauge, the Einstein-Hilbert action

SE =
∫

Md+1

dd+1X
√
ĝ
[
2Λ− R̂

]
(5.8)

becomes

SE = −d(d− 1)Vd

∫
dτe−dq(τ)

(
q̇(τ)2 +

1
l2

)
, (5.9)

up to total derivatives. Here we have parametrized the cosmological constant as
Λ = −d(d − 1)/2l2, and Vd is the volume of the d-dimensional space. A general
classical solution for this action is given by

dq

dτ
=

1
l

1− Cedτ/l

1 + Cedτ/l
. (C ≥ 0) (5.10)

This shows that the geometry with a non-vanishing, finite C (C �= 0 or ∞) cannot
be described in the block spin gauge, since q̇ vanishes at τ = −(l/d) lnC, violating
the condition (5.3). In fact, in the block spin gauge (5.4), the action (5.8) becomes

SE = −d(d− 1)Vd

∫
dte−dt

(
1
l2Q

+Q

)
, (5.11)

which readily gives the classical solution as

Q(t) =
1
l
. (> 0) (5.12)

This actually reproduces only the AdS solution among the possible classical solutions
obtained in the temporal gauge.

Next, we consider a pure R2 gravity theory in a (d + 1)-dimensional manifold
Md+1 with boundary Σd. The action is generally given by

S =
∫

Md+1

dd+1X
√
ĝ
(
2Λ− R̂− aR̂2 − bR̂2

µν − cR̂2
µνρσ

)
+
∫

Σd

ddx
√
g
(
2K + x1RK + x2RijK

ij + x3K
3 + x4KK

2
ij + x5K

3
ij

)
, (5.13)

with some given constants a, b and c. Here Xµ = (xi, t) (i = 1, · · · , d) and we set
the boundary at t = t0. Kij and Rijkl are the extrinsic curvature and the Riemann
tensor on Σd, respectively. The first term in the boundary terms of (5.13) is the
Gibbons-Hawking term for Einstein gravity,88) and the form of the rest of the terms
are determined by requiring that it be invariant under the diffeomorphism

Xµ → X ′µ = fµ(X), (5.14)

with the condition

f t(x, t=t0) = t0, (5.15)

Downloaded from https://academic.oup.com/ptp/article-abstract/109/4/489/1875868
by Kyoto University Library user
on 13 March 2018



532 M. Fukuma, S. Matsuura and T. Sakai

which implies that the diffeomorphism does not change the location of the boundary.
A detailed analysis of this condition is given in Appendix D.∗) (Other studies of
boundary terms in higher-derivative gravity can be found in Refs. 99) and 100).)

In the block spin gauge, the equation of motion for Q reads40)

QQ̈+
1
2
Q̇2 − dQQ̇ =

1
A

(
2Λ
Q2

+ d(d− 1)− 3BQ2

)
, (5.16)

where · = d/dt, and A and B are given by

A = 2d
(
4da+ (d+ 1)b+ 4c

)
, B =

d(d− 3)
3

(
d(d+ 1)a+ db+ 2c

)
. (5.17)

Here t runs from t0 to ∞. The classical action S is obtained by substituting into
S the classical solution Q(t) that satisfies the boundary condition Q(t0) = Q0 and
exhibits a regular behavior in the limit t → +∞. It is a function of the boundary
value, S[Q(t)] ≡ S(Q0, t0).

In the holographic RG, this classical action is interpreted as the bare action of a
d-dimensional field theory with bare coupling Q0 at the UV cutoff Λ0 = exp(−t0), as
discussed in detail in §§2 and 3. Our strategy to investigate the global structure of
the RG flow with respect to t is as follows. We first find the solution that converges
to Q=const as t→ +∞ in order to have a finite classical action. We next examine
the stability of the solution by studying a linear perturbation around it. Since
the solution Q= const gives an AdS geometry, the fluctuations of Q around it are
regarded as the motion of the higher-derivative mode in the AdS background, which
leads to a holographic RG interpretation of the higher-derivative mode.

Following the above stated strategy, we first look for AdS solutions (i.e., Q(t) =
const). By parametrizing the cosmological constant as

Λ = −d(d− 1)
2l2

+
3B
2l4

, (5.18)

the equation of motion (5.16) gives two AdS solutions,

Q2 =


1
l2

≡ 1
l21
,

d(d− 1)
3B

− 1
l2
≡ 1

l22
,

(5.19)

where the solution Q = 1/l2 exists only when B > 0.∗∗) We denote by AdS(i) (i =
1, 2) the AdS solution of radius li. We assume that we can take the limit a, b, c→ 0
smoothly, in which the system reduces to Einstein gravity on AdS of radius l = l1.
We also assume that this AdS gravity comes from the low-energy limit of a string
theory, so that its radius l1 = l should be sufficiently larger than the string length.

∗) The boundary action in (5.13), except for the first term, can be interpreted as the generating

functional of a canonical transformation that shifts the conjugate momentum of the higher-derivative

mode by a local function.
∗∗) We consider only the case Q > 0, because of the condition (5.3).
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The AdS(2) solution, if it exists, appears only when the higher-derivative terms are
taken into account. As the higher-derivative terms are thought to stem from string
excitations, their coefficients a, b and c (and hence A and B) are O(α′). Thus the
radius of AdS(2) is much smaller than that of AdS(1).

Next, we examine the perturbation of classical solutions around (5.19), writing
Q(t) as

Q(t) =
1
li

+Xi(t). (5.20)

The equation of motion (5.16) is then linearized as

Ẍi − dẊi − l2im2
iXi = 0, (5.21)

with

m2
i ≡ −

2
A

(
2Λl2i +

3B
l2i

)
. (5.22)

The general solution of (5.21) is given by a linear combination of the functions

f±i (t) ≡ exp

[(
d

2
±
√
d2

4
+ l2im

2
i

)
t

]
. (5.23)

The values l2im
2
i here can be easily calculated from (5.19) and (5.22) as

l21m
2
1 =

2
A

(
d(d− 1)l2 − 6B

)
,

l22m
2
2 = − 6B

A
· d(d− 1)l2 − 6B
d(d− 1)l2 − 3B

.

(5.24)

perturbation around AdS(1)

From (5.23) and (5.24), we see that the behavior of f±1 (t) depends on the sign of A.
For A > 0, recalling that A is O(α′), f+

1 (t) grows while f−1 (t) damps very rapidly. On
the other hand, for A < 0, the value in the square root in (5.23) becomes negative,
and thus both f±1 (t) oscillate rapidly.
perturbation around AdS(2)

We assume B > 0, because, as mentioned above, AdS(2) exists only in this region. For
A > 0, both f+

2 (t) and f−2 (t) grow exponentially, because l22m
2
2 < 0. Contrastingly,

for A < 0, f+
2 (t) grows and f−2 (t) damps exponentially.

As explained above, the solution of interest to us is the one that converges to
either AdS(1) or AdS(2) as t → +∞, satisfying the condition that Q(t) be positive
for the entire region of t [see (5.6)]. It then turns out that the classical solutions
should behave as in Figs. 4 and 5. In fact, a numerical analysis with the proper
boundary condition at t = +∞ indicates these types of behavior when the branch
f−i (t) is chosen around Q = 1/li. The result of the numerical calculation for A > 0
and B > 0 is shown in Fig. 6.
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Fig. 4. Classical solutions Q(t) for A > 0.
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There is no solution
 which coverges to 
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Fig. 5. Classical solutions Q(t) for A < 0.

Now we give a holographic RG interpretation of the above results. We first
consider the AdS(1) solution. Considering (2.27), We see that (5.21) is simply the
equation of motion of a scalar field in the AdS background of radius l with mass
squared given by

m2
1 = − 2

A

(
2Λl2 +

3B
l2

)
=

2
A

(
d(d− 1)− 6B

l2

)
. (5.25)

Thus for A > 0, the higher-derivative mode Q is interpreted as a very massive scalar
mode, and thus it is coupled to a highly irrelevant operator around the fixed point,
since its scaling dimension is given by6), 7),∗)

∆ =
d

2
+

√
d4

4
+ l2m2

1 � d. (5.26)

This can also be understood from Fig. 4, which depicts a rapid convergence of the
RG flow to the fixed point Q(t) = 1/l. By contrast, for A < 0, the mass squared
of the higher-derivative mode is far below the lower bound for a scalar mode in the

∗) The exponent of the solution f− in (5.23) is equal to d−∆.
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Fig. 6. Results of the numerical calculations of classical solutions Q(τ) for the values d = 4, A = 0.1,

B = 0.1 and l = 1 (1/l1 = 1 and 1/l2 = 6.24).

AdS(1) geometry, −d2/4l2,7) and the scaling dimension becomes complex. Thus, in
this case, the higher-derivative mode causes the AdS(1) geometry to become unstable,
and a holographic RG interpretation cannot be given to such a solution.

We note here that, to obtain the original CFT dual to AdS(1) as the continuum
limit, t → −∞, is taken we must fix the higher-derivative mode at the stationary
point, Q = 1/l1. Roughly speaking, this is realized by tuning the boundary value
of the conjugate momentum of the higher-derivative mode to zero. In the next
subsection, we adopt this boundary condition to derive the flow equation for the R2

gravity theory.
We next consider AdS(2). For A > 0 and B > 0 in Fig. 4, it can be seen that

classical trajectories begin from AdS(2) and go to AdS(1). In the context of the
holographic RG, this means that the AdS(2) solution Q(t) = 1/l2 corresponds to a
multicritical point in the phase diagram of the boundary field theory. From (5.19)
and (5.22), the mass squared of the mode Q around AdS(2) can be calculated as

m2
2 = − 2

A

(
d(d− 1)− 6B

l2

)
, (5.27)

and if this mass squared is above the unitarity bound,

l22m
2
2 = −6B

A

d(d− 1)l2 − 6B
d(d− 1)l2 − 3B

> −d
2

4
, (5.28)

the scaling dimension of the corresponding operator is given by

∆ =
d

2
+

√
d2

4
+ l22m

2
2
∼= d

2
+

√
d2

4
− 6B

A
. (5.29)
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For example, if we consider the case in which d = 4, a = b = 0 and c > 0,∗) we have
A = 32c > 0 and B = 8c/3 > 0, and thus the scaling dimension of Q around AdS(2)

is found to be ∆ ∼= 2+
√

7/2. It would be interesting to investigate which conformal
field theory describes this fixed point.

We conclude this subsection with a comment on the c-theorem. Since the trace of
the extrinsic curvature, K̂, is given by K̂ ∼ Q in the block spin gauge, we see from
Eq. (2.72) [or Eq. (3.80)] that the c-function16) is given by c(Q) = Q1−d. Figure
3 shows that it increases when A > 0, but this does not contradict the assertion
of the c-theorem, because in this case, the kinetic term of Q(t) in the bulk action
has a negative sign. This suggests that the obtained multicritical point defines a
nonunitary theory, like a Lee-Yang edge singularity.

5.2. Hamilton-Jacobi equation for a higher-derivative Lagrangian

In the previous subsection, we pointed out that boundary value of the higher-
derivative mode must be at a stationary point in order to implement the continuum
limit of the boundary field theory. To clarify this point further, in this subsection,
we give a detailed analysis of the boundary conditions for higher-derivative modes
that incorporate the idea of the holographic RG. We here consider a point particle
system, and extend our analysis to systems of higher-derivative gravity in the next
subsection.

A dynamical system with the action∗∗)

S
[
q(τ)

]
=
∫ t

t′
dτ L (q, q̇, q̈) (5.30)

is described by the following equation of motion, which is a fourth-order differential
equation in time τ :

d2

dτ2

(
∂L

∂q̈

)
− d

dτ

(
∂L

∂q̇

)
+
∂L

∂q
= 0. (5.31)

This implies that we need four boundary conditions to determine the classical solu-
tion uniquely. Possible boundary conditions can be found most easily by rewriting
the system into the Hamiltonian formalism with an extra set of canonical variables
(Q,P ) which represents q̇ and its canonical momentum.

The Lagrangian in (5.30) is classically equivalent to

L′(q,Q, Q̇; p) = L
(
q,Q, Q̇

)
+ p (q̇ −Q) , (5.32)

where p is a Lagrange multiplier. We then carry out a Legendre transformation from
(Q, Q̇) to (Q,P ) through

P =
∂L′

∂Q̇

(
q,Q, Q̇; p

)
. (5.33)

∗) This includes IIB supergravity on AdS5 ×S5/�2, which is AdS/CFT dual to N = 2 USp(N)

supersymmetric gauge theory.41), 42)

∗∗) This t is the coordinate value of the boundary and has no relation to the time variable in the

block spin gauge.

Downloaded from https://academic.oup.com/ptp/article-abstract/109/4/489/1875868
by Kyoto University Library user
on 13 March 2018



Holographic Renormalization Group 537

Assuming that this equation can be solved with respect to Q̇
[
≡ Q̇(q,Q;P )

]
, we

introduce the Hamiltonian

H(q,Q; p, P ) ≡ pQ+ PQ̇(q,Q; P )− L
(
q,Q, Q̇(q,Q; P )

)
, (5.34)

and rewrite the action (5.30) in the first-order form

S[q,Q; p, P ] =
∫ t

t′
dτ

[
p q̇ + PQ̇−H(q,Q; p, P )

]
, (5.35)

where Q̇ is now the time-derivative of the independent variable Q. The variation of
the action (5.35) reads

δS =
∫ t

t′
dτ

[
δp

(
q̇ − ∂H

∂p

)
+ δP

(
Q̇− ∂H

∂P

)
− δq

(
ṗ+

∂H

∂q

)
− δQ

(
Ṗ +

∂H

∂Q

)]
+ (p δq + P δQ)

∣∣∣t
t′
, (5.36)

and thus the equation of motion consists of the usual Hamilton equations,

q̇ =
∂H

∂p
, Q̇ =

∂H

∂P
, ṗ = −∂H

∂q
, Ṗ = −∂H

∂Q
, (5.37)

plus the following constraints, which must hold at the boundaries, τ = t and τ = t′:

p δq + P δQ = 0 . (τ = t, t′) (5.38)

The latter requirement, (5.38), can be satisfied by imposing either Dirichlet boundary
conditions,

Dirichlet : δq = 0 , δQ = 0 , (τ = t, t′) (5.39)

or Neumann boundary conditions,

Neumann : p = 0 , P = 0 , (τ = t, t′) (5.40)

for each variable q and Q. If, for example, we take the classical solution (q,Q, p, P )
that satisfies the Dirichlet boundary conditions for all (q,Q) with specified boundary
values as

q(τ=t) = q, Q(τ=t) = Q, and q(τ=t′) = q′, Q(τ=t′) = Q′ , (5.41)

then after plugging the solution into the action, we obtain the classical action that
is a function of these boundary values,

S
(
t, q,Q; t′, q′, Q′) = S

[
q(τ), Q(τ); p(τ), P (τ)

]
. (5.42)
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However, this classical action is not relevant to us in the context of the AdS/CFT
correspondence, since we must further set the boundary value Q of the higher-
derivative mode to a stationary point in order to implement the continuum limit
of the boundary field theory. This requirement is equivalent to the condition that
the higher-derivative mode has vanishing momentum. We are thus led to use the
mixed boundary conditions:39)

δq = 0 and P = 0 ; (τ = t, t′) (5.43)

that is, we impose Dirichlet boundary conditions for q and Neumann boundary
conditions for Q. In this case, the classical action (called the reduced classical action)
becomes a function only of the boundary values q and q′:

S = S(t, q; t′, q′) . (5.44)

If we further demand regular behavior in the limit t → +∞, the classical action
depends only on the initial value. The same argument can be applied to dynamical
systems of (d+ 1)-dimensional fields with higher-derivative interactions of arbitrary
order.39) Furthermore, the discussion in the previous subsection shows that higher-
derivative modes should have stationary values in order to obtain a finite result in
approaching the boundary. This supports our expectation that for any bulk system
of gravity with higher-derivative interactions, if we require regularity inside the bulk
and finiteness near the boundary, the Euclidean time development is completely de-
termined by only the boundary values of the original fields. That is, the holographic
nature still exists for higher-derivative systems.

Now we derive an equation that determines the reduced classical action (5.44).
This can be derived in two ways, and we first explain the more complicated (but
straightforward) way, since this gives us a deeper understanding of the mathematical
structure. To this end, we first change the polarization of the system by performing
the canonical transformation∗)

S → Ŝ ≡ S −
∫ t

t′
d(PQ) . (5.45)

Although the Hamilton equation does not change under this transformation, the
boundary conditions at τ = t and τ = t′ become

p δq −QδP = 0 . (τ = t, t′) (5.46)

These boundary conditions can be satisfied by imposing the Dirichlet boundary
conditions for both q and P :

q(τ=t) = q, P (τ=t) = P , and q(τ=t′) = q′, P (τ=t′) = P ′ . (5.47)
∗) The following procedure corresponds to a change of representation from the Q-basis to the

P -basis in the WKB approximation:

Ψ(t, q,Q) = eiS(t,q,Q)/� → �Ψ(t, q, P ) = ei�S(t,q,P )/� ≡
�
dQ e−iPQ/� Ψ(t, q, Q) .
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Substituting this solution into Ŝ, we obtain a new classical action that is a function
of these boundary values,

Ŝ
(
t, q, P ; t′, q′, P ′) = Ŝ

[
q(τ), Q(τ); p(τ), P (τ)

]
. (5.48)

By taking the variation of Ŝ and using the equation of motion, we can easily show
that the new classical action Ŝ obeys the Hamilton-Jacobi equations,

∂Ŝ

∂t
= −H

(
q,− ∂Ŝ

∂P
; +

∂Ŝ

∂q
, P

)
,

∂Ŝ

∂t′
= +H

(
q′,+

∂Ŝ

∂P ′ ; −
∂Ŝ

∂q′
, P ′

)
. (5.49)

The reduced classical action S(t, q; t′, q′) is then obtained by setting P =0 in Ŝ:

S
(
t, q; t′, q′

)
= Ŝ

(
t, q, P =0; t′, q′, P ′=0

)
. (5.50)

Note that the generating function PQ vanishes at the boundary when we set P =0.
In Appendix E, we briefly describe how the Hamilton-Jacobi equation (5.49) is solved
for a system of a point particle.

In solving the full Hamilton-Jacobi equation, we must impose the regularity
condition for Ŝ(t, q, P ) in the limit c → 0 when P = 0. This is because the higher-
derivative term is regarded as a perturbation and the reduced classical action must
have a finite limit for c→0. One can see that the Hamilton-Jacobi equation reduces
to an equation involving the reduced action. We call this a Hamilton-Jacobi-like
equation. However, once the regularity condition is imposed, we have an alternative
way to derive the Hamilton-Jacobi-like equation with greater ease. In fact, for any
Lagrangian of the form

L(qi, q̇i, q̈i) = L0(qi, q̇i) + cL1(qi, q̇i, q̈i) , (5.51)

one can prove the following theorem, assuming that the classical solution can be
expanded around c=0.∗)

Theorem39)

Let H0(q, p) be the Hamiltonian corresponding to L0(q, q̇). Then the reduced classical
∗) As long as we think of L1 as a perturbation, any classical solution can be expanded as

q̄(τ) = q̄0(τ) + c q̄1(τ) + O(c2) .

Here q̄0 is the classical solution for L0, and q̄1 is obtained by solving a second-order differential

equation. Note that we can, in particular, enforce the boundary conditions

q̄0(τ=t) = q, q̄1(τ=t) = 0 and q̄0(τ=t′) = q′, q̄1(τ=t′) = 0 .

In this case, due to the equation of motion for q̄0(τ) , the classical action is simply given by

S(q, t; q′, t′) =

� t

t′
dτ

�
L0(q̄0, ˙̄q0) + cL1(q̄0, ˙̄q0, ¨̄q0)

�
+ O(c2) .

This corresponds to the classical action considered in Ref. 42).
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action S(t, q; t′, q′) = S0(t, q; t′, q′) + c S1(t, q; t′, q′) + O(c2) satisfies the following
equation up to O(c2):

−∂S
∂t

= H̃(q, p), pi =
∂S

∂qi
, and +

∂S

∂t′
= H̃(q′, p′), p′i = − ∂S

∂q′ i
, (5.52)

where

H̃(q, p) ≡ H0(q, p)− cL1(q, f1(q, p), f2(q, p)),

f i
1(q, p) ≡

{
H0, q

i
}

=
∂H0

∂pi
,

f i
2(q, p) ≡

{
H0,

{
H0, q

i
}}

=
∂2H0

∂pi∂qj

∂H0

∂pj
− ∂2H0

∂pi∂pj

∂H0

∂qj
, (5.53)

where {F (q, p), G(q, p)} ≡ ∂F
∂pi

∂G
∂qi − ∂G

∂pi

∂F
∂qi . We call H̃ a pseudo-Hamiltonian. A

proof of this theorem is given in Appendix F. One can see easily that this correctly
reproduces (E.11) and (E.12) for the Lagrangian given in (E.1)–(E.3).

5.3. Application to higher-derivative gravity

Here we apply the formalism developed in the previous subsection to a system of
higher-derivative gravity with the action (5.13). We first derive the Hamilton-Jacobi-
like equation of the system. We also show that the coefficients x1, · · · , x5 must obey
some relations so that we can impose the mixed boundary condition consistently.

The action (5.13) is expressed in terms of the ADM parametrization as

S =
∫ ∞

τ0

dτ

∫
ddx

√
ĝ
[
L0

(
ĝ, K̂; N, λ̂

)
+ L1

(
ĝ, K̂,

˙̂
K; N̂ , λ̂

)]
, (5.54)

where∗)

1

N̂
L0 = 2Λ− R̂+ K̂2

ij − K̂2, (5.55)

1

N̂
L1 = −aR̂2 − bR̂2

ij − cR̂2
ijkl +

[
(−6a+ 2x1)K̂2

ij + (2a− x1)K̂2
]
R̂

+
[
− 2(2b+ 4c− x2)(K̂2)ij + (2b+ 2x1 − x2)K̂K̂ij

]
R̂ij

+2(6c+ x2)K̂ikK̂jlR̂
ijkl

− 2(2b+ c− 3x5)K̂4
ij + (4b+ 4x4 − x5)K̂K̂3

ij

− (9a+ b+ 2c− 2x4)
(
K̂2

ij

)2
+ (6a− b+ 6x3 − x4)K̂2K̂2

ij

− (a+ x3)K̂4

− (4b+ 2x1 − x2)K̂ij∇̂i∇̂jK̂ + 2(b− 4c+ x2)K̂ij∇̂j∇̂kK̂
ki

+(8c+ x2)K̂ij∇̂2K̂ij + 2(b+ x1)K̂∇̂2K̂

∗) We here use the following abbreviated notation: �Kn
ij ≡ �Ki2

i1
�Ki3

i2
· · · �Ki1

in
, ( �K2)ij ≡ �Kik

�Kk
j .
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−
[
(4a+ b)ĝij ĝkl + (b+ 4c)ĝikĝjl

]
L̂ijL̂kl

+
[{

(4a− x1)R̂+ (12a+ 2b− x4)K̂2
kl − (4a+ 3x3)K̂2

}
ĝij

+ (2b− x2)R̂ij + (4b+ 8c− 3x5)(K̂2)ij − 2(b+ x4)K̂K̂ij

]
L̂ij , (5.56)

with
K̂ij =

1

2N̂

(
˙̂gij − ∇̂iλ̂j − ∇̂jλ̂i

)
(5.57)

and

L̂ij =
1

N̂

( ˙̂
Kij − λ̂k ∇̂kK̂ij − ∇̂iλ̂

k K̂kj − ∇̂jλ̂
k K̂ik + ∇̂i∇̂jN̂

)
. (5.58)

For details of the ADM decomposition, see Appendix C.
We now derive the Hamilton-Jacobi-like equation of R2 gravity by using (5.52)

and (5.53) in the above theorem. We first rewrite the Lagrangian density of zeroth
order, L0, into the first-order form

L0 → π̂ij ˙̂gij −H0 , (5.59)

where the zeroth order Hamiltonian density H0 is given by

H0

(
ĝ, π̂; N̂ , λ̂

)
= N̂

(
π̂2

ij −
1

d− 1
π̂2 − 2Λ+ R̂

)
− 2λ̂i ∇̂j π̂

ij . (5.60)

Then, by using the above theorem, the pseudo-Hamiltonian density is given by

H̃(
ĝ, π̂; N̂ , λ̂

)
= H0

(
ĝ, π̂; N̂ , λ̂

)−L1

(
ĝ, K̂0(g, π), K̂1(ĝ, π̂); N̂ , λ̂

)
. (5.61)

Here K̂0
ij(ĝ, π̂) is obtained by replacing ˙̂gij(x) in (5.57) with

{∫
ddy

√
ĝH0(y), ĝij(x)

}
,

and it is calculated as

K̂0
ij = π̂ij − 1

d− 1
π̂ ĝij . (5.62)

Also, use of K̂1
ij ≡

{∫
ddy

√
ĝH0(y), K̂0

ij

}
is found to be equivalent to replacing L̂ij

in L1 by

L̂0
ij = − 1

2(d− 1)2
[
2(d− 1)Λ+ (d− 1)R̂+ (d− 1)π̂2

kl − 3π̂2
]
ĝij

+ R̂ij + 2(π̂2)ij − 3
d− 1

π̂π̂ij . (5.63)

Using Eqs. (5.59)–(5.63), we obtain the following Hamilton-Jacobi-like equation for
the reduced classical action:39)

0=
∫
ddx
√
g H̃ (

g(x), π(x);N(x), λi(x)
)

=
∫
ddx
√
g
[
N(x) H̃(g(x), π(x)) + λi(x) P̃i(g(x), π(x))

]
, (5.64)
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πij(x) =
−1√
g

δS

δgij(x)
, (5.65)

where∗) gij and πij are the boundary values of ĝij and π̂ij , respectively, and

H̃(g, π) ≡ π2
ij −

1
d− 1

π2 − 2Λ+R

+α1 π
4
ij + α2 ππ

3
ij + α3

(
π2

ij

)2 + α4 π
2π2

ij + α5 π
4

+β1 Λπ
2
ij + β2 Λπ

2 + β3Rπ
2
ij + β4Rπ

2

+β5Rij(π2)ij + β6Rij ππ
ij + β7Rijkl π

ikπjl

+ γ1 Λ
2 + γ2 ΛR+ γ3R

2 + γ4R
2
ij + γ5R

2
ijkl , (5.66)

P̃i(g, π) ≡ −2∇jπij , (5.67)

with

α1 = 2c, α2 =
2x5

(d− 1)
,

α3 =
1

4(d− 1)2
[
4a+ (d2 − 3d+ 4)b+ 4(d− 2)(2d− 3)c

− 2(d− 1)(dx4 + 3x5)
]
,

α4 =
1

2(d− 1)3
[−4a− (d2 − 3d+ 4)b− 4(2d2 − 5d+ 4)c

− 3dx3 + (2d2 − 7d+ 2)x4 − 3(2d− 1)x5

]
,

α5 =
1

4(d− 1)4
[
4a+ (d2 − 3d+ 4)b+ 4(2d2 − 5d+ 4)c

+ 2(3d− 4)x3 − 2(d2 − 6d+ 6)x4 + 2(5d− 6)x5

]
, (5.68)

β1 =
1

(d− 1)2
[
4da− d(d− 3)b− 4(d− 2)c− (d− 1)(dx4 + 3x5)

]
,

β2 =
1

(d− 1)3
[
− 4da+ d(d− 3)b+ 4(d− 2)c

− 3dx3 + (d2 − 2d− 2)x4 + 3(d− 2)x5

]
,

β3 =
1

2(d− 1)2
[
4a+ (d2 − 3d+ 4)b− 4(3d− 4)c

− (d− 1)(dx1 + x2 − (d− 2)x4 + 3x5)
]
,

β4 =
1

2(d− 1)3
[
− 4a− (d2 − 3d+ 4)b+ 4(d− 2)c

∗) We have ignored those terms in �H that contain the covariant derivative ∇. This is justified

when we consider the holographic Weyl anomaly in four dimensions. Actually, it turns out that

they give only total derivative terms in the Weyl anomaly.
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− (d− 1)(d− 4)x1 − 3(d− 1)x2 + 3(d− 2)x3

− (d2 − 8d+ 10)x4 + 3(3d− 4)x5

]
,

β5 = 16c+ 3x5, β6 =
2(x1 + 2x2 − x4 − 3x5)

d− 1
, β7 = −12c− 2x2, (5.69)

γ1 =
d

(d− 1)2
[
4da+ (d+ 1)b+ 4c

]
,

γ2 =
1

(d− 1)2
[
4da− d(d− 3)b− 4(d− 2)c− (d− 1)(dx1 + x2)

]
,

γ3 =
1

4(d− 1)2
[
4a+ (d2 − 3d+ 4)b− 4(3d− 4)c+ 2(d− 1)((d− 2)x1 − x2)

]
,

γ4 = 4c+ x2, γ5 = c. (5.70)

Here Rijkl is the Riemann tensor composed of the metric tensor of the d-dimensional
boundary τ = τ0. Since the (true) classical action Ŝ[g(x), P (x)] is independent of
the choice of N and λi (and thus, so is S[g(x)]), from Eqs. (5.64)–(5.67) we finally
obtain the following equation, which determines the reduced classical action:

H̃(gij(x), πij(x)
)

= 0 , P̃i

(
gij(x), πij(x)

)
= 0 , πij(x) =

−1√
g

δS

δgij(x)
. (5.71)

We make a few comments on the possible forms of the boundary action Sb and
the cosmological constant Λ. As discussed above, in order that the boundary field
theory has a continuum limit, the geometry must be asymptotically AdS:

ds2 → dτ2 + e−2τ/lηij(x)dxidxj for τ → −∞. (5.72)

This should be consistent with our boundary condition P ij = 0. Explicitly investi-
gating the equations of motion derived from the action (5.54), we can show that this
compatibility gives rise to the relation

d2 x3 + d x4 + x5 = −4
3

(
d(d+ 1)a+ db+ 2c

)
. (5.73)

It can also be shown that the asymptotic behavior (5.72) determines the cosmological
constant Λ as

Λ = −d(d− 1)
2l2

+
d(d− 3)

2l4
[
d(d+ 1)a+ db+ 2c

]
. (5.74)

5.4. Solution to the flow equation and the Weyl anomaly

We first note that the basic equation (5.71) can be rewritten as a flow equation
of the form39)

{S, S}+ {S, S, S, S} = Ld, (5.75)
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with

(
√
g)2 {S, S} ≡

[(
δS

δgij

)2

− 1
d− 1

(
gij

δS

δgij

)2

+ β1 Λ

(
δS

δgij

)2

+ β2 Λ

(
gij

δS

δgij

)2

+ β3R

(
δS

δgij

)2

+ β4R

(
gij

δS

δgij

)2

+ β5Rijgkl
δS

δgik

δS

δgjl

+ β6Rij
δS

δgij
gkl

δS

δgkl
+ β7Rijkl

δS

δgik

δS

δgjl

]
, (5.76)

(
√
g)4 {S, S, S, S} ≡

α1

(
δS

δgij

)4

+ α2

(
gkl

δS

δgkl

)(
δS

δgij

)3

+ α3

((
δS

δgij

)2
)2

+ α4

(
gkl

δS

δgkl

)2 ( δS

δgij

)2

+ α5

(
gij

δS

δgij

)4
]
, (5.77)

Ld ≡ 2Λ−R− γ1Λ
2 − γ2ΛR− γ3R

2 − γ4R
2
ij − γ5R

2
ijkl. (5.78)

Then, as in §3, we decompose the reduced classical action into a local part and a
non-local part as

1
2κ2

d+1

S[g(x)] =
1

2κ2
d+1

Sloc[g(x)]− Γ [g(x)] . (5.79)

Following the prescription given in §3, we first determine the weight 0 and weight 2
parts of the Sloc,

[Lloc]0 = W , [Lloc]2 = −ΦR, (5.80)

W = − 2(d− 1)
l

+
1
l3

[
− 4d(d+ 1)a− 4db− 8c+ d(d2x3 + dx4 + x5)

]
,

Φ =
l

d− 2
− 2

(d− 1)(d− 2) l

[
d(d+ 1)a+ d b+ 2c

]
+

1
l

[
d x1 + x2 +

3(d2x3 + d x4 + x5)
2(d− 1)

]
, (5.81)

where (5.74) has been used.
For d = 4, the weight 4 part of the flow equation is an equation obeyed by the

generating functional Γ ,

2
[
{Sloc, Γ}

]
4
+ 4

[
{Sloc, Sloc, Sloc, Γ}

]
4

=
1

2κ2
5

([
{Sloc, Sloc}

]
4
+
[
{Sloc, Sloc, Sloc, Sloc}

]
4

+ γ3R
2 + γ4R

2
ij + γ5R

2
ijkl

)
. (5.82)
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From this, we can evaluate the trace of the stress tensor for the boundary field theory,

〈T i
i 〉g ≡

2√
g
gij

δΓ

δgij
. (5.83)

In fact, using the values in (5.81), we can show that the trace is given by39)

〈T i
i 〉g =

2l3

2κ2
5

[(−1
24

+
5a
3l2

+
b

3l2
+

c

3l2

)
R2 +

(
1
8
− 5a
l2
− b

l2
− 3c

2l2

)
R2

ij

+
c

2l2
R2

ijkl

]
. (5.84)

This correctly reproduces the result∗) obtained in Refs. 42) and 101), where the Weyl
anomaly was calculated by perturbatively solving the equation of motion near the
boundary and considering the logarithmically divergent term, as in Ref. 33).

For the case of N =2 superconformal USp(N) gauge theory in four dimensions,
we choose 2κ2

5 such that

1
2κ2

5

=
Vol(S5/Z2) (radius of S5/Z2)5

2κ2
, (5.85)

where 2κ2 = (2π)7g2
s is the ten-dimensional Newton constant,102) and the radius

of S5/Z2 could be set to (8πgsN)1/4.43) In this relation, we note the replacement
N → 2N , as compared to the AdS5×S5 case. This is because here we must quantize
the RR 5-form flux over S5/Z2 instead of over S5.41) For the AdS5 radius l, we can
also set l = (8πgsN)1/4. Setting the values a = b = 0 and c/2l2 = 1/32N+O(1/N2),
as determined in Ref. 42), we find that the Weyl anomaly (5.84) takes the form

〈T i
i 〉g =

N2

2π2

[(−1
24

+
1

48N

)
R2 +

(
1
8
− 3

32N

)
R2

ij +
1

32N
R2

ijkl

]
+O(N0) .

(5.86)

This is different from the field theoretical result,36)

〈T i
i 〉g =

N2

2π2

[(−1
24
− 1

32N

)
R2 +

(
1
8

+
1

16N

)
R2

ij +
1

32N
R2

ijkl

]
+O(N0) .

(5.87)

∗) The authors of Refs. 42) and 101) parametrized the cosmological constant Λ as

Λ = −d(d− 1)

2L2
,

so that their L is related to our l, the radius of asymptotic AdS, as

l2 = L2

	
1 − (d− 3)

(d− 1)L2

�
d(d+ 1)a+ db+ 2c

�

.
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As was pointed out in Ref. 42), the discrepancy here could be accounted for by
possible corrections to the radius l as well as to the five-dimensional Newton constant.
In fact, if these corrections are

l = (8πgsN)1/4

(
1 +

ξ

N

)
,

1
2κ2

5

=
Vol(S5/Z2) (8πgsN)5/4

2κ2

(
1 +

η

N

)
, (5.88)

then the field theoretical result is correctly reproduced for 3ξ + η = 5/4.

§6. Conclusion

In this article, we have investigated various aspects of the AdS/CFT correspon-
dence and the holographic renormalization group (RG).

In §2, we gave a review of the basic idea of the AdS/CFT correspondence and
the holographic RG, and calculated the scaling dimensions of the scaling operators
that are dual to bulk scalar fields in the AdS background. As a typical example
of the AdS/CFT correspondence, we considered the duality between the N = 4
SU(N) SYM4 and Type IIB supergravity on AdS5 × S5. As a consistency check
for the duality, we showed the one-to-one correspondence between the short chiral
primary multiplets of the CFT and the Kaluza-Klein spectra of supergravity. We
also demonstrated the holographic description of RG flows that interpolate between
a UV and an IR fixed point by considering the example of an RG flow from the
N = 4 SU(N) SYM4 to the N = 1 Leigh-Strassler fixed point. The “c-function”
was defined from the viewpoint of the holographic RG and was shown to obey an
analog of Zamolodchikov’s c-theorem.

In §3, we explored the formulation of the holographic RG based on the Hamilton-
Jacobi equation of bulk gravity given by de Boer, Verlinde and Verlinde. A sys-
tematic prescription for calculating the Weyl anomaly of the boundary CFT was
proposed. We also derived the Callan-Symanzik equation for n-point functions in
the boundary field theory. We calculated the scaling dimensions of scaling operators
from the coefficients of the RG beta functions and showed that they are in precise
agreement with previous results for the AdS/CFT correspondence. We explained
how we take the continuum limit of the boundary field theory and concluded that
the holographic RG describes the so-called renormalized trajectory.

We discussed the holographic RG in the framework of the noncritical string
theory in §4. In the holographic RG, we must introduce an IR cutoff to regularize
the infinite volume of the bulk space-time, and the (Euclidean) time development of
fields in the gravity theory is required to be regular inside the bulk. We demonstrated
that this basic requirement in the holographic RG can be understood naturally in
the context of noncritical strings.

In §5, the holographic RG for R2 gravity was investigated. In general, when
we work in the Hamiltonian formalism, we must introduce new variables which we
call the “higher-derivative modes”. We introduced a parametrization of the metric
in which the Euclidean time evolution of the system can be directly interpreted as
an RG transformation of the boundary field theory. We examined classical solutions
of the system under this parametrization. We found that the stability of an AdS
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solution depends on the coefficients of the curvature squared terms, and the fluc-
tuation of the higher-derivative mode around a stable AdS solution is interpreted
as a very massive scalar field in the background of the AdS space-time. In the
AdS/CFT correspondence, this means that the fluctuation of the higher-derivative
mode corresponds to a highly irrelevant operator of the boundary CFT. Thus, we
must fix the boundary values of higher-derivative modes at stationary values in or-
der to implement the continuum limit of the boundary field theory. We argued that
the condition is automatically satisfied by adopting the mixed boundary condition,
that is, the Dirichlet boundary condition for the usual variables and the Neumann
boundary condition for the higher-derivative modes. We also discussed that when
the coefficients of the curvature squared terms satisfy an appropriate condition, there
appears another conformal fixed point in the parameter space of the boundary field
theories.

Using the prescription with such mixed boundary conditions, we derived a
Hamilton-Jacobi-like equation for R2 gravity that describes RG flows of the dual field
theory. As an application, we calculated the 1/N correction of the Weyl anomaly
of N = 2 USp(N) supersymmetric gauge theory in four dimensions. We found that
the result is consistent with that of a field theoretical calculation.

We here make a comment on field redefinitions of bulk gravity in the context
of the AdS/CFT correspondence.103) The AdS/CFT correspondence should have
the property that any physical quantity of the d-dimensional boundary field theory
calculated from (d+1)-dimensional bulk gravity is invariant under field redefinitions
of the fields in ten-dimensional supergravity. This is because ten-dimensional classi-
cal supergravity represents the on-shell structure of massless modes of superstrings,
and the on-shell amplitudes (more precisely, the residues of one-particle poles of cor-
relation functions for external momenta) should be invariant under redefinitions of
fields.104) (See also Ref. 105) for a study in the context of string theory.)∗)

As an example, let us show103) that the holographic Weyl anomaly of the N = 4
SU(N) SYM4 does not change under the field redefinition of the ten-dimensional
metric of the form

GMN → G′
MN ≡ GMN + αRGMN + βRMN . (6.1)

The bosonic part of the ten-dimensional Type IIB supergravity action is given by

S10 =
1

2κ2
10

∫
d10X

√−G

[
e−2φ

(
R + 4 |dφ|2

)
− 1

4
|F5|2

]
. (6.2)

In the context of the AdS5/CFT4 correspondence, we are interested in the AdS5×S5

solution that is realized as the near horizon limit of the black 3-brane solution,

ds2 =
l2

r2
dr2 +

r2

l2
ηij dx

idxj + l2 dΩ2
5 ,

(F5)r0123 = − 4
gs

r3

l4
, (F5)y1···y5 =

4
gs
l4,

∗) See also Ref. 106) for recent discussion of scheme independence in the renormalization group

structure.
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eφ = gs. (6.3)

Here, dΩ2
5 is the metric of the unit five-sphere, and i, j ∈ {0, 1, 2, 3}. In this case,

AdS5 and S5 have the same radius, l, whose value is determined by the D3-brane
charge as

l = (4πgsN)1/4, (6.4)

where N is the number of coincident D3-branes, and we have set the string length ls
to 1. The action of the effective five-dimensional gravity is obtained by compactifying
the ten-dimensional action (6.2) on S5 as

S5 =
π3l5

2κ2
10g

2
s

∫
d5x

√
−ĝ

(
12
l2

+ R̂

)
. (6.5)

The holographic Weyl anomaly calculated from this action is given in (3.64). It
reproduces the Weyl anomaly of the N = 4 SU(N) SYM4, as mentioned in §3.3.

On the other hand, if we make the field redefinition (6.1), the new ten-dimensional
gravity action is obtained as

S̃10[GMN ] ≡ S10[GMN + αRGMN + βRMN ]

=
1

2κ2
10

∫
d10X

√−G

{
e−2φ

[
R + 4 |dφ|2 + aR2 + bR2

MN

+ aR |dφ|2 + bRMN∂Mφ∂Nφ

]
− 1

4
|F5|2 +

b

8
R |F5|2 − b

4
1
4!

RMN (F5)MPQRS(F5)N
PQRS

}
. (6.6)

Here a and b are defined as

a = 4α+
1
2
β, b = −β. (6.7)

The AdS5 × S5 solution for the action (6.6) is given by

ds2 =
(

1− 8b
l′2

)
l′2

r2
dr2 +

r2

l′2
ηij dx

idxj + l′2dΩ2
5 ,

(F5)r0123 =
4
gs

(
1 +

8b
l′2

)
r3

l′4
, (F5)y1···y5 =

4
gs

(
1− 8b

l′2

)
l′4,

eφ = gs, (6.8)

where the new radius of S5 is related to l by

l′ =
(

1 +
2b
l2

)
l. (6.9)
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Note that after the field redefinition, the radius of S5, l′, differs from that of AdS5,
L, which is expressed as

L ≡
(

1− 4b
l′2

)
l′ =

(
1− 2b

l2

)
l. (6.10)

From the solution (6.8), we compactify ten-dimensional spacetime on S5 of radius
l′. Then, the (dimensionally reduced) five-dimensional action is obtained as

S̃5 =
π3l′5

2κ2
10g

2
s

(
1 +

40a+ 4b
l′2

)
×
∫
d5x

√
−ĝ

[(
12
l′2
− 80a− 80b

l′4

)
+ R̂+ aR̂2 + bR̂2

µν

]
. (6.11)

This action has an AdS5 solution with radius
(
1− 4b/l′2

)
l′, which is consistent with

the AdS5×S5 solution (6.8). The corresponding Weyl anomaly is calculated by using
the formula (5.84) as

〈T i
i 〉 =

2L3

2κ2
5

(
1− 40a+ 8b

l′2

)(
− 1

24
R2 +

1
8
R2

ij

)
=

2π3l′8

2κ2
10g

2
s

(
1− 16b

l′2

)(
− 1

24
R2 +

1
8
R2

ij

)
=

2π3l8

2κ2
10g

2
s

(
− 1

24
R2 +

1
8
R2

ij

)
=
N2

4π2

(
− 1

24
R2 +

1
8
R2

ij

)
. (6.12)

This is identical to the result (3.64).
We conclude this article by making a few comments on possible future directions

in the AdS/CFT correspondence and the holographic RG.
When we start with AdSd+1 gravity with d ≥ 4, the dual d-dimensional con-

formal field theory is in general at a non-trivial fixed point, because operators of
dual CFT coupled to bulk modes have non-trivial anomalous dimensions. It is thus
natural to conjecture that any CFT in higher dimensions that has an AdS dual is a
non-abelian gauge theory.∗) In fact, all the known examples of the AdS/CFT corre-
spondence involve non-abelian gauge theories. Furthermore, a non-trivial fixed point
for d ≥ 4 seems unlikely besides non-abelian gauge theories, because of triviality. It
would be interesting to study the conjecture in more detail. In particular, it would
be interesting to investigate if this information concerning the gauge symmetry of
the boundary theory can be obtained only from bulk supergravity.

Equation (3.30) seems to imply some hidden symmetry in the bulk. In fact,
the form of (3.30) is reminiscent of a scalar potential of supergravity with W (φ)

∗) The situation is different when d ≤ 3. Actually, an AdS4 dual of the the critical O(N) vector

model in three dimensions is proposed in Ref. 107).
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interpreted as a “superpotential”. Moreover, as pointed out in Ref. 16), holographic
RG flows can be described by first-order differential equations via the superpotential.
These facts suggest that bulk gravity may have a hidden supersymmetry or some
novel symmetry.

Showing the gauge/string duality from the loop equations of the Yang-Mills
theory108), 109) is an old but fascinating idea.110)–116) A strong coupling analysis in
lattice gauge theory3), 117) has shown that elementary excitations in gauge theory are
strings of color flux, and the interaction of strings would be suppressed in the large
N limit, as mentioned in the Introduction. It is thus reasonable to believe that we
could describe a gauge theory in terms of strings of color flux. In this framework, a
gauge theory would be described by the Wilson loop,

W [C(s)] =
〈

TrP exp
(
i

∮
C
dxiAi

)〉
, (0 ≤ s ≤ 2π) (6.13)

where s parametrizes the contour C. The Wilson loop (6.13) possesses reparametriza-
tion invariance s→ s′(s). Here we can allow for s′(s) to “go backward” on the way of
s ∈ [0, 2π]; that is, ds′(s)/ds can vanish at some s. This characteristic symmetry of
the Wilson loop is called the zigzag symmetry .111) Fundamental equations that char-
acterize the Wilson loops are the loop equations, and they are written schematically
as

L̂(s)W [C] = W ∗W, (6.14)

where L̂ is the loop Laplacian, and the right-hand side represents the interaction
of two loops (or intersection of a single loop) at a single point. For an accurate
definition of the loop equations, see Refs. 108), 109).

The equivalence between gauge theory and string theory implies that there is an
open string with ends on the loop C such that the functional W [C] defined by

W [C] =
∫
DxiDϕe−�S[xi,ϕ] (i = 1, · · · , 4) (6.15)

satisfies the loop equation (6.14) and has zigzag symmetry. Here ϕ and xi represent
the Liouville field and matter fields on the string world-sheet, respectively. To this
time, great effort has been made to find this duality. For example, in Ref. 111), it is
argued that world sheet supersymmetry eliminates boundary tachyonic modes and
zigzag symmetry is to be expected.∗) It would be interesting to pursue these ideas
to gain deeper insight into the gauge/string correspondence.

As discussed in §2.4, the Penrose limit of AdS5 × S5 leads us to the maximally
supersymmetric pp-wave background, on which string theory is exactly solvable in
the light-cone gauge. From the exact result of the string spectra, Berenstein, Malda-
cena and Nastase made a prediction about the anomalous dimensions of N = 4 SYM
composite operators for N, J � 1 with N/J2 fixed, expressed as exact functions of
λ = 4πgsN = g2

YMN . In order to confirm this pp-wave/CFT correspondence, we have

∗) We expect that this world-sheet supersymmetry might be enhanced to the space-time hidden

supersymmetry mentioned above.

Downloaded from https://academic.oup.com/ptp/article-abstract/109/4/489/1875868
by Kyoto University Library user
on 13 March 2018



Holographic Renormalization Group 551

to compute the exact anomalous dimensions from the field theory side. Such a com-
putation was carried out in Ref. 118), reproducing the exact anomalous dimensions.
(For a related work, see Ref. 119)). It is thus seen that the pp-wave/CFT correspon-
dence is justified beyond the supergravity approximation. One of the problems here,
however, is that the holography is not manifest in the pp-wave backgrounds. Since a
Penrose limit corresponds to zooming in on the local geometry near a null geodesic
of a given background, the resulting background has a boundary that is completely
different from that of the original one. Thus the holographic rules in the AdS/CFT
correspondence are no longer valid in the pp-wave backgrounds. Although several
attempts have been made to understand how the holography works in pp-wave back-
grounds,120)–122) there still remain many issues to be clarified. In particular, it might
be possible to formulate the holographic principle on a pp-wave background beyond
the supergravity approximation, because string theory on it is simple.
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Appendix A
Variations of Curvature

In this appendix, we list the variations of the curvature tensor, Ricci tensor and
Ricci scalar with respect to the metric.

Our convention is∗)

Rµ
νλσ ≡ ∂λΓ

µ
σν + Γµ

λρΓ
ρ
σν − (λ↔ σ),

Rµν ≡ Rρ
µρν , R ≡ Gµν Rµν . (A.1)

The fundamental formula is

δΓ κ
µν =

1
2
Gκλ (∇µ δGνλ +∇ν δGµλ −∇λ δGµν) , (A.2)

from which one can calculate the variations of curvatures as

δRµ
νλσ = ∇λ δΓ

µ
σν −∇σ δΓ

µ
λν , (A.3)

δRµνλσ =
1
2

[
∇λ∇νδGσµ −∇λ∇µδGσν −∇σ∇νδGλµ +∇σ∇µδGλν

+ δGµρR
ρ
νλσ − δGνρR

ρ
µλσ

]
, (A.4)

δRµν =
1
2

[
∇ρ (∇µδGνρ +∇νδGµρ)−∇2δGµν −∇µ∇ν

(
GρλδGρλ

)]
,

(A.5)
δR = −δGµν R

µν +∇µ∇νδGµν −∇2 (GµνδGµν) . (A.6)
∗) The sign here is opposite to that adopted in Ref. 33).
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Here, note that [
∇µ,∇ν

]
δGλσ = −δGρσ R

ρ
λµν − δGλρR

ρ
σµν . (A.7)

Appendix B
Variations of Sloc[g(x), φ(x)]

In this appendix, we list the variations of Sloc[g(x), φ(x)].
Pure gravity:

If we only consider terms with weight w ≤ 4 of the form

Sloc[g] =
∫
ddx
√
g
(
W − ΦR+XR2 + Y RijR

ij + ZRijklR
ijkl

)
, (B.1)

then we have

1√
g

δSloc

δgij
=

1
2

(
W − ΦR+XR2 + Y RijR

ij + ZRijklR
ijkl

)
gij

+ΦRij − 2X
(
RRij −∇i∇jR

)
− Y

(
2Ri

kR
jk − 2∇k∇(iR j)k +∇2Rij

)
−2Z

(
Ri

klmR
jklm − 2∇k∇lR

(i j)
kl

)
−
(

2X +
1
2
Y

)
gij ∇2R, (B.2)

and thus

1√
g
gij

δSloc

δgij
=
d

2
W − d− 2

2
ΦR +

d− 4
2

(
XR2 + Y RijR

ij + ZRijklR
ijkl

)
−
(

2(d− 1)X +
d

2
Y + 2Z

)
∇2R. (B.3)

In the last expression, we have used the Bianchi identity, ∇iRij = (1/2)∇jR.
Gravity coupled to scalars:

For Sloc[g, φ] of the form

Sloc[g, φ] =
∫
ddx
√
g

(
W (φ)− Φ(φ)R+

1
2
Mab(φ)gij∂iφ

a∂jφ
b

)
, (B.4)

we have

1√
g

δSloc

δgij
=

1
2

(
W − ΦR +

1
2
Mab ∂kφ

a ∂kφb

)
gij

+ΦRij + gij ∇2Φ−∇i∇jΦ− 1
2
Mab ∂

iφa ∂jφb, (B.5)

1√
g

δSloc

δφa
= ∂aW − ∂aΦR −Mab∇2φb − Γ (M)

a;bc ∂iφ
b ∂iφc, (B.6)

where Γ (M)a
bc (φ) ≡Mad(φ)Γ (M)

d;bc (φ) is the Christoffel symbol constructed fromMab(φ).
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Appendix C
ADM Decomposition

In this appendix, we summarize the components of the Riemann tensor, Ricci
tensor and scalar curvature written in terms of the ADM decomposition.∗)

In the ADM decomposition, the metric takes the form

ds2 = ĝµν dX
µdXν

= N(x, τ)2dτ2 + gij(x, τ)
(
dxi + λi(x, τ)dτ

)(
dxj + λj(x, τ)dτ

)
. (C.1)

Here we have used the basis

ê
�n =

1
N

(∂τ − λi∂i, ), êi = ∂i, (C.2)

instead of the coordinate basis ∂µ. In this basis, the components of the metric are
given by (

ĝ(ê
�n, ê�n) ĝ(ê

�n, êj)
ĝ(êj, ê�n) ĝ(êi, êj)

)
=
(

1 0
0 gij

)
. (C.3)

For the purpose of computing the Riemann tensor in this basis, it is useful to start
with the formula

R̂σ
ρµν êσ = R̂(êµ, êν)êρ

=
[
∇̂
�eµ
, ∇̂

�eν

]
êρ − ∇̂[�eµ,�eν ] êρ. (C.4)

Then, each component can be calculated explicitly using the equations

∇̂
�ei
êj = −Kij ê�n + Γ k

ij êk,

∇̂
�ei
ê
�n = Kk

i êk,

∇̂
�e
�n
êj =

1
N
∂jN ê

�n +
(
Kk

j +
1
N
∂jλ

k

)
êk,

∇̂
�e
�n
ê
�n = − 1

N
gkl ∂kN êl,

[ê
�n, êi] =

1
N
∂iN ê

�n +
1
N
∂iλ

k êk, (C.5)

where Kij is the extrinsic curvature and Γ i
jk is the affine connection with respect to

gij . We thus obtain

R̂ijkl = Rijkl −KikKjl +KilKjk,

R̂
�njkl = ∇lKjk −∇kKjl,

R̂
�nj�nl = (K2)jl − Ljl, (C.6)

∗) In this appendix, we use a convention that differs from that used in the rest of this article;

that is, here, quantities in the (d+ 1)-dimensional manifold are written with a hat, while quantities

in the d-dimensional equal-time slice are not.
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with

Kij =
1

2N
(ġij +∇iλj +∇jλi) , (C.7)

Lij =
1
N

(
K̇ij − λk∇kKij −∇iλ

k Kkj −∇jλ
k Kkj +∇i∇jN

)
. (C.8)

The components of the Ricci tensor R̂µν ≡ R̂ρ

µρν = R̂νµ are given by

R̂ij = Rij + 2(K2)ij −KKij − Lij ,

R̂i�n = ∇kKki −∇iK,

R̂
�n�n = K2

ij − gijLij , (C.9)

and the scalar curvature is

R̂ = R+ 3K2
ij −K2 − 2gijLij

= R−K2
ij +K2 − 2

N

(
K̇ + λk

(
∇kN − λkK

))
, (C.10)

where we have used the relation

gijLij =
1
N

[
K̇ +∇k

(
∇kN − λkK

)]
+
(
2K2

ij −K2
)
. (C.11)

Appendix D
Boundary Terms

In this appendix, we supplement the discussion of the possible boundary terms
given in (5.13). In this appendix we omit the hat on the bulk fields.

We first consider the infinitesimal transformation

xi → x′i = xi + εi(x, τ), τ → τ ′ = τ + ε(x, τ). (D.1)

Under this transformation, N,λi and gij are found to transform as

1
N ′ =

1
N

(1 + ε̇− λi∂iε),

λ′i = λi − ∂iε
jλj − ε̇λi − ∂iε (N2 + λ2)− gij ε̇

j ,

g′ij = gij − ∂iε
kgkj − ∂jε

kgik − ∂iε λj − ∂jε λi. (D.2)

Furthermore, Γ i
jk, the affine connection defined by gij , transforms under the diffeo-

morphism (D.1) as

Γ ′i
jk = Γ i

jk − ∂j ∂kε
i + Γm

jk ∂mε
i − Γ i

mk ∂jε
m − Γ i

jm∂kε
m + δ̃Γ i

jk, (D.3)

with

δ̃Γ i
jk = −λi∇j∇kε− ∂jε∇kλ

i − ∂kε∇jλ
i −Ngil(∂jεKlk + ∂kεKlj − ∂lεKjk).

(D.4)
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Note that δ̃Γ i
jk does not contain εi. From these relations, it is straightforward to

verify that the extrinsic curvature transforms as

K ′
ij =Kij − ∂iε

lKlj − ∂kε
lKjl

+N∇i∇jε+ ∂iε (∂jN − λlKjl) + ∂jε (∂iN − λlKlj). (D.5)

We can also show that the Riemann curvature Ri
jkl transforms under (D.1) as

R′i
jkl = Ri

jkl + ∂mε
iRm

jkl − ∂jε
mRi

mkl − ∂kε
mRi

jml − ∂lε
mRi

jkm

−∂kε Γ̇
i
lj + ∂lε Γ̇

i
kj +∇kδ̃Γ

i
lj −∇lδ̃Γ

i
kj . (D.6)

As argued in §5, we focus on the diffeomorphism that obeys the condition (5.15).
This is equivalent to the following relation in infinitesimal form:

∂iε(τ=τ0) = 0. (D.7)

Therefore, we find that the boundary action in (5.13) is invariant under this diffeo-
morphism.

We remark that in the above, we have discarded boundary terms of the form

S′
b =

∫
Σd

ddx
√
g
(
KijLij +KgijLij

)
, (D.8)

although these are allowed by the diffeomorphism.∗) The reason we have done this is
that if there were such boundary terms, they would require us to introduce an extra
boundary condition, because of the relation

δS′
b =

∫
Σd

ddx
√
g
[
· · ·+ δK̇ijP

ij
2 (gkl,Kkl)

]
. (D.9)

Appendix E
Example of Derivation of the Hamilton-Jacobi-Like Equation

We briefly describe how the Hamilton-Jacobi equation (5.49) is solved. For
simplicity, we consider the case N = 1 and focus only on the upper boundary at
τ=t.

Motivated by the gravitational system considered in §5.3, we assume that the
Lagrangian takes the form

L(q, q̇, q̈) = L0(q, q̇) + cL1(q, q̇, q̈), (E.1)

where

L0(q, q̇) =
1
2
mij(q)q̇iq̇j − V (q),

L1(q, q̇, q̈) =
1
2
nij(q)q̈iq̈j −Ai(q, q̇)q̈i − φ(q, q̇), (E.2)

∗) By definition, the (d + 1)-dimensional scalar curvature �R is a scalar. It thus follows from

(C.10) that Lij(τ=τ0) transforms as a tensor under the diffeomorphism with (D.7).
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with

Ai(q, q̇) = a
(2)
ijk(q)q̇

j q̇k + a
(0)
i (q),

φ(q, q̇) = φ
(4)
ijkl(q)q̇

iq̇j q̇kq̇l + φ
(2)
ij (q)q̇iq̇j + φ(0)(q). (E.3)

We further assume that the determinants of the matrices mij(q) and nij(q) have the
same signature. Following the procedure discussed in §5, this Lagrangian can be
rewritten into the first-order form

L = p q̇ + PQ̇−H(q,Q; p, P ) , (E.4)

with the Hamiltonian

H(q,Q; p, P ) = piQ
i − 1

2
mij(q)QiQj + V (q)

+
1
2c
nij(q)

(
Pi + cAi(q,Q)

)(
Pj + cAj(q,Q)

)
+ c φ(q,Q), (E.5)

where (nij) = (nij)−1. The Hamilton-Jacobi equation (5.49) is solved as a double
expansion with respect to c and P by assuming that the classical action takes the
form

Ŝ(t, q, P ) =
1√
c
Ŝ−1/2(t, q, P ) + Ŝ0(t, q, P ) +

√
c Ŝ1/2(t, q, P ) + c Ŝ1(t, q, P )

+O(c3/2). (E.6)

After some simple algebra, the coefficients are found to be

Ŝ−1/2 =
1
2
uij(q)PiPj +O(P 3),

Ŝ0 = S0(t, q)− Pi ∂
iS0 +O(P 2),

Ŝ1/2 = Pi u
ij(q)njk(q)

[
Γ k

lm ∂lS0 ∂
mS0 + ∂kV (q) + nkl(q)Al

(
q,
∂S0

∂q

)]
+O(P 2). (E.7)

Here,

∂i ≡ ∂

∂qi
, ∂i ≡ mij∂i, (E.8)

and Γ i
jk is the affine connection defined by mij. Also, uij is defined by the relation

uik(q)ujl(q)mkl(q) = nij(q). (E.9)

Furthermore, S0(t, q) = Ŝ0(t, q, P = 0) and S1(t, q) = Ŝ1(t, q, P = 0) satisfy the
equations

−∂S0

∂t
=

1
2
mij(q)

∂S0

∂qi

∂S0

∂qj
+ V (q),
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−∂S1

∂t
=mij(q)

∂S1

∂qi

∂S0

∂qj

− 1
2
nij(q)

(
Γ i

kl ∂
kS0 ∂

lS0 + ∂iV (q)
) (

Γ j
mn ∂

mS0 ∂
nS0 + ∂jV (q)

)
−Ai

(
q,
∂S0

∂q

)(
Γ i

kl ∂
kS0 ∂

lS0 + ∂iV (q)
)

+ φ

(
q,
∂S0

∂q

)
, (E.10)

which can be expressed as the following Hamilton-Jacobi-like equation for the re-
duced classical action S(t, q)=S0(t, q) + c S1(t, q) +O(c2):

−∂S
∂t

= H̃(q, p), pi =
∂S

∂qi
, (E.11)

where

H̃(q, p) =
1
2
mij(q)pipj + V (q)

+ c

[
−1

2
nij(q)

(
Γ i

kl p
kpl + ∂iV (q)

) (
Γ j

mn p
mpn + ∂jV (q)

)
−Ai(q, p)

(
Γ i

kl p
kpl + ∂iV (q)

)
+ φ(q, p)

]
. (E.12)

It is important to note that H̃ is not the Hamiltonian. In fact, the Hamilton equation
for H̃ does not coincide with that obtained from (E.5).

Appendix F
Proof of Theorem

In this appendix, we give a detailed proof of the relations (5.52) and (5.53)
appearing in the theorem of §5, for the action

S =
∫ t

t′
dτ
[
L0(qi, q̇i) + cL1(qi, q̇i, q̈i)

]
, (F.1)

where i runs over some values. In the following discussion, we focus only on the
upper boundary, for simplicity.

We first rewrite the zeroth order Lagrangian L0 into the first-order form by
introducing the conjugate momentum p0i of qi as

S[q(τ), p0(τ)] =
∫ t

dτ
[
p0iq̇

i −H0(q, p0) + cL1(q, q̇, q̈)
]
, (F.2)

through the Legendre transformation from (q, q̇) to (q, p0) defined by

p0i =
∂L0

∂q̇i
(q, q̇) . (F.3)

From this, the equation of motion for p0i and qi is given by

q̇i =
∂H0

∂p0i
, (F.4)

˙p0i = −∂H0

∂qi
+ c

[
∂L1

∂qi
− d

dτ

(
∂L1

∂q̇i

)
+

d2

dτ2

(
∂L1

∂q̈i

)]
. (F.5)
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Let q̄(τ), p̄0(τ) be the solution to this equation of motion that satisfies the boundary
condition

q̄i(τ=t) = qi . (F.6)

Since this condition determines the classical trajectory uniquely [together with the
lower boundary values q̄i(τ = t′) = q′ i, which we have not written explicitly here],
the boundary value of p̄0 is completely specified by t and q: p̄0(τ = t)=p0(t, q). By
substituting the classical solution into the action S, the classical action is obtained
as a function of the boundary value qi and t in the form

S(t, q) = S[q̄(τ), p̄0(τ)]. (F.7)

In order to derive a differential equation that determines S(t, q), we then carry out
the variation of S(t, q). Using (F.4) and (F.5), this is easily evaluated to be

δS = δt
[
p0iq̇

i −H0(q, p0) + cL1(q, q̇, q̈)
]

+ δq̄i(t)
[
p0i + c

(
∂L1

∂q̇i
(q, q̇, q̈)− d

dτ

(
∂L1

∂q̈i
(q̄, ˙̄q, ¨̄q)

)∣∣∣∣
τ=t

)]
+ c δ ˙̄qi(t)

∂L1

∂q̈i
(q, q̇, q̈), (F.8)

where

q̇i ≡ dq̄i

dτ
(τ=t), q̈i ≡ d2q̄i

dτ2
(τ=t) , (F.9)

and δq̄i(t) and δ ˙̄qi(t) are understood to be δq̄i(τ)|τ=t and d δq̄i(τ)/dτ |τ=t, respec-
tively. By expanding the classical solution q̄i(τ) around τ = t, we find that the
variations δq̄i(t) and δ ˙̄qi(t) are given by

δq̄i(t) = δqi − q̇i δt, δ ˙̄qi(t) = δq̇i − q̈i δt. (F.10)

Here it is important to note that q̇ can be written in terms of q and t, since the
classical solution is determined uniquely by the boundary value q. Actually, it can
be shown that

δq̇i =
∂2H0

∂qj∂p0i
δqj +

∂2H0

∂p0ip0j
δp0j

=
∂2H0

∂qj∂p0i
δqj +

∂2H0

∂p0ip0j

(
∂p0j

∂t
δt+

∂p0j

∂qk
δqk

)
, (F.11)

where we have used (F.4) as well as the fact that p0 = p0(t, q). From these relations,
the variation (F.8) is found to be

δS = pi δq
i − H̃(q, p) δt, (F.12)
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with

pi = p0i + c

[
∂L1

∂q̇i
(q, q̇, q̈)− d

dτ

(
∂L1

∂q̈i
(q̄, ˙̄q, ¨̄q)

)∣∣∣∣
τ=t

+
∂L1

∂q̈j

(
∂2H0

∂qi∂p0j
+

∂2H0

∂p0j∂p0k

∂p0k

∂qi

)]
, (F.13)

H̃(q, p) = H0(q, p0)

+ c

[
−L1(q, q̇, q̈) + q̇i

(
∂L1

∂q̇i
(q, q̇, q̈)− d

dτ

(
∂L1

∂q̈i
(q̄, ˙̄q, ¨̄q)

)∣∣∣∣
τ=t

)
+
∂L1

∂q̈i

(
q̈i − ∂2H0

∂p0i∂p0j

∂p0j

∂t

)]
. (F.14)

In order to compute H̃(q, p), we first note that the Hamilton equation appearing in
(F.4) and (F.5) gives the relation

q̈i =
∂2H0

∂p0i∂qj

∂H0

∂p0j
+

∂2H0

∂p0i∂p0j

(
∂p0j

∂qk

∂H0

∂p0k
+
∂p0k

∂t

)
. (F.15)

It is then easy to verify that H̃(q, p) takes the form

H̃(q, p) = H0(q, p)− cL1(q, q̇, q̈) +O(c2). (F.16)

Here q̇i and q̈i in L1 can be replaced by

f i
1(q, p) ≡

{
H0(q, p), qi

}
=
∂H0

∂pi
(q, p) (F.17)

and

f i
2(q, p) ≡

{
H0(q, p),

{
H0(q, p), qi

}}
=

∂2H0

∂pi∂qj
(q, p)

∂H0

∂pj
(q, p)− ∂2H0

∂pi∂pj
(q, p)

∂H0

∂qj
(q, p) , (F.18)

respectively, up to O(c2). This completes the proof of (5.52) and (5.53).
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