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We carry out field redefinitions in ten-dimensional Type IIB supergravity and show that
they do not give rise to any physical corrections to the holographic renormalization group
structure in the AdS/CFT correspondence. We in particular show that the holographic
Weyl anomaly of the N = 4 SU(N) super Yang-Mills theory does not change under the field
redefinition of the ten-dimensional metric of the form GMN → GMN + αRGMN + βRMN .
These results are consistent with the fact that classical supergravity represents the on-shell
structure of massless modes of superstrings, which should not change under redefinitions of
fields.

§1. Introduction

The AdS/CFT correspondence1)–4) asserts that the classical theory of (d + 1)-
dimensional gravity in an AdS background is related to a d-dimensional CFT at the
boundary of the AdS geometry. More precisely, we can regard an on-shell field in the
gravity theory as the source coupled to a scaling operator in the CFT at the bound-
ary. Among many applications of the AdS/CFT correspondence, the holographic
renormalization group (RG)5)–16) is one of the most important. In the holographic
RG, we regard the radial coordinate of the (d + 1)-dimensional manifold as a scal-
ing parameter of the corresponding boundary field theory. Using this scheme, we
can describe many aspects of the RG structure of the d-dimensional boundary field
theory using the (d + 1)-dimensional classical gravity theory. For example, we can
derive the Callan-Symanzik equation of the corresponding d-dimensional boundary
field theory from the Hamilton-Jacobi equation of the (d + 1)-dimensional gravity
theory,17) which gives us a systematic formulation of the holographic RG (see also
Refs. 18)–20)).

There have been numerous quantitative studies to check the validity of the
AdS/CFT correspondence and the holographic renormalization group. Among such
studies are calculations of the chiral anomaly15) and the Weyl anomaly16) of the four-
dimensional N = 4 SU(N) super Yang-Mills theory (SYM4), which is believed to be
realized on the boundary of AdS5 after the ten-dimensional spacetime is factorized
as AdS5 × S5. Both calculations were carried out purely on the basis of the five-
dimensional supergravity theory and correctly reproduce the field-theoretical results
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in the large N limit.
In this article, as another study to check the validity of the AdS/CFT correspon-

dence, we show that the holographic RG structure does not undergo any physical
corrections under field redefinitions of ten-dimensional supergravity. The AdS/CFT
correspondence should have this property, since classical supergravity represents the
on-shell structure of massless modes of superstrings, and the on-shell amplitudes
(more precisely, the residues of one-particle poles of correlation functions) should
be invariant under redefinitions of fields21) (see also Ref. 22) for discussions in the
context of string theory).∗)

It is easy to demonstrate the invariance of the holographic RG structure for
point-transformations of scalar fields in supergravity,

φI → φ′ I = f I(φ), (1.1)

because the superpotential W (φ) transforms as a scalar over the space parametrized
by φI : W (φ) → W ′(φ) = W (f(φ)), so that the beta function of the boundary field
theory transforms as a vector field over such space:17), 18),∗∗)

βI(φ)
(
= −2(d− 1)

W (φ)
LIJ(φ)

∂

∂φJ
W (φ)

)
→ β ′ I(φ) =

∂φI

∂fJ
βJ(f(φ)). (1.2)

Similar arguments can be applied to field redefinitions that include deriva-
tives of fields, such as the redefinition of the ten-dimensional metric of the form
GMN → GMN +αRGMN + βRMN . In this case, however, the resulting gravity ac-
tion obtained after such redefinitions possesses higher-order derivative terms. Thus,
after the compactification on S5, one needs to treat the five-dimensional gravity
theory with curvature squared terms.

The structure of the holographic RG for higher-derivative gravity was investi-
gated generally in Refs. 25)–28), where it is shown that if the five-dimensional gravity
action is given by∗∗∗)

S5 =
1

2κ2
5

∫
d5x

√
−ĝ

[
12
L2

− 80a + 16b + 8c
L4

+ R̂ + aR̂2 + bR̂2
µν + cR̂2

µνρσ

]
,

(1.3)

then the Weyl anomaly of the corresponding boundary CFT is

〈T i
i 〉 =

2L3

2κ2
5

[(
1 +

8(5a + b + c)
L2

)(
− 1

24
R2 +

1
8
R2

ij

)
+

c

2L2
R2

ijkl

]
. (1.4)

From this, it is seen that if c vanishes, then it may be possible to absorb the change
(1 + 8(5a + b)/L2) into the five-dimensional Newton constant 2κ2

5. In fact, for field
∗) See also Ref. 23) for recent discussion about scheme independence in the renormalization

group structure.
∗∗) LIJ(φ) is the metric on the space {φI}, and c(φ) =

�−W (φ)
�−(d−1)

can be identified with

the c-function.
∗∗∗) The cosmological constant is parametrized in such a way that the classical solution can have

an AdS spacetime with radius L.
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redefinitions of the form GMN → GMN + αRGMN + βRMN , no terms including
the Riemann tensor RKLMN are induced, so that we only have to consider the case
where c = 0. Furthermore, as we show in the following sections, the field equation
in ten dimensions changes the radius of S5 exactly in such a way that the change
of the five-dimensional Newton constant, 2κ2

5 = 2κ2
10/volume(S5), cancels the factor

(1+8(5a+ b)/L2), together with the contribution from the Ramond-Ramond terms.
In §2, we derive the ten-dimensional Type IIB supergravity action that is ob-

tained through the field redefinition, and then we discuss its AdS5 × S5 solution.
In §3, after explaining how to determine the five-dimensional gravity action when
the geometry is compactified on S5, we calculate the holographic Weyl anomaly for
N = 4 SU(N) SYM4 and show that the result is exactly the same as that for the
original anomaly before the field redefinition. Section 4 is devoted to conclusions.

§2. Field redefinition of type IIB supergravity and the AdS5× S5

solutions

In this section, we consider a field redefinition in the ten-dimensional type IIB
supergravity theory. We first give the usual IIB supergravity action and its AdS5×S5

solution. We then carry out a field redefinition of the ten-dimensional metric and
derive the corresponding action with its AdS5 × S5 solution.

We start with the bosonic part of the ten-dimensional Type IIB supergravity
action given by∗)

S10 =
1

2κ2
10

∫
d10X

√−G

[
e−2φ

(
R + 4 |dφ|2

)
− 1

4
|F5|2

]
. (2.1)

Here φ and F5 are the dilaton and the self-dual Ramond-Ramond 5-form field
strength, respectively, and we have set other fields of Type IIB supergravity to zero.
In this equation, we have used the definitions

|dφ|2 ≡ GMN ∂Mφ∂Nφ, |F5|2 ≡ 1
5!

GM1N1 · · ·GM5N5 (F5)M1···M5(F5)N1···N5 .

(2.2)

The self-duality of F5 is imposed on the field equations (not in the action) as a
constraint.

In the context of the AdS5/CFT4 correspondence, we are interested in an AdS5×
S5 solution that is realized as the near horizon limit of the black 3-brane solution:29)

ds2 =
l20
r2

dr2 +
r2

l20
ηij dx

idxj + l20 dΩ
2
5 ,

(F5)r0123 = − 4
gs

r3

l40
, (F5)y1···y5 =

4
gs

l40,

eφ = gs. (2.3)

∗) The coefficient of |F5|2 is chosen to be (−1/4), which is one half of the canonical value (−1/2).

This is necessary for the action to be invariant under T -duality transformations (see, e.g., Ref. 24)).

Downloaded from https://academic.oup.com/ptp/article-abstract/108/2/375/1869971
by Kyoto-u Kokoro user
on 13 March 2018



378 M. Fukuma and S. Matsuura

Here, dΩ2
5 = (δab + yayb/(1 − y2))dyadyb (−1≤ya ≤1, a, b= 1, · · · , 5) is the metric

of the unit five-sphere and i, j ∈ {0, 1, 2, 3}. In this case, the AdS5 and S5 have the
same radius, l0, whose value is determined by the D3-brane charge as

l0 = (4πgsN)1/4, (2.4)

where N is the number of the coincident D3-branes, and we have set the string length√
α′ to 1.

As discussed in the Introduction, we can make an arbitrary field redefinition
δGMN = XMN without changing the content of the Type IIB supergravity theory.22)

Now we make an infinitesimal change of the metric as

GMN → G′
MN ≡ GMN + αRGMN + βRMN .

(
F ′

5 ≡ F5, φ′ ≡ φ
)

(2.5)

Then, the new gravity action is obtained as

S̃10[GMN ] ≡ S10[G′
MN ]

= S10[GMN + αRGMN + βRMN ], (2.6)

which is expressed explicitly as

S̃10 =
1

2κ2
10

∫
d10X

√−G

{
e−2φ

[
R + 4 |dφ|2 + aR2 + bR2

MN

+ aR |dφ|2 + bRMN∂Mφ∂Nφ

]
− 1

4
|F5|2 +

b

8
R |F5|2 − b

4
1
4!

RMN (F5)MPQRS(F5)NPQRS

}
.

(2.7)

Here a and b are defined as

a = 4α +
1
2
β, b = −β. (2.8)

Since G′
MN and F5 can be expressed as in Eq. (2.3),

ds′2 = G′
MN dXMdXN =

l20
r2

dr2 +
r2

l20
ηij dx

idxj + l20 dΩ
2
5 ,

(F5)r0123 = − 4
gs

r3

l40
, (F5)y1···y5 =

4
gs

l40, eφ = gs, (2.9)

we can easily construct an AdS5 × S5 solution for the action (2.7):

ds2 = GMN dXMdXN =
(
G′

MN − αR′G′
MN − βR′

MN

)
dXMdXN

=
(
1− 8b

l2

)
l2

r2
dr2 +

r2

l2
ηij dx

idxj + l2dΩ2
5 ,
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(F5)r0123 =
4
gs

(
1 +

8b
l2

)
r3

l4
, (F5)y1···y5 =

4
gs

(
1− 8b

l2

)
l4, eφ = gs. (2.10)

Here we have used the fact that with the solution (2.3), the Ricci tenser becomes

Rµν = − 4
l20

Gµν , Rab = +
4
l20

Gab (2.11)

for µ, ν ∈ {r, 0, 1, 2, 3} and a, b ∈ {y1 · · · y5}, and have rewritten the expression using
the radius l of the new S5, which is calculated as

l =
(
1 +

2b
l20

)
l0. (2.12)

Note that after the field redefinition, the radius of S5, l, differs from that of AdS5,
L, which is expressed as

L ≡
(
1− 4b

l2

)
l =

(
1 − 2b

l20

)
l0. (2.13)

§3. Five-dimensional effective action and the Weyl anomaly

In this section, we calculate the four-dimensional holographic Weyl anomaly
from the higher-derivative gravity action (2.7) using the classical solution (2.10),
and show that the resulting anomaly exactly reproduces the anomaly of the original
gravity theory before making the field redefinition.

To derive the five-dimensional gravity action, we use the following strategy.
First, we assume that the geometry of the ten-dimensional spacetime is a direct
product of a five-dimensional Lorentzian manifold M5 and a five-dimensional sphere
S5. Next, we decompose all terms in the action into two parts, one of which is
expressed by the fields on M5 with metric ĝµν and the other of which is expressed
over S5 of radius l. For example, the scalar curvature R in the ten-dimensional
gravity action becomes R̂+20/l2. (Here R̂ is the scalar curvature of M5.) However,
there appears a problem in decomposing the kinetic part of the self-dual five-form
field strength F5. In fact, inserting the classical solution of F5 into the action would
give a trivial, vanishing result due to the self-duality of F5 (∗F5 = F5).∗) To avoid this
problem, we use the ansatz that F5 has non-zero values only for the S5 components,
and we rescale F5 in the action by the factor

√
2: F5 → √

2F5. Finally, we integrate
over S5 in the ten-dimensional action and obtain the five-dimensional gravity action.

Following this strategy, we first calculate the Weyl anomaly of N = 4 SU(N)
SYM4 from the action (2.1). Since R = R̂ + 20/l20 and −(1/4)

∣∣√2F5

∣∣2 = −8/l20, we
have the five-dimensional action

S5 =
π3l50

2κ2
10g

2
s

∫
d5x

√
−ĝ

(
12
l20

+ R̂

)
. (3.1)

∗) √−G |F5|2 = F5 ∧ ∗F5 = F5 ∧ F5 = 0.
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This action actually has an AdS5 solution with radius l0, which justifies our ansatz.
Using the formula (1.4), we obtain the Weyl anomaly as

〈T i
i 〉 =

2π3l80
2κ2

10g
2
s

(
− 1

24
R2 +

1
8
R2

ij

)
=

N2

4π2

(
− 1

24
R2 +

1
8
R2

ij

)
. (3.2)

Here we have used 2κ2
10 = (2π)7 and (2.4).

Next we apply our strategy to the action (2.7). From the solution (2.10), we
compactify ten-dimensional spacetime on S5 of radius l. Then, the (dimensionally
reduced) five-dimensional action is obtained as

S̃5 =
π3l5

2κ2
10g

2
s

(
1 +

40a + 4b
l2

)
×

∫
d5x

√
−ĝ

[(
12
l2

− 80a− 80b
l4

)
+ R̂ + aR̂2 + bR̂2

µν

]
. (3.3)

This action has an AdS5 solution with radius
(
1− 4b/l2

)
l, which is consistent with

the AdS5 × S5 solution (2.10). From this solution, we can read off the parameters
in Eq. (1.3),

1
2κ2

5

=
π3l5

2κ2
10g

2
s

(
1 +

40a + 4b
l2

)
, L =

(
1− 4b

l2

)
l, c = 0. (3.4)

Thus the corresponding Weyl anomaly is calculated again by using the formula (1.4)
as

〈T i
i 〉 =

2L3

2κ2
5

(
1− 40a + 8b

l2

)(
− 1

24
R2 +

1
8
R2

ij

)
=

2π3l8

2κ2
10g

2
s

(
1 − 16b

l2

)(
− 1

24
R2 +

1
8
R2

ij

)
=

2π3l80
2κ2

10g
2
s

(
− 1

24
R2 +

1
8
R2

ij

)
=

N2

4π2

(
− 1

24
R2 +

1
8
R2

ij

)
. (3.5)

This is identical to the result (3.2).

§4. Conclusion

In this paper, we quantitatively checked the validity of the AdS/CFT corre-
spondence by showing that the holographic RG structure is invariant under field
redefinitions in Type IIB supergravity. In particular, we carried out a redefinition
of the ten-dimensional metric of the form GMN → GMN + αRGMN + βRMN (Eq.
(2.5)) and calculated explicitly the modified Type IIB action. We then constructed
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effective five-dimensional gravity when ten-dimensional spacetime is compactified on
S5 and calculated the holographic Weyl anomaly. We showed that the obtained
anomaly is identical to that of the N = 4 SU(N) SYM4 in the large N limit, even
though the five-dimensional action contains higher-order derivative terms. This re-
sult is consistent with the assertion of the AdS/CFT correspondence that on-shell
fields in the gravity theory are coupled to scaling operators of the corresponding
CFT at the boundary of the AdS geometry. In fact, the theorem of Kamefuchi,
O’Raifeartaigh and Salam guarantees that a field redefinition does not change the
on-shell structure of the theory.

We finally point out that this invariance of the holographic Weyl anomaly under
a redefinition of the metric holds only if there is a simultaneous change of the ten-
dimensional metric given by (2.5). In fact, if we only change the five-dimensional
metric in the effective five-dimensional action, ĝµν → ĝµν + αR̂ ĝµν + βR̂µν , then
the resulting Weyl anomaly differs from the field-theoretical anomaly in the large N
limit. However, this is not a contradiction, because if field redefinitions are carried
out only for five-dimensional components, generally the on-shell conditions for a
ten-dimensional field theory are broken. Thus, there is no reason to expect that the
AdS/CFT correspondence holds for such redefinitions.
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