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A system of D1- and D5-branes with a Kaluza-Klein momentum is re-investigated us-
ing the five-dimensional U -duality group E6(+6)(Z). We show that the residual U -duality
symmetry that keeps this D1-D5-KK system intact is generically given by a lift of the Weyl
group of F4(+4), embedded as a finite subgroup in E6(+6)(Z). We also show that the resid-
ual U -duality group is enhanced to F4(+4)(Z) when all three charges coincide. We then
apply the analysis to the AdS3/CFT2 correspondence and discuss that among 28 marginal
operators of CFT2 which couple to massless scalars of AdS3 gravity at the boundary, 16
would behave as exactly marginal operators for generic D1-D5-KK systems. This is shown
by analyzing possible three-point couplings among the 42 Kaluza-Klein scalars with the use
of their transformation properties under the residual U -duality group.

§1. Introduction

Since the AdS/CFT conjecture was proposed, 1) brane systems of various types
have been investigated to examine the AdSp+1/CFTp correspondence. 2) Among
these, AdS3/CFT2 has been studied extensively, because CFT2 is easy to investigate
due to its infinite-dimensional symmetry, which in turn allows a detailed comparison
between the CFT2 and the AdS3 supergravity in the near horizon. There, systems
with D1- and D5-branes play important roles, since they have an AdS3 geometry in
the noncompact directions after the near-horizon limit is taken appropriately.

For example, D1-D5-brane systems without a Kaluza-Klein (KK) momentum
wrapped on S1 × K3 or S1 × T 4 describe AdS3 × S3 × N in the near horizon with
N being K3 or T 4. 3) Such D1-D5 systems have also drawn much attention because
their dimensional reductions are related to five-dimensional black holes. 4) In fact,
if we compactify the type IIB string theory on a five-dimensional torus T 5 with
internal coordinates (y1, · · · , y5), and wrap Q5 D5-branes on T 5 and Q1 D1-branes
along the y5-direction, then this D1-D5-brane system describes a five-dimensional
black hole in the noncompact directions (x0, · · · , x4) with vanishing horizon area,
i.e. with vanishing Bekenstein-Hawking entropy.

Black holes with nonvanishing horizon area can also be obtained by adding KK
momenta in the D1-direction. The near-horizon limit of this D1-D5-KK system then

∗) E-mail: fukuma@yukawa.kyoto-u.ac.jp
∗∗) E-mail: toota@tanashi.kek.jp

∗∗∗) E-mail: hirokazu@yukawa.kyoto-u.ac.jp

Downloaded from https://academic.oup.com/ptp/article-abstract/103/2/447/1839152
by KYOTO UNIVERSITY Medical Library user
on 13 March 2018



448 M. Fukuma, T. Oota and H. Tanaka

becomes BTZ × S3 × T 4. The BTZ black hole is known to be locally equivalent to
AdS3. 5)

Systems with nonvanishing KK momentum charge QK �= 0 have quite different
near-horizon behavior from that with QK = 0. This can be seen for the 42 KK
scalars that appear when type IIB strings are compactified on T 5. In fact, for
QK = 0, these 42 scalars will be split into three parts: 20 minimal scalars with
m2 = 0, 16 intermediate scalars with m2 = 3, and 6 fixed scalars with m2 = 8. 3)

Here we have set the radius of AdS3 to unity. The 16 intermediate scalars, Ga5,
Ba5, Ca5 and Cabc5 (a, b, c = 1, · · · , 4), come as KK scalars out of the metric, NS-
NS 2-form, R-R 2-form and R-R self-dual 4-form, respectively. The mass of these
intermediate scalars near the horizon is expected to change discontinuously if the
KK charge is turned on. Klebanov, Rajaraman and Tseytlin 6) actually showed,
setting Ba5 = Cabc5 = 0, that the fluctuations of Ga5 and Ca5 all have the same mass
(m2 = 3) at the horizon if QK = 0, while for QK �= 0, they split into two groups,
(Ga5 +Ca5) and (Ga5 −Ca5), with the mass squared at the horizon given by m2 = 0
and m2 = 8, respectively. It thus seems natural that when taking into account the
fluctuations of all the intermediate scalars with QK �= 0, they will also be split into
two parts, one half joining minimal scalars (m2 = 0) and another half joining fixed
scalars (m2 = 8).

The moduli space of the corresponding supersymmetric system was analyzed in
Ref. 7), showing that the D1-D5-KK systems actually have 28 massless scalars and
14 massive scalars (m2 = 8) at the horizon. From the AdS3/CFT2 correspondence,
the 28 massless scalars may couple to marginal operators (∆ = 2). However, it is
possible that these marginal operators behave differently under the renormalization
group if higher-order corrections are taken into account. In particular, it is of great
interest to know how many among the 28 marginal operators are exactly marginal.

The type II string theory compactified on T 5 is known to have the U -duality
group E6(+6)(Z). 8) - 10) Thus, it may be useful if we can investigate the D1-D5-KK
systems using the U -duality as a complementary tool. Although U -duality transfor-
mations generally transform the D1-D5-KK systems into some other brane systems,
if the subgroup that keeps the systems intact is sufficiently rich, then it may con-
strain the system purely from the symmetry principle, giving us useful information
on the system.

One of the main aims of the present article is to show that such “residual U -
duality symmetry” for three-charge systems is given by a lift of the Weyl group of
F4(+4), W̃ (F4(+4)), in E6(+6)(Z). We also show that use of the lifted Weyl group
enables us to obtain further information on the 42 scalars.

In general, the KK scalars live on a coset manifold and transform non-linearly
under the U -duality if all auxiliary fields are removed. This sometimes makes it
difficult to study the scalar sector group-theoretically. However, as far as the lifted
Weyl group is concerned, there exists a parametrization of the coset manifold such
that scalars transform linearly. Since the residual U -duality group is of this type,
we can resort to representation theory to determine possible three-point couplings
of these scalars, and to discuss which massless scalars couple to exactly marginal
operators.
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In §2, we discuss the general U -duality group for type II strings compactified on
a d-dimensional torus T d and show that it can be expressed as the semidirect product
of the lifted Weyl group and the Borel group of Ed+1(d+1). In §3, we treat the d = 5
case in detail. We show that, when the three charges (Q1, Q5, QK) take positive
integer values generically, the residual U -duality group G is given by the lifted Weyl
group of F4(+4), G = W̃ (F4(+4)), while G is enhanced to F4(+4)(Z) in the special
case when Q1 = Q5 = QK . In §4, after introducing a convenient parametrization of
the coset manifold, we determine possible three-point couplings of scalars by using
a representation of G and give evidence that 16 operators would behave as exactly
marginal operators. Section 5 is devoted to discussion.

§2. U -duality and the Weyl-Borel group

We start our discussion by recalling a general property of type II strings com-
pactified on a d-dimensional torus T d. We will decompose the 10-dimensional coordi-
nates as (xµ̂) = (xµ, yi) = (x0, · · · , x9−d, y1, · · · , yd) with yi (i = 1, · · · , d) denoting
the coordinates on T d. This system is conjectured to have the U -duality group
Ed+1 (d+1)(Z) as an exact symmetry. 9), 10) It is known that this group can be gen-
erated by a set of generators {exp (E±α)}. 11), 12) Here E±α are step operators of
Ed+1 (d+1) (the normal real form of Ed+1) and α are the positive roots. For our
purposes, however, it is convenient to take another set of generators, which we will
call Weyl and Borel generators, and express the U -duality group as the following
semidirect product:

Ed+1(d+1)(Z) = W̃ (Ed+1(d+1)) �� B(Ed+1(d+1)). (2.1)

Here the Borel subgroup B(Ed+1(d+1)) consists of the Borel generators of the
form {exp (Eα)} with positive roots α> 0, while the lifted Weyl group
W̃ (Ed+1(d+1)) is obtained by lifting the elements of the Weyl group W (Ed+1) into
Ed+1 (d+1)(Z). 13), 14) Here the Weyl group W (Ed+1) is generated by Weyl reflec-
tions wα that act on weights λ as wα(λ) = λ − (2λ · α/α · α)α, and W̃ (Ed+1(d+1))
is generated by the lift of wα defined by

w̃α ≡ exp
(
π

2
(Eα − E−α)

)
. (2.2)

Note that such lifts belong to the maximal compact subgroup K of Ed+1 (d+1),

w̃α ∈ K ≡ {exp (θα(Eα − E−α))} , (2.3)

and have an adjoint action on generators of the Lie algebra: X → w̃αXw̃
−1
α . Al-

though a Weyl reflection wα satisfies (wα)2 = 1, the corresponding lifted Weyl gen-
erator w̃α generally does not, and only satisfies (w̃α)4 = 1. Note that w̃−α = w̃−1

α .
Furthermore, while the Cartan generators transform canonically under the action of
the lifted Weyl transformation,

w̃α (λ ·H) w̃−1
α = wα(λ) ·H, (2.4)
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this is not always the case for the step operators:

w̃α Eβ w̃
−1
α = Cα,β Ewα(β). (2.5)

The constants Cα,β can be taken to be real if the structure constants Nα,β of
[Eα, Eβ] = Nα,β Eα+β satisfy Nα,β = −N−α,−β ∈ R. Furthermore, for simply-laced
Lie algebras with the normalization α2 = 2 for the roots, one can easily see that
Nα,β only takes the value 0 or ±1, and

w̃α Eβ w̃
−1
α =


Nα,β Eα+β , (α · β = −1)
−Nα,−β E−α+β , (α · β = +1)
Eβ , (α · β = 0, ±2)

(2.6)

and also

w̃α w̃β w̃
−1
α =


(w̃α+β)

Nα,β , (α · β = −1)
(w̃−α+β)

Nα,−β , (α · β = +1)
w̃β . (α · β = 0, ±2)

(2.7)

The simplest example is the U -duality (or S-duality itself) of 10-dimensional type
IIB strings, SL(2;Z), which is generated by the Weyl and the Borel generators S
and T :

S =
(

0 1
−1 0

)
= exp

(
π

2
(E+ −E−)

)
, T =

(
1 1
0 1

)
= exp (E+) , (2.8)

with

E+ =
(
0 1
0 0

)
, E− =

(
0 0
1 0

)
. (2.9)

Note that S2 = −1 and S4 = 1.
The Weyl-Borel-group structure of the general Ed+1(d+1)(Z) can be understood

easily by decomposing it with respect to the T -duality subgroup O(d, d;Z). Intro-
ducing an orthonormal basis ei (i = 1, · · · , d) in the weight space, ei · ej = δij , we
choose the positive roots of O(d, d) as {α(1)

ij ≡ −ei + ej , α
(2)
ij ≡ ei + ej}1≤i<j≤d,

with the simple roots {α1, · · · , αd} as α1 ≡ α(2)
12 and αi ≡ α(1)

(i−1) i (i = 2, · · · , d). The
lifted Weyl generators then correspond to the following T -duality transformations:

w̃
α

(1)
ij

= Rij ,

w̃
α

(2)
ij

= T ′
ij ≡ Tij Rij , (2.10)

where Rij is a π/2–rotation in the (yi, yj)-plane, and Tij is the T -duality transforma-
tion for yi- and yj-directions. Note that Tij and Rij commute because α(1)

ij ·α(2)
ij = 0.

On the other hand, the Borel generator exp
(
E
α

(1)
ij

)
yields a linear transformation

among the KK scalars from the metric and NS-NS 2-form:

Gkl → Gkl + δkjGil + δljGki + δkjδljGii,
Bkl → Bkl + δkjBil + δljBki. (2.11)
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Fig. 1. Dynkin diagram of the U -duality group Ed+1(d+1). The lifts of simple reflections, rs ≡ wαs ,

are also depicted with T ′
12 = T12 R12. The subsystem {α1, · · · , αd} gives the simple roots of

Dd(+d) = SO(d, d).

By contrast, exp
(
E
α

(2)
ij

)
generates a constant shift of the KK scalar of the NS-NS

2-form:

Gkl → Gkl,

Bkl → Bkl + δkjδli − δkiδlj . (2.12)

It is known that SO(d, d;Z) can be generated by these generators. 15)

Ed+1 (d+1) is obtained by extending O(d, d) with the addition of one more simple
root∗) α0 such that α0 · α1 = −1 and α0 · αi = 0 for i = 2, · · · , d (see Fig. 1). For
d ≤ 5, Ed+1(d+1) then has three types of positive roots:∗∗)

(i) α
(1)
ij = − ei + ej , (1 ≤ i < j ≤ d)

(ii) α
(2)
ij = + ei + ej , (1 ≤ i < j ≤ d)

(iii) α({ni}) =
d∑
i=1

(
ni − 1

2

)
ei +

√
2− d

4
e0 . (2.13)

Here, ni = 0, 1 with
∑
ni = even, and es (s = 0, 1, · · · , d) is now an orthonormal

basis of the (d + 1)-dimensional weight space. The simple roots are given by α0 =
α({0}), α1 = α

(2)
12 and αi = α

(1)
(i−1) i (i = 2, · · · , d). We define the (10−d)-dimensional

S-duality transformation S̄ as the lift of the Weyl reflection with respect to this α0:
S̄ = w̃α0 . While the usual S-duality exchanges the NS-NS 2-form B2 with the R-R
2-form C2 in type IIB strings, this S̄ exchanges B2 with D2 ≡ C2 + B2C0, which
was introduced in Ref. 16).

§3. d = 5 and the residual U -duality group G

Now we discuss the five-dimensional U -duality group E6(+6)(Z). There, the
27 vector fields AI

µ and the corresponding charges zI (I = 1, · · · , 27) transform as
27 of E6(+6) (see Fig. 2). This representation has the cubic invariant I3(27) =
cIJKz

IzJzK . It is known that for I3(27) �= 0, the 27 charges can be rotated by

∗) This root is not the lowest root of SO(d, d) that is used in extending Dd to D
(1)
d .

∗∗) For E7 we have an extra positive root, α′ =
√

2 e0.
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Fig. 2. Weight diagram of 27 for E6(6). The weight λ is indicated by the Dynkin indices [qs] =

[q0, q1, · · · , q5] with λ =
∑5

s=0
qs µs (µs: the fundamental weights). The corresponding gauge

fields AI
µ are also depicted. rs again denotes the Weyl reflection with respect to the simple root

αs: rs ≡ wαs .
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F4(+4) into systems where only three of them (Q1, Q2, Q3) do not vanish: 17)

zI = (0, · · · , 0, Q1, 0, · · · , 0, Q2, 0, · · · , 0, Q3, 0, · · · , 0), (3.1)

with I3(27) ∝ Q1Q2Q3. The corresponding weights λ1, λ2 and λ3 must satisfy
the condition λ1 + λ2 + λ3 = 0. In the following, we exclusively consider these
three-charge systems.

The 42 KK scalars, on the other hand, live on the coset space E6(+6)(R)/USp(8),
where USp(8) is the maximal compact subgroup of E6(+6)(R), and the equivalence
relation for L ∈ E6(+6)(R) is introduced as L ∼ L′ for L′ = g · L with an element
g ∈ USp(8). One parametrization of L is given by the Iwasawa decomposition:∗)

L(ϕi, ϕα) = exp
(∑

Hiϕ
i
)
exp

(∑
α>0

Eαϕ
α

)
. (3.2)

Another parametrization, which respects the structure of the Weyl group, is given
by

L(φi, φα) = exp
(∑

Hiφ
i
)
exp

(∑
α>0

(Eα + E−α)φα
)
. (3.3)

We assume that the scalars have their classical values only at the Cartan part.
Under the SO(5, 5) subgroup, 27 of E6(+6) is decomposed as 1 + 10v + 16c.

We denote these singlet, vector and Majorana-Weyl (conjugate-) spinor charges of
SO(5, 5) by u, vA (A = 1, · · · , 10) and sα (α = 1, · · · , 16), respectively. We also
denote the fundamental weights of E6 (+6) by µr (r = 0, · · · , 5), with 2 (µr ·αs)/(αs ·
αs) = µr ·αs = δrs . Throughout the paper, we let the long roots have length squared
equal to two. Then, under the convention of Fig. 2, the singlet charge u corresponds
to the highest weight µ0 of 27 and comes from B̃µ12345, the electromagnetic dual of
the singlet NS-NS 2-form Bµν in the 5 noncompact dimensions. The vector charges
all come from the NS-NS gauge fields (Bµ i, Aiµ) (i = 1, · · · , 5), where Aiµ is the
KK gauge field. The 16 spinor charges come from the R-R gauge fields Dµα =
(Dµ 1, · · · , Dµ 5, Dµ 123, · · · , Dµ 345, Dµ 12345), where D is the modified R-R potential
that is obtained by suitably combining the original R-R potential with the NS-NS
2-form. 16) The cubic invariant of 27 is then decomposed with respect to SO(5, 5) as

I3(27) = cIJKzIzJzK = uJABvAvB +
1

2
√
2
vA(CΓA)αβsαsβ . (3.4)

Here JAB is the SO(5, 5) invariant tensor, ΓA represents the gamma matrices of
SO(5, 5) satisfying {ΓA, ΓB} = 2JAB, and C is the charge conjugation matrix.

Since Borel generators move the classical values for scalars out of the Cartan,
we only need to consider the lifted Weyl group W̃ (E6(+6)), looking for the subgroup
that keeps the generic three-charge system intact. Since an element of W̃ (E6(+6))
maps one three-charge system to another, we can set the three charges with any

∗) See Refs. 18) and 19) for recent discussion on the parametrization respecting the solvability.
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weights (λ1, λ2, λ3) we like, as long as they satisfy the condition λ1 + λ2 + λ3 = 0.
There are two types of choices in view of SO(5, 5). 20) The first one is to set the
charges only in the first term of (3.4). As is clear from Fig. 2, all of the nonvanishing
charges are related to NS-NS fields. We thus call this choice the gauge of NS type.
Another choice is to set the charges in the second term of (3.4), and this will be
called the gauge of R type. In particular, if we give charges to the gauge fields
(Dµ12345, Dµ5, A

5
µ) of the D1-D5-KK system, then this is given by an R-type gauge.

We will especially call this choice the R(amond) gauge. On the other hand, its S̄-
dual with charges for (B̃µ12345, Bµ5, A

5
µ) is given by an NS-type gauge, to be called

especially the NS gauge. Their weights can be easily seen from Fig. 2:

gauge gauge fields weights
R gauge (Dµ12345, Dµ5, A

5
µ) (λ1, λ2, λ3) = (−µ0+µ1, µ0−µ1+µ5, −µ5)

NS gauge (B̃µ12345, Bµ5, A
5
µ) (λ′1, λ′2, λ′3) = (µ0, −µ0+µ5, −µ5)

(3.5)

The residual U -duality group G that does not change the charge vector up
to permutations of the three charges (Q1, Q2, Q3) can be easily determined by the
following consideration. First, we take the NS gauge above, and note that the three
weights λ′1, λ′2 and λ′3 span a two-dimensional subspace R2 in the six-dimensional
weight space of E6. Since Weyl reflections induce orthogonal transformations in the
weight space, the elements of the residual-symmetry group should be the lifts of those
elements of W (E6) that transform the subspace R2 and its orthogonal complement
R4 into themselves, respectively. On the other hand, it is easy to see that this R4

is spanned by α1, · · · , α4, since µr is the dual basis of αr. Furthermore, these simple
roots α1, · · · , α4 constitute a simple-root system of the D4(+4) subalgebra of E6(+6).
Thus, these transformations will induce automorphisms of the root lattice of D4(+4),
which is a sublattice of the weight lattice of E6(+6).∗) The group consisting of such
automorphisms is given by the semidirect product of the outer automorphism group
S3 and the Weyl group W (D4), and it is known to be isomorphic to the Weyl group
of F4, W (F4) = S3 �� W (D4). This F4 is embedded in E6(+6) as a subalgebra F4(+4),
as is shown in the Appendix. Interestingly, elements of this outer automorphism
have a one-to-one correspondence with the permutations among the three weights
λ′1, λ′2 and λ′3. Explicit calculation using (2.4)–(2.7) shows that permutations on the
triplet (α1, α2, α4) correspond to those on (λ′3, λ′2, λ′1). We thus conclude that the
residual U -duality group G of the three-charge system is generically given by the
lifted Weyl group of the subalgebra F4(+4), embedded in the lifted Weyl group of
E6(+6):

G = W̃ (F4(+4))
(
⊂ W̃ (E6(+6))

)
. (3.6)

We comment that this conclusion needs to be modified in the case Q1 = Q2 = Q3.
In fact, as can be easily seen from the folding procedure in the Appendix, the little

∗) For its S̄-dual D1-D5-KK system, the corresponding simple-root system of the isotropy

D4(+4) is given by {α0 + α1, α2, α3, α4}.
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group of the charge vector zI is enlarged for this case so as to include some Borel
generators, which constitute the Borel subgroup of F4(+4)(Z). Thus, for this special
case, the residual U -duality group can be thought to be enhanced to G = F4(+4)(Z),
as far as the charge vectors are concerned. 21)

Our group G = W̃ (F4(+4)) is generated by the lifts of the Weyl reflections with
respect to the simple roots β ′

a (a = 1, · · · , 4) of the subalgebra F4(+4). The step
operators associated with the simple roots are determined in the Appendix, and are
given in terms of E6(+6) generators by

e ′β ′
1
= Eα3 ,

e ′β ′
2
= Eα4 ,

e ′β ′
3
= Eα0+α1+α2+α3+E−(α0+α1+α3+α4),

e ′β ′
4
= Eα1+α3+α4+α5+E−(α2+α3+α4+α5). (3.7)

The lifts of the Weyl reflections with respect to them, w̃ ′
β ′

a
= exp

(
π
2

(
e ′β ′

a
− e ′−β ′

a

))
,

are thus

w̃ ′
β ′
1
= w̃α3 ,

w̃ ′
β ′
2
= w̃α4 ,

w̃ ′
β ′
3
= w̃α0+α1+α2+α3 · (w̃α0+α1+α3+α4)

−1 ,

w̃ ′
β ′
4
= w̃α1+α3+α4+α5 · (w̃α2+α3+α4+α5)

−1 . (3.8)

All the above can be translated into our original D1-D5-KK system in the R
gauge by further taking the S̄-dual of the system in the NS gauge. The step operators
associated with the simple roots βa of F4(+4) can be calculated by eβa = w̃α0 ·e ′β ′

a
·w̃−1

α0
,

and are written in terms of E6(+6) generators as

eβ1 = Eα3 ,

eβ2 = Eα4 ,

eβ3 = Eα1+α2+α3+E−(α1+α3+α4),

eβ4 = Eα0+α1+α3+α4+α5+E−(α2+α3+α4+α5) . (3.9)

The generators of the residual U -duality symmetry in the R gauge are thus

w̃β1 = w̃α3 ,

w̃β2 = w̃α4 ,

w̃β3 = w̃α1+α2+α3 · (w̃α1+α3+α4)
−1 ,

w̃β4 = w̃α0+α1+α3+α4+α5 · (w̃α2+α3+α4+α5)
−1 . (3.10)

The remaining generators of the subalgebra F4(+4) in the R gauge are obtained
by taking the commutators of (3.9), which yield 12 long and 12 short, positive roots.
The step operators eβL

for long roots are generally given by ±Eα with a root α
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of E6(+6) (not necessarily positive), while the step operators eβS
for short roots

generally have the form Eα ± Eα′ with some roots α and α′ of E6(+6) (again not
necessarily positive). The Cartan generators ha = [eβa , e−βa ] are given by

h1 = H3, h2 = H4, h3 = H2−H4, h4 = H0 +H1−H2. (3.11)

Their orthogonal complement in the Cartan subalgebra of E6(+6) with respect to the
Killing metric are spanned by

j1 = H0 +H1 +H2 + 2H3 + 2H4 + 2H5,

j2 = 2H1 +H2 + 2H3 +H4. (3.12)

In general, if the step operators associated with the simple roots β3 and β4 are
written as

eβ3 = Eα(3)
± Eα′

(3)
, eβ4 = Eα(4)

± Eα′
(4)
, (3.13)

then the linear basis of the orthogonal complement, jr, can be given by

j1 =
[
Eα(3)

, E−α(3)

]
−
[
Eα′

(3)
, E−α′

(3)

]
,

j2 =
[
Eα(4)

, E−α(4)

]
−
[
Eα′

(4)
, E−α′

(4)

]
, (3.14)

as can be easily checked.

§4. Classification of scalar multiplets

We now classify the 42 scalars with respect to the residual U -duality group
G = W̃ (F4(+4)). We take the parametrization (3.3) for the scalar manifold E6(+6)(R)
/USp(8). In general, the scalar fields (φi, φα) transform non-linearly under the U -
duality transformations. However, if we restrict the U -duality to the lifted Weyl
group W̃ (E6(+6)), these scalars transform linearly. In fact for w̃ ∈ W̃ (E6(+6)), we
have

L(φi, φα) · w̃−1 = w̃−1 · w̃ · L(φi, φα) · w̃−1

≡ w̃−1 · L
(
φ ′ i, φ ′α)

∼ L
(
φ ′ i, φ ′α) , (4.1)

since the lifted Weyl group of E6(+6) is a subgroup of the maximal compact subgroup
USp(8): w̃ ∈ W̃ (E6(+6)) ⊂ USp(8). We comment that the transformation of the
fields φi under the lifted Weyl group always reduces to a (linear) representation of
the Weyl group W (E6), since the Cartan generators Hi = [Eαi , E−αi ] transform
as w̃ Hi w̃−1 =

∑
j Hj wji

(
w(αi) =

∑
j αj wji

)
without any extra factors [see (2.4)–

(2.7)]. These scalars φi correspond to the “dilatonic scalars” considered in Ref. 22).
It is known that the scalar manifold of d = 5 maximal supergravity has the

following N = 2 decomposition: 23)

E6(+6)/USp(8) = F4(+4)/USp(6)×USp(2) + SU∗(6)/USp(6). (4.2)
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The first term is expected to correspond to 28 massless scalars and the second to 14
massive scalars. With our parametrization, this decomposition is expressed as

L = exp

(
4∑
a=1

haφ
a +

2∑
r=1

jrψ
r

)

× exp

 ∑
β∈∆+

L

(eβ + e−β)φ
β
L +

∑
β∈∆+

S

(eβ + e−β)φ
β
S +

∑
β∈∆+

S

(xβ + x−β)ψ
β
S

 .
(4.3)

Here ∆+
L and ∆+

S are the set of long and short, positive roots of F4(+4), respectively.
When eβ with β ∈ ∆+

S is written as eβ = Eα ±Eα′ in terms of E6(+6) generators (α
and α′ need not be positive), we define its complement xβ by xβ ≡ Eα ∓ Eα′ . For
them, the fields φα and φα

′
in (3.3) are mapped into

φβS =
1
2

(
φα ± φα′)

, ψβS =
1
2

(
φα ∓ φα′)

, (4.4)

as can be checked easily by equating (Eα + E−α)φα + (Eα′ + E−α′)φα
′
with

(eβ + e−β)φ
β
S + (xβ + x−β)ψ

β
S . The Cartans ha (a = 1, · · · , 4) are again defined by

ha ≡ [eβa , e−βa ] for the simple roots βa of F4(+4), and jr are defined as their orthog-
onal complements with respect to the Killing metric [see (3.12)]. We denote the 28
scalars (φa, φβL, φ

β
S) which parametrize F4(+4)/USp(6)×USp(2) by (4−, 12−

L , 12−
S ),

and the 14 scalars (ψr, ψβS) for SU
∗(6)/USp(6) by (2+, 12+

S ). Here we assign “par-
ity” to the fields. This will be useful in considering the three-point functions.

These scalars transform linearly under the lifted Weyl group W̃ (F4(+4)). Let φ
and Gij (1 ≤ i, j ≤ 5) be the ten-dimensional dilaton and the metric of T 5 in the
string frame, respectively. We have made the following identification for the dilatonic
scalars:

φa (4−) : e−2φ1
= e−2φ (G33G44) ,

e−2φ2
= e−4φ

(
G22G33G

2
44

)
,

e−2φ3
= e−3φ (G22G33G44) ,

e−2φ4
= e−2φ (G11G22G33G44)

1/2 ,

ψr (2+) : e−6ψ1
= e−2φ

(
G11G22G33G44G

4
55

)1/2
,

e−6ψ2
= e−φ (G11G22G33G44G55) . (4.5)

It is easy to check that this identification is actually consistent with various trans-
formations of the U -duality. For the D1-D5-KK system in the R gauge, we regard
these dilatonic scalar fields as the sum of nonvanishing classical backgrounds and
fluctuations, while we regard other scalar fields as purely fluctuations. Using a lin-
ear approximation for the fluctuations, the scalar fields φα [see (3.3)] associated with
the roots (2.13) can then be identified as follows:

φα
(1)
ij = Gij + · · · ,
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φα
(2)
ij = Bij + · · · ,

φα({ni}) = Dα({ni}) + · · · . (4.6)

Here α({ni}) is a multi-index determined by the set {ni} : α({ni}) = 1n12n23n34n45n5 .
For example, α({1, 0, 1, 0, 0}) corresponds to the KK scalar D13. Thus, under the
linear approximation, the scalars 12−

L , 12−
S and 12+

S can be identified as

φβL (12−
L) : Gab , Dab ,

φβS (12−
S ) : Ga5 +Da5 , Ba5 + 1

3!εabcdDbcd5 , Bab + 1
2εabcdBcd , D +D1234 ,

ψβS (12+
S ) : Ga5 −Da5 , Ba5 − 1

3!εabcdDbcd5 , Bab − 1
2εabcdBcd , D −D1234 .

(4.7)

The range of indices a and ab should be understood as a = 1, · · · , 4 and 1≤a<
b≤ 4. Note that this Da5 equals Ca5 under this approximation. This identification
is thus consistent with the splitting of Ga5 and Ca5 observed in Ref. 6).

If we schematically write the exponent of (4.3) as

∑
r

dim r∑
m=1

| r,m 〉φ r
m , (4.8)

with r = 4−, 12−
L , 12−

S , 2
+ and 12+

S , then one can introduce the analogue of 3j-
symbols that are defined as the coefficients in the following expansion when a singlet
1 exists in the tensor product r1 ⊗ r2 ⊗ r3:

|1 〉〉〉 =
∑

m1,m2,m3

| r1,m1 〉 ⊗ | r2,m2 〉 ⊗ | r3,m3 〉 ·
(

r1 r2 r3

m1 m2 m3

)
. (4.9)

These coefficients are set to zero when no singlets appear in the tensor product.
The 3j-symbols can be explicitly calculated as follows. First, we represent the

step operators of E6(+6) on 27. We then calculate the matrix representation of
w̃ ∈ W̃ (F4(+4)) and determine the 3j-symbols by requiring that the expression on
the right-hand side of (4.9) be invariant under the action of all w̃. The result is that
the 3j-symbols can have nonvanishing values only for the following five cases:

(r1, r2, r3) = (12−
S , 12−

S , 2
+), (12+

S , 12+
S , 2

+), (2+,2+, 2+),
(12−

S , 12−
S , 12+

S ), (12+
S , 12+

S , 12+
S ). (4.10)

This is actually consistent with the assignment of parity. Note that the 3j-symbols
vanish whenever 4− or 12−

L enters the expression.

§5. Discussion

The result obtained in the previous section leads to an interesting interpretation
in the AdS3/CFT2 correspondence. On the AdS3 supergravity side, suppose that we
expand the action around the classical D1-D5-KK background and integrate over all
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the fields other than scalars. The resulting interaction terms for the 42 scalars should
be a singlet for our residual U -duality group, and thus they can be expanded in the
above scalar multiplets with the 3j-symbols as coefficients. The vanishing of the
3j-symbols including 4− or 12−

L thus implies that there are no interaction terms for
these 16 scalars. On the other hand, from the CFT2 point of view, by regarding the
scalar fields φ r

m as the sources of the scaling operators O r
m of the boundary CFT, the

coefficients of the interaction term correspond to corrections to the scaling relation
in the renormalization group equation,

β r
m ≡ Λ d

dΛ
φ r
m

= (∆r − 2)φ r
m +

∑
r1, r2

C r r1r2
∑

m1,m2

(
r r1 r2

m m1 m2

)
φ r1
m1
φ r2
m2

+O(φ3) ,

(5.1)

with some constants C r r1r2 . Thus, from the vanishing of the 3j-symbols for r = 4−

or 12−
L with ∆r = 2, we may conclude that up to this order, these 4− and 12−

L
couple to exactly marginal operators and express the real moduli at the horizon.

We should make a comment here. When multiple couplings enter the renormal-
ization group equation, the second coefficients can be highly nonuniversal, even for
marginal operators with ∆r = 2. However, one can easily show that vanishing coeffi-
cients still remain zero universally if the renormalization group respects the residual
U -duality symmetry and we only allow field redefinitions which respect the symme-
try. Nonvanishing coefficients, on the other hand, can change rather arbitrarily. This
would ensure that our conclusion is universal.

In this article, we considered the residual U -duality group G for three-charge
systems. When (Q1, Q2, Q3) take generic positive integer values, G is found to be
the lift of the Weyl group of F4(+4), G = W̃ (F4(+4)), being a subgroup of E6(+6)(Z).
We then classified the 42 scalars into 4−, 12−

L , 12−
S , 2

+ and 12+
S . The splitting of

Ga5 and Da5 into Ga5 ±Da5 in Ref. 6) can thus be naturally explained in the light
of the lifted Weyl group W̃ (F4(+4)) [see (4.4)]. We further considered the possible
three-point couplings and showed that they always vanish when 4− or 12−

L enters
the expression. This implies that conformal invariance is preserved at least to this
order under the perturbation with respect to the operators coupling to these fields
at the boundary. This should be regarded as evidence that these 16 operators are
exactly marginal. We are not able to determine whether the remaining 12 marginal
operators (corresponding to 12−

S ) are also exactly marginal from only an argument
based on the Weyl group.

On the other hand, if all three charges coincide (Q1 = Q2 = Q3), then the
residual U -duality group is enhanced to G = F4(+4)(Z), as far as the charge vectors
are concerned. Under the action of the full F4(+4)(Z), the three multiplets 4−, 12−

L

and 12−
S are combined into a single multiplet of 28 dimensions, and thus all the

three-point couplings including 12−
S also vanish. This may in turn imply that the

operators corresponding to 12−
S break the symmetry F4(+4)(Z) down to its subgroup

W̃ (F4(+4)). If this is the case, it would be interesting to investigate if this property of
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12−
L can be interpreted through the renormalization group or in terms of attractor. 24)
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Appendix A
F4(+4) in E6(+6)

The embedding of F4(+4) in E6(+6) can be understood most easily if we use
another R-type gauge (to be called the canonical gauge) with D3-D1-F1 charges at
the weights all being at level 8 (see Fig. 2):

gauge gauge fields weights

canonical gauge (Dµ123, Dµ4, Bµ5) (λ̄1, λ̄2, λ̄3) = (µ1−µ4, µ0−µ1+µ4−µ5,−µ0+µ5)

In fact, we first note that wα0wα5 exchanges λ̄2 and λ̄3, and wα1wα4 exchanges λ̄1

and λ̄2. Thus, wα0wα5 and wα1wα4 generate permutations of the three charges. We
then lift them together with wα2 and wα3 :

w̃1 ≡ w̃α2 , w̃2 ≡ w̃α3 , w̃3 ≡ w̃α1w̃α4 , w̃4 ≡ w̃α0w̃α5 . (A.1)

Here w̃3 can be rewritten as

w̃3 = exp
(
π

2
(Eα1−E−α1)

)
· exp

(
π

2
(Eα4−E−α4)

)
= exp

(
π

2
{(Eα1+Eα4)−(E−α1+E−α4)}

)
. (A.2)

w̃4 can also be rewritten similarly. We thus can express w̃a (a = 1, · · · , 4) as

w̃a = exp
(
π

2

(
eβ̄a

−e−β̄a

))
, (A.3)

with

e±β̄1
≡ E±α2 , e±β̄2

≡ E±α3 , e±β̄3
≡ E±α1+E±α4 , e±β̄4

≡ E±α0+E±α5 .

(A.4)

These e±β̄a
generate F4(+4) as the invariant Lie subalgebra of E6(+6) under the Z2

automorphism of the E6 Dynkin diagram: α0 ↔ α5, α1 ↔ α4, α2 ↔ α2, α3 ↔
α3. What we did here can thus be understood as the folding procedure to obtain
F4(+4) from E6(+6) with the Z2 automorphism (see Fig. 3). The operators e±β̄a

then
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Fig. 3. Folding procedure to obtain F4 from E6 with the Z2 outer automorphism.

correspond to the step operators associated with the F4(+4) simple roots β̄a with
lengths β̄2

1 = β̄2
2 = 2 and β̄2

3 = β̄2
4 = 1.

One can easily show that the NS gauge with (λ′1, λ′2, λ′3) is related to this canon-
ical gauge as λ′i = w ′(λ̄i) with the Weyl group element

w ′ ≡ wα0wα1wα3wα4wα2+α3+α4+α5wα1+α3+α4+α5 , (A.5)

while the R gauge with (λ1, λ2, λ3) is related to the canonical gauge with

w = wα0 · w ′ = wα1wα3wα4wα2+α3+α4+α5wα1+α3+α4+α5 . (A.6)

The step operators associated with the simple roots β ′
a ≡ w ′(β̄a) (NS gauge) or

βa ≡ w(β̄a) (R gauge) can then be calculated by

e′β ′
a
= w̃ ′ eβ̄a

w̃ ′ −1, (NS gauge)

eβa = w̃ eβ̄a
w̃−1. (R gauge) (A.7)

By representing all the step operators of E6(+6) as 27 × 27 matrices in the repre-
sentation 27, one can carry out the above calculation explicitly to obtain (3.7) and
(3.9). Ambiguities may arise when lifting the elements of the Weyl group, but they
can be essentially fixed by requiring that the lifted elements rotate positive charges
to positive charges.
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