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We investigate the AdS/CFT correspondence for higher-derivative gravity systems and
develop a formalism in which the generating functional of the boundary field theory is given
as a functional that depends only on the boundary values of bulk fields. We also derive a
Hamilton-Jacobi-like equation that uniquely determines the generating functional, and give
an algorithm calculating the Weyl anomaly. Using the expected duality between a higher-
derivative gravity system and N = 2 superconformal field theory in four dimensions, we
demonstrate that the resulting Weyl anomaly is consistent with the field theoretic anomaly.

§1. Introduction

Over the past few years, many attempts have been made to check the AdS/CFT
correspondence. 1) - 3) (For a review, see Ref. 4)). As an example, it is shown in
Ref. 3) that the spectrum of chiral operators of N = 4 super Yang-Mills in four
dimensions coincides with that of the Kaluza-Klein modes of type IIB supergravity
on AdS5 × S5. Also, the computation of anomalies via bulk gravity has been shown
to exactly reproduce the results of the super Yang-Mills theory. 3) - 6) However, this
matching of the anomalies is valid only in the regime whereN → ∞, λ = g2YMN � 1,
since the analysis is based on a classical supergravity computation. At present, it
remains an important issue to test the duality beyond this regime.

There have been several attempts to confirm the validity of the duality beyond
the classical gravity approximation. 7) - 11) Among these, Ref. 8) treats N = 2 G=
USp(N) superconformal field theory (SCFT) in four dimensions. This SCFT can be
realized on the world volume of D3-branes situated inside eight D7-branes coincident
with an O7− brane, and is known 12) to be dual to type IIB string on AdS5×S5/Z2.
The authors of Ref. 8) showed that this duality reproduces the 1/N correction to
the U(1)R chiral anomaly correctly. In Refs. 9) and 10), the 1/N correction to the
Weyl anomaly of the SCFT is computed using a higher-derivative gravity theory in
which a curvature square term is added.

However, higher-derivative gravity theories†) exhibit some features in the
AdS/CFT correspondence that differ from those in Einstein gravity. To see this,
we first recall that the equation of motion for Einstein gravity is a second-order
differential equation in time r. Thus, a classical solution can be totally specified by
prescribing the value at the boundary if we further impose the regular behavior of the
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solution inside the bulk, 3) and the boundary value can be identified with an external
field coupled to an operator in the dual CFT. 2), 3) The situation changes drastically
if we consider higher-derivative theories. In fact, a higher-derivative system with
Lagrangian density L(g, ġ, · · · , g(N+1)), where gij is the metric and · = ∂/∂r, generi-
cally gives an equation of motion that is a differential equation of 2(N+1)-order in r.
We then would need (N+1) boundary conditions for each field to specify a classical
solution, even if we require its regular behavior inside the bulk.

The main aim of the present paper is to formulate higher-derivative gravity sys-
tems in accordance with the holographic principle. In this paper, we say that the
holographic principle holds when the following two conditions are satisfied: (1) the
classical solution of a higher-derivative system is specified uniquely by the bound-
ary value of each bulk field, and (2) the bulk geometry becomes AdS-like near the
boundary. In order to satisfy the first condition, we first note that the system
L(g, ġ, · · · , g(N+1)) can be transformed into a Hamilton system with (N +1) pairs
of canonical variables (g,Qa), (p, Pa) (a = 1, · · · , N) by defining Qa

ij = ∂
agij/∂r

a.
(See the next section for details.) Thus, by setting boundary conditions that are of
the Dirichlet type for g and the Neumann type for Qa, the classical solution of this
system can be specified only by the boundary value of g. Note also that the classical
action of this system, which is obtained by plugging this solution into the action,
becomes a functional of these boundary values of bulk fields. The second condition
ensures the existence of a UV fixed point of the dual theory at the boundary, and
such a fixed point enables us to take the continuum limit. 14) We see below that
appropriate boundary terms need to be added to the bulk action in order for the
bulk metric to exhibit such asymptotic behavior when higher-derivative terms exist.

For a systematic treatment of these issues, we employ the Hamilton-Jacobi for-
mulation, as introduced by de Boer, Verlinde and Verlinde 15) to investigate the
holographic RG structure of Einstein gravity. (See Refs. 16)–24) for more details
of the holographic RG.) This formulation is further elaborated in Refs. 25)–31). In
particular, a systematic prescription for calculating the Weyl anomaly in arbitrary
dimensions is developed in Ref. 26). In this paper, we show that the Hamilton-Jacobi
equation is quite a useful tool also to study the holographic RG structure in higher-
derivative systems. Actually, we can derive a Hamilton-Jacobi-like equation that
determines the classical action in accordance with the holographic principle. That
is, the classical action can be solved as a functional of a boundary value for each
bulk field. As a check of our formulation, we compute 1/N corrections to the Weyl
anomaly of the N = 2 SCFT by solving the Hamilton-Jacobi-like equation. In the
course of this analysis, we find that the prescription developed in Ref. 26) is again
helpful. We show that our result can reproduce that of Refs. 9) and 10).

The organization of this paper is as follows. In §2, we formulate the Hamilton-
Jacobi equation for a higher-derivative system with emphasis on applications to the
AdS/CFT correspondence. In §3, we apply the formulation to higher-derivative
gravity and derive an equation that determines the classical action. In §4, we solve
the equation following the prescription given in Ref. 26), and demonstrate how to
calculate the Weyl anomaly. We show that the resulting Weyl anomaly correctly
reproduces that given in Refs. 9) and 10). Section 6 is devoted to a conclusion.
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There, a comment is given on the holographic RG structure in higher-derivative
gravity systems. Some useful results are summarized in the appendices.

§2. Hamilton-Jacobi equation for a higher-derivative Lagrangian

In this section, we give a prescription for determining the classical action when
higher-derivative terms are added. We start our discussion for a system of point
particles with the action

S[q(r)] =
∫ t

t′
dr L

(
q, q̇, · · · , q(N+1)

) (
q(n)(r) ≡ dnq(r)/drn

)
. (2.1)

The extension of our argument to gravitational systems is straightforward and will
be carried out in the next section.∗)

The action (2.1) can be rewritten into the first-order form in the following
way. We first introduce the Lagrange multipliers p, P1, · · · , PN−1, so that q,Q1 =
q̇, · · · , QN =q(N) can be regarded as independent canonical variables:

L
(
q,Q1, · · · , QN , Q̇N ; p, P1, · · · , PN−1

)
= p(q̇ −Q1) + P1(Q̇1 −Q2) + · · ·+ PN−1(Q̇N−1 −QN )
+L(q,Q1, · · · , QN , Q̇N ). (2.2)

We then carry out a Legendre transformation from (QN , Q̇N ) to (QN , PN ) through

PN =
∂L

∂Q̇N

(
q,Q1, · · · , QN , Q̇N

)
. (2.3)

We here assume that this equation can be solved with respect to Q̇N
(
≡ f(q,Q1, · · · ,

QN ;PN )
)
, and thus obtain the following action that is equivalent to (2.1) classically:

S[q,Q1, · · · , QN ; p, P1, · · · , PN ] =
∫ t

t′
dr

[
p q̇ +

N∑
a=1

PaQ̇
a −H(q,Qa; p, Pa)

]
,

(2.4)

where Q̇N is now the time-derivative of the independent variable QN , and the Hamil-
tonian is given by

H(q,Qa; p, Pa) = pQ1 + P1Q
2 + · · ·+ PN−1Q

N + PN f(q,Qa; PN )

−L
(
q,Q1, · · · , QN , f(q,Qa; PN )

)
. (2.5)

The variation of the action (2.4) is given by

∗) See also Ref. 32), where higher-derivative systems are discussed from the viewpoint of string
theories.
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δS =
∫ t

t′
dr

[
δp

(
q̇ − ∂H

∂p

)
+
∑
a

δPa

(
Q̇a − ∂H

∂Pa

)

− δq
(
ṗ+

∂H

∂q

)
−
∑
a

δQa
(
Ṗa +

∂H

∂Qa

)]
+
(
p δq +

∑
Pa δQ

a
) ∣∣∣∣t

t′
,

(2.6)

and thus the equation of motion consists of the usual Hamilton equations,

q̇ =
∂H

∂p
, Q̇a =

∂H

∂Pa
, ṗ = −∂H

∂q
, Ṗa = − ∂H

∂Qa
, (2.7)

and the following constraint, which must hold at the boundary, r=t and r=t′:

p δq +
∑
a

Pa δQ
a = 0 (r=t, t′) . (2.8)

The latter requirement, (2.8), can be satisfied when we use either Dirichlet boundary
conditions,

Dirichlet : δq = 0 , δQa = 0 (r=t, t′) , (2.9)

or Neumann boundary conditions,

Neumann : p = 0 , Pa = 0 (r=t, t′) , (2.10)

for each variable q and Qa (a = 1, · · · , N). If, for example, we take the classical
solution (q̄, Q̄a, p̄, P̄a) that satisfies the Dirichlet boundary conditions for all (q,Qa)
with the specified boundary values as

q̄(r=t) = q, Q̄a(r=t) = Qa, and q̄(r=t′) = q′, Q̄a(r=t′) = Q′a ,
(2.11)

then after plugging the solution into the action, we obtain the classical action that
is a function of these boundary values,

S(t, q,Qa; t′, q′, Q′a) = S
[
q̄(r), Q̄a(r); p̄(r), P̄a(r)

]
. (2.12)

However, as we discussed in the Introduction, this classical action is not of great
interest to us in the context of the AdS/CFT correspondence, since the holographic
principle requires that the bulk be specified by only the values q and q′ at the
boundary. This leads us to use mixed boundary conditions:

δq = Pa = 0 (r=t, t′) . (2.13)

That is, we impose Dirichlet boundary conditions for q and Neumann boundary
conditions for Qa. In this case, the classical action (to be called the reduced classical
action) becomes a function only of the boundary values q and q′:

S = S(t, q; t′, q′) . (2.14)
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A renormalization group interpretation of this condition is discussed briefly in the
concluding section, and will be discussed in detail in a forthcoming paper. 34)

Now we derive a Hamilton-Jacobi-like equation that determines the reduced
classical action (2.14). This can be derived in two ways, and we start with the more
complicated way, since this gives us a deeper understanding of the mathematical
structure. To this end, we first change the polarization of the system by performing
the canonical transformation∗)

Ŝ ≡ S −
∫ t

t′
dF , (2.15)

with the generating function

F =
∑
a

PaQ
a . (2.16)

Although the Hamilton equation does not change under this transformation, the
boundary conditions at r=t and r=t′ become

p δq −
∑
a

QaδPa = 0 (r=t, t′) . (2.17)

These boundary conditions can be satisfied by imposing the Dirichlet boundary
conditions for both q̄ and P̄a:

q̄(r=t) = q, P̄a(r=t) = Pa , and q̄(r=t′) = q′, P̄a(r=t′) = P ′
a . (2.18)

Substituting this solution into Ŝ, we obtain a new classical action that is a function
of these boundary values,

Ŝ
(
t, q, Pa; t′, q′, P ′

a

)
= Ŝ

[
q̄(r), Q̄a(r); p̄(r), P̄a(r)

]
. (2.19)

By taking the variation of Ŝ and using the equation of motion, we can easily show
that the new classical action Ŝ obeys the Hamilton-Jacobi equation:

∂Ŝ

∂t
= −H

(
q,− ∂Ŝ

∂Pa
; +
∂Ŝ

∂q
, Pa

)
,

∂Ŝ

∂t′
= +H

(
q′,+

∂Ŝ

∂P ′
a

; −∂Ŝ
∂q′
, P ′

a

)
. (2.20)

The reduced classical action S(t, q; t′, q′) is then obtained by setting Pa = 0 in Ŝ:

S
(
t, q; t′, q′

)
= Ŝ

(
t, q, Pa = 0; t′, q′, P ′

a = 0
)
. (2.21)

∗) The following procedure corresponds to a change of representation from the Q-basis to the

P -basis in the WKB approximation:

Ψ(t, q, Q) = eiS(t,q,Q)/h̄ → Ψ̂(t, q, P ) = eiŜ(t,q,P )/h̄ ≡
∫

dQ e−iPaQa/h̄ Ψ(t, q, Q) .
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Note that the generating function F vanishes at the boundary when we set Pa = 0.
Here we briefly describe how the Hamilton-Jacobi equation (2.20) is solved. For

simplicity, we consider the case N = 1 and focus only on the upper boundary at
r = t. Motivated by the gravitational system considered in the next section, we
assume that the Lagrangian takes the form

L(q, q̇, q̈) = L0(q, q̇) + cL1(q, q̇, q̈), (2.22)

where

L0(q, q̇) =
1
2
mij(q)q̇iq̇j − V (q),

L1(q, q̇, q̈) =
1
2
nij(q)q̈iq̈j −Ai(q, q̇)q̈i − φ(q, q̇), (2.23)

with

Ai(q, q̇) = a
(2)
ijk(q)q̇

j q̇k + a(0)i (q),

φ(q, q̇) = φ(4)
ijkl(q)q̇

iq̇j q̇kq̇l + φ(2)
ij (q)q̇

iq̇j + φ(0)(q). (2.24)

We further assume that the determinants of the matrices mij(q) and nij(q) have the
same signature.∗) Following the procedure discussed above, this Lagrangian can be
rewritten into the first-order form

L = p q̇ + PQ̇−H(q,Q; p, P ) , (2.25)

with the Hamiltonian

H(q,Q; p, P ) = piQ
i − 1

2
mij(q)QiQj + V (q)

+
1
2c
nij(q)

(
Pi + cAi(q,Q)

)(
Pj + cAj(q,Q)

)
+ c φ(q,Q),

(2.26)

where nij = (nij)−1. The Hamilton-Jacobi equation (2.20) is solved as a double
expansion with respect to c and P by assuming that the classical action takes the
form

Ŝ(t, q, P ) =
1√
c
Ŝ−1/2(t, q, P ) + Ŝ0(t, q, P ) +

√
c Ŝ1/2(t, q, P ) + c Ŝ1(t, q, P )

+O(c3/2). (2.27)

After some simple algebra, the coefficients are found to be

Ŝ−1/2 =
1
2
uij(q)PiPj +O(P 3),

Ŝ0 = S0(t, q)− Pi ∂
iS0 +O(P 2),

∗) In fact, it is easy to see that this is the case in the higher-derivative gravity system considered
below.
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Ŝ1/2 = Pi u
ij(q)njk(q)

[
Γ k

lm ∂
lS0 ∂

mS0 + ∂kV (q) + nkl(q)Al

(
q,
∂S0

∂q

)]
+O(P 2). (2.28)

Here,

∂i ≡ ∂

∂qi
, ∂i ≡ mij∂i, (2.29)

and Γ i
jk is the affine connection defined by mij. Also uij is defined by the relation

uik(q)ujl(q)mkl(q) = nij(q). (2.30)

Furthermore, S0(t, q) = Ŝ0(t, q, P = 0) and S1(t, q) = Ŝ1(t, q, P = 0) satisfy the
equations

−∂S0

∂t
=

1
2
mij(q)

∂S0

∂qi
∂S0

∂qj
+ V (q),

−∂S1

∂t
= mij(q)

∂S1

∂qi
∂S0

∂qj

−1
2
nij(q)

(
Γ i

kl ∂
kS0 ∂

lS0 + ∂iV (q)
)(

Γ j
mn ∂

mS0 ∂
nS0 + ∂jV (q)

)
−Ai

(
q,
∂S0

∂q

)(
Γ i

kl ∂
kS0 ∂

lS0 + ∂iV (q)
)
+ φ
(
q,
∂S0

∂q

)
, (2.31)

which can be expressed as a Hamilton-Jacobi-like equation for the reduced classical
action S(t, q) = S0(t, q) + c S1(t, q) +O(c2):

−∂S
∂t

= H̃(q, p), pi =
∂S

∂qi
, (2.32)

where

H̃(q, p) =
1
2
mij(q)pipj + V (q)

+ c
[
−1
2
nij(q)

(
Γ i

kl p
kpl + ∂iV (q)

) (
Γ j

mn p
mpn + ∂jV (q)

)
−Ai(q, p)

(
Γ i

kl p
kpl + ∂iV (q)

)
+ φ(q, p)

]
. (2.33)

It is important to note that H̃ is not the Hamiltonian. In fact, the Hamilton equation
for H̃ does not coincide with that obtained from (2.26).

In solving the full Hamilton-Jacobi equation (2.20) for Ŝ(t, q, P ), we imposed the
condition that everything becomes regular around c = 0 when we set P = 0. This is
because in most interesting cases (like those of the gravity systems we discuss in the
following sections) the higher-derivative term is regarded as a perturbation, so that
the reduced classical action must have a finite limit for c→0. Once such a regularity
condition is imposed, we have an alternative way to derive this pseudo-Hamiltonian
H̃ with greater ease. In fact, for any Lagrangian of the form

L(qi, q̇i, q̈i) = L0(qi, q̇i) + cL1(qi, q̇i, q̈i) , (2.34)
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one can prove the following theorem, assuming that the classical solution can be
expanded around c = 0:∗)

Theorem
Let H0(q, p) be the Hamiltonian corresponding to L0(q, q̇). Then the reduced classical
action S(t, q; t′, q′) = S0(t, q; t′, q′) + c S1(t, q; t′, q′) + O(c2) satisfies the following
equation up to O(c2):

−∂S
∂t

= H̃(q, p), pi =
∂S

∂qi
, and +

∂S

∂t′
= H̃(q′, p′), p′i = − ∂S

∂q′ i
, (2.35)

where

H̃(q, p)≡H0(q, p)− cL1(q, f1(q, p), f2(q, p)),

f i
1(q, p)≡

{
H0, q

i
}
=
∂H0

∂pi
,

f i
2(q, p)≡

{
H0,

{
H0, q

i
}}

=
∂2H0

∂pi∂qj
∂H0

∂pj
− ∂2H0

∂pi∂pj

∂H0

∂qj
.(

{F (q, p), G(q, p)} ≡ ∂F

∂pi

∂G

∂qi
− ∂G
∂pi

∂F

∂qi

)
(2.36)

A proof of this theorem is given in Appendix A. It can easily be confirmed that this
correctly reproduces (2.32) and (2.33) for the Lagrangian given in (2.22)–(2.24).

§3. Application to higher-derivative gravity

In this section, following the prescription developed in the previous section, we
derive an equation that determines the reduced classical action for a higher-derivative
gravity system.

We first recall the holographic description of RG flows in the dual boundary field
theory. We parametrize the bulk metric with the Euclidean ADM decomposition.
(For more details of the ADM decomposition, see Appendix B.) We then have

ds2 = ĝµν dX
µdXν

= N(x, r)2dr2 + gij(x, r)
(
dxi + λi(x, r)dr

)(
dxj + λj(x, r)dr

)
. (3.1)

∗) As long as we think of L1 as a perturbation, any classical solution can be expanded as

q̄(r) = q̄0(r) + c q̄1(r) +O(c2) .

Here q̄0 is the classical solution for L0, and q̄1 is obtained by solving a second-order differential

equation. Note that we can, in particular, enforce the boundary conditions

q̄0(r=t) = q, q̄1(r=t) = 0 and q̄0(r=t′) = q′, q̄1(r=t′) = 0 .

In this case, due to the equation of motion for q̄0(r) , the classical action is simply given by

S(q, t; q′, t′) =

∫ t

t′
dr
[
L0(q̄0, ˙̄q0) + c L1(q̄0, ˙̄q0, ¨̄q0)

]
+O(c2) .

This corresponds to the classical action considered in Ref. 10).
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Here Xµ = (xi, r), with i, j = 1, 2, · · · , d, and N and λi are the lapse and the shift
function, respectively. The signature of the metric gij is taken to be (+ · · ·+). By
assuming that the geometry becomes AdS-like in the limit r→−∞, the Euclidean
time r is identified with the RG parameter of the d-dimensional boundary theory, and
the time evolution of other bulk fields (such as scalars) is interpreted as an RG flow of
the coupling constants with a UV fixed point at the boundary. To avoid a singularity
of the metric gij at r = −∞, we restrict the region of r such that r0≤ r<∞. 2), 3), 33)

This corresponds to the introduction of a UV cutoff to the boundary field theory. In
the following, we consider a (d+ 1)-dimensional manifold Md+1 = {(xi, r)} that has
a topology given by Md+1∼(Rd ∪∞)× R+, with r0≤r<∞.

We consider classical gravity on Md+1 with the action

S = SB + Sb . (3.2)

Here SB is the bulk action given by

SB =
∫

Md+1

dd+1X
√
ĝLB , (3.3)

LB = 2Λ− R̂− aR̂2 − bR̂2
µν − cR̂2

µνρσ , (3.4)

where a, b and c are some given constants. Sb contains boundary terms defined on
the boundary Σd = ∂Md+1 at r = r0. The form of Sb can be determined by requiring
that it is invariant under the diffeomorphism

Xµ → X ′µ = fµ(X), (3.5)

with the condition

f r(r = r0, x) = r0. (3.6)

Equation (3.6) implies that the diffeomorphism does not change the location of the
boundary. It is then easy to verify that Sb takes the form (for details see Appendix
C)

Sb =
∫

Σd

ddx
√
g B, (3.7)

with

B = 2K + x1RK + x2RijK
ij + x3K

3 + x4KK
2
ij + x5K

3
ij , (3.8)

where Kij is the extrinsic curvature of Σd given by

Kij =
1
2N

(ġij −∇iλj −∇jλi) , (3.9)

and K = gijKij . ∇i and Rijkl are, respectively, the covariant derivative and the Rie-
mann tensor defined by gij. The first term in B ensures that the Dirichlet boundary
conditions can be imposed in the Einstein theory 35) and also plays an important
role in the context of the AdS/CFT correspondence. 36) We argue below that the
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coefficients x1, · · · , x5 must obey some relations so that the holography holds even
for higher-derivative gravity.∗)

The action (3.2) is expressed in terms of the ADM parametrization as

S =
∫

Md+1

dd+1X

[√
ĝLB − ∂

∂r
(
√
g B)

]
=
∫ ∞

r0

dr

∫
ddx

√
g
[
L0(g,K; N,λ) +L1(g,K, K̇; N,λ)

]
, (3.10)

where ∗∗)

1
N

L0 = 2Λ−R+K2
ij −K2, (3.11)

1
N

L1 = −aR2 − bR2
ij − cR2

ijkl +
[
(−6a+ 2x1)K2

ij + (2a− x1)K2
]
R

+
[
− 2(2b+ 4c− x2)(K2)ij + (2b+ 2x1 − x2)KKij

]
Rij

+2(6c+ x2)KikKjlR
ijkl

− 2(2b+ c− 3x5)K4
ij + (4b+ 4x4 − x5)KK3

ij

− (9a+ b+ 2c− 2x4)
(
K2

ij

)2
+ (6a− b+ 6x3 − x4)K2K2

ij

− (a+ x3)K4

− (4b+ 2x1 − x2)Kij∇i∇jK + 2(b− 4c+ x2)Kij∇j∇kK
ki

+(8c+ x2)Kij∇2Kij + 2(b+ x1)K∇2K

−
[
(4a+ b)gijgkl + (b+ 4c)gikgjl

]
LijLkl

+

[{
(4a− x1)R+ (12a+ 2b− x4)K2

kl − (4a+ 3x3)K2
}
gij

+ (2b− x2)Rij + (4b+ 8c− 3x5)(K2)ij − 2(b+ x4)KKij

]
Lij ,

(3.12)

with

Kij =
1
2N

(ġij −∇iλj −∇jλi) , (3.13)

Lij =
1
N

(
K̇ij − λk ∇kKij −∇iλ

kKkj −∇jλ
kKik +∇i∇jN

)
. (3.14)

By regarding gij and Kij as independent canonical variables,∗∗∗) the action (3.10)
∗) See, e.g., Refs. 37) and 38) for another discussion of boundary terms in higher-derivative

gravity.
∗∗) We here use the following abbreviated notation: Kn

ij ≡ Ki2
i1

Ki3
i2

· · ·Ki1
in

, (K2)ij ≡ KikKk
j .

∗∗∗) The correspondences between the variables in §2 are as follows: q ↔ gij , p ↔ √
g πij , Q ↔

Kij , P ↔ √
g P ij .
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can be further rewritten into the first-order form

S =
∫ ∞

r0

dr

∫
ddx

√
g
[
πij (ġij − 2NKij −∇iλj −∇jλi) +L0 +L1

]
=
∫ ∞

r0

dr

∫
ddx

√
g
[
πij ġij + P ijK̇ij − H(g,K;π, P ;N,λ)

]
. (3.15)

Here the Hamiltonian density H can be evaluated as

H = πij (2NKij +∇iλj +∇jλi) + P ijK̇ij − L0 − L1

= NH(g,K;π, P ) + λiP i(g,K;π, P ), (3.16)

with

H(g,K;π, P ) = 2πijKij − 1
4(b+ 4c)

P 2
ij +

4a+ b
4(b+ 4c) (4da+ (d+ 1)b+ 4c)

P 2

−∇i∇jP
ij +

[
A1R

ij +A2 (K2)ij +A3KK
ij
]
Pij

+
[
A4R+A5K

2
ij +A6K

2
]
P

− 2Λ+R−K2
ij +K

2

+B1R
2 +B2R

2
ij +B3R

2
ijkl

+
(
C1K

2
ij + C2K

2
)
R+

[
C3 (K2)ij + C4KKij

]
Rij

+C5KikKjlR
ijkl

+D1K
4
ij +D2KK

3
ij +D3 (K2

ij)
2 +D4K

2K2
ij +D5K

4

+E1Kij∇i∇jK +E2Kij∇j∇kK
kj

+E3Kij∇2Kij +E4K∇2K, (3.17)
P i(g,K;π, P ) = − 2∇jπ

ij + Pkl∇iKkl − 2∇k(KijPjk). (3.18)

The coefficients A1, · · · , E4 are not important in the following discussion, and are
listed in Appendix D. The classical equivalence between the two actions (3.10) and
(3.15) can be easily established by noting that the latter gives the following equation
of motion for πij:

P ij = − 2
(
(4a+ b) gijgkl + (b+ 4c) gikgjl

)
Lkl

+
[
(4a− x1)R+ (12a+ 2b− x4)K2

kl − (4a+ 3x3)K2
]
gij

+(2b− x2)Rij + (4b+ 8c− 3x5)(K2)ij − 2(b+ x4)KKij . (3.19)

This correctly reproduces the original action (3.10) when substituted into (3.15).
Following the prescription given in §2, we now make a canonical transformation

that changes the polarization of S from (gij,Kij) to (gij , P ij):

Ŝ ≡ S −
∫

Md+1

dd+1X
∂

∂r

(√
g KijP

ij
)

=
∫ ∞

r0

∫
ddx

√
g
(
πij ġij −KijṖ

ij −NĤ − λiP̂ i
)
, (3.20)
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with

Ĥ(g,K;π, P ) ≡ H(g,K;π, P ) +KKijP
ij ,

P̂ i(g,K;π, P ) ≡ P i(g,K;π, P )−∇i(KjkP
jk)

= −2∇jπ
ij −∇iP jkKjk − 2∇k(KijPjk), (3.21)

where we have used the relation

∂r
√
g =

√
g
(
NK +∇iλi

)
. (3.22)

Since N and λi are the Lagrange multipliers, we obtain the Hamiltonian and mo-
mentum constraints

1√
g

δŜ

δN
= Ĥ(g,K; π, P ) = 0, (3.23)

1√
g

δŜ

δλi
= P̂ i(g,K; π, P ) = 0. (3.24)

We now let ḡij and P̄ ij represent the solution to the equation of motion for Ŝ
that obeys the boundary conditions

ḡij(x, r = r0) = gij(x), P̄ ij(x, r = r0) = P ij(x). (3.25)

We also require that the solution be regular or be set to some specific value in-
side the bulk (r→∞), and assume that the above boundary condition is sufficient
to specify the classical solution completely. 3) Plugging the solution into Ŝ, we ob-
tain the classical action Ŝ[g(x), P (x)], which satisfies the following Hamilton-Jacobi
equation:∗)

1√
g

δŜ

δgij
= −πij ,

1√
g

δŜ

δP ij
= +Kij , (3.26)

Ĥ(g,K;π, P ) = 0 , (3.27)
P̂ i(g,K;π, P ) = 0 . (3.28)

∗) The last equation demonstrates the invariance of Ŝ under a d-dimensional diffeomorphism,

0 = −
∫

Σd

ddx
√

g εiP̂i

=

∫
Σd

ddx

[
(∇iεj +∇jεi)

δŜ

δgij
+ (−∂kεi P kj − ∂kεj P ik + εk ∂kP ij)

δŜ

δP ij

]
,

with εi(x) an arbitrary function. This also demonstrates the invariance of the reduced classical

action,

0 =

∫
Σd

ddx (∇iεj +∇jεi)
δS

δgij
,

for arbitrary εi(x).
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Since the Hamiltonian density is a linear combination of the constraints, the classical
action Ŝ does not depend on the coordinate of the lower boundary:

∂

∂r0
Ŝ =

∫
ddx

√
g
(
NĤ+ λiP̂ i

)
= 0 . (3.29)

This implies that the reduced classical action

S[g(x)] ≡ Ŝ[g(x), P (x) = 0] (3.30)

is also independent of r0:

∂

∂r0
S = 0. (3.31)

The Hamiltonian and the momentum constraints (3.27) and (3.28) can be trans-
lated into equations for the reduced classical action, as we sketched for point-particle
systems in Eqs. (2.27)–(2.33). However, the resulting equation can be derived most
easily by using the Theorem, (2.35) and (2.36), as follows: We first rewrite the
Lagrangian density of zero-th order, L0, into the first-order form

L0 → πij ġij − H0 , (3.32)

where the zero-th order Hamiltonian density H0 is given by

H0(g, π; N,λ) = N
(
π2

ij −
1

d− 1
π2 − 2Λ+R

)
− 2λi ∇jπ

ij . (3.33)

Then by using the Theorem, the pseudo-Hamiltonian density is given by

H̃(g, π; N,λ) = H0(g, π; N,λ)− L1(g,K0(g, π), K1(g, π); N,λ) . (3.34)

HereK0
ij(g, π) is obtained by replacing ġij(x) in (3.13) with

{∫
ddy

√
gH0(y), gij(x)

}
,

and it is calculated to be

K0
ij = πij − 1

d− 1
π gij . (3.35)

On the other hand, K1
ij ≡

{∫
ddy

√
gH0(y), K0

ij

}
is found to be equivalent to re-

placing Lij in L1 by

L0
ij = − 1

2(d− 1)2

[
2(d− 1)Λ+ (d− 1)R+ (d− 1)π2

kl − 3π2
]
gij

+Rij + 2(π2)ij − 3
d− 1

ππij . (3.36)

Using Eqs. (3.31)–(3.36), we obtain the following Hamilton-Jacobi-like equation for
the reduced classical action:

0 =
∫
ddx

√
g H̃

(
g(x), π(x);N,λi

)
=
∫
ddx

√
g
[
N H̃(g(x), π(x)) + λi P̃i(g(x), π(x))

]
, (3.37)
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πij(x) =
−1√
g

δS

δgij(x)
, (3.38)

where ∗)

H̃(g, π) ≡ π2
ij −

1
d− 1

π2 − 2Λ+R

+α1 π
4
ij + α2 ππ

3
ij + α3

(
π2

ij

)2
+ α4 π

2π2
ij + α5 π

4

+β1 Λπ
2
ij + β2 Λπ

2 + β3Rπ
2
ij + β4Rπ

2

+β5Rij(π2)ij + β6Rij ππ
ij + β7Rijkl π

ikπjl

+ γ1 Λ2 + γ2 ΛR+ γ3R2 + γ4R2
ij + γ5R

2
ijkl , (3.39)

P̃i(g, π) ≡ −2∇jπij , (3.40)

with

α1 = 2c, α2 =
2x5

(d− 1)
,

α3 =
1

4(d− 1)2

[
4a+ (d2 − 3d+ 4)b+ 4(d− 2)(2d− 3)c

− 2(d− 1)(dx4 + 3x5)
]
,

α4 =
1

2(d− 1)3
[
−4a− (d2 − 3d+ 4)b− 4(2d2 − 5d+ 4)c

− 3dx3 + (2d2 − 7d+ 2)x4 − 3(2d− 1)x5

]
,

α5 =
1

4(d− 1)4
[
4a+ (d2 − 3d+ 4)b+ 4(2d2 − 5d+ 4)c

+ 2(3d− 4)x3 − 2(d2 − 6d+ 6)x4 + 2(5d− 6)x5

]
, (3.41)

β1 =
1

(d− 1)2

[
4da− d(d− 3)b− 4(d− 2)c− (d− 1)(dx4 + 3x5)

]
,

β2 =
1

(d− 1)3

[
− 4da+ d(d− 3)b+ 4(d− 2)c

− 3dx3 + (d2 − 2d− 2)x4 + 3(d− 2)x5

]
,

β3 =
1

2(d− 1)2

[
4a+ (d2 − 3d+ 4)b− 4(3d− 4)c

− (d− 1)(dx1 + x2 − (d− 2)x4 + 3x5)
]
,

β4 =
1

2(d− 1)3

[
− 4a− (d2 − 3d+ 4)b+ 4(d− 2)c

∗) We have ignored those terms in H̃ that contain the covariant derivative ∇. This is justified
when we consider the holographic Weyl anomaly in four dimensions. Actually, it turns out that

they give only total derivative terms in the Weyl anomaly.
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− (d− 1)(d− 4)x1 − 3(d− 1)x2 + 3(d− 2)x3

− (d2 − 8d+ 10)x4 + 3(3d− 4)x5

]
,

β5 = 16c+ 3x5, β6 =
2(x1 + 2x2 − x4 − 3x5)

d− 1
, β7 = −12c− 2x2,

(3.42)

γ1 =
d

(d− 1)2

[
4da+ (d+ 1)b+ 4c

]
,

γ2 =
1

(d− 1)2

[
4da− d(d− 3)b− 4(d− 2)c− (d− 1)(dx1 + x2)

]
,

γ3 =
1

4(d− 1)2

[
4a+ (d2 − 3d+ 4)b− 4(3d− 4)c+ 2(d− 1)((d− 2)x1 − x2)

]
,

γ4 = 4c+ x2, γ5 = c. (3.43)

Since the classical action Ŝ[g(x), P (x)] is independent of the choice of N and λi (and,
thus, so is S[g(x)]), from Eqs. (3.37)–(3.40) we finally obtain the following equation
that determines the reduced classical action:

H̃(gij(x), πij(x)) = 0 , P̃i(gij(x), πij(x)) = 0 , πij(x) =
−1√
g

δS

δgij(x)
.

(3.44)

We conclude this section by making a few comments on the possible form of
the boundary action Sb and the cosmological constant Λ. As discussed above, in
order that the boundary field theory has a continuum limit, the geometry must be
asymptotically AdS:

ds2 → dr2 + e−2r/lγij(x)dxidxj for r → −∞. (3.45)

This should be consistent with our boundary condition P ij = 0. By investigating the
equation of motion derived from the action (3.15) explicitly, it can easily be shown
that this compatibility gives rise to the relation

x1 = 4a,
x2 = 2b,

d2 x3 + d x4 + x5 = −4
3

(
d(d+ 1)a+ d b+ 2c

)
. (3.46)

It can also be shown that the asymptotic behavior (3.45) determines the cosmological
constant Λ as

Λ = −d(d− 1)
2l2

+
d(d− 3)
2l4

[
d(d+ 1)a+ db+ 2c

]
. (3.47)
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§4. Solution to the flow equation and the Weyl anomaly

In this section, we solve the equation (3.44), using the derivative expansion that
was developed in Ref. 26). We then apply the result to computing the holographic
Weyl anomaly of N = 2 superconformal field theory in four dimensions, which is
dual to IIB supergravity on AdS5 × S5/Z2.

We first note that the basic equation, (3.44), can be rewritten as a flow equation
of the form

{S, S}+ {S, S, S, S} = Ld, (4.1)

with

(
√
g)2 {S, S} ≡

( δS
δgij

)2

− 1
d− 1

(
gij
δS

δgij

)2

+ β1 Λ

(
δS

δgij

)2

+ β2 Λ

(
gij
δS

δgij

)2

+ β3R

(
δS

δgij

)2

+ β4R

(
gij
δS

δgij

)2

+ β5Rijgkl
δS

δgik

δS

δgjl

+ β6Rij
δS

δgij
gkl
δS

δgkl
+ β7Rijkl

δS

δgik

δS

δgjl

]
, (4.2)

(
√
g)4 {S, S, S, S}≡

α1

(
δS

δgij

)4

+ α2

(
gkl
δS

δgkl

)(
δS

δgij

)3

+ α3

( δS
δgij

)2
2

+ α4

(
gkl
δS

δgkl

)2
(
δS

δgij

)2

+ α5

(
gij
δS

δgij

)4
 , (4.3)

Ld≡2Λ−R− γ1Λ2 − γ2ΛR− γ3R2 − γ4R2
ij − γ5R2

ijkl. (4.4)

Following Refs. 15) and 26), we then assume that the reduced classical action S[g(x)]
takes the form

1
2κ2

d+1

S[g(x)] =
1

2κ2
d+1

Sloc[g(x)] + Γ [g(x)] , (4.5)

where 2κ2
d+1 is the (d+1)-dimensional Newton constant. The functional Γ [g] is iden-

tified with the generating functional of the boundary field theory in the background
metric gij(x), with any local sources set to zero, and Sloc[g] is the local counterterm
in S[g]:

Sloc[g(x)] =
∫
ddx

√
g(x)Lloc(x)

=
∫
ddx

√
g(x)

∑
w=0,2,4,···

[
Lloc(x)

]
w
. (4.6)
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Here we have arranged the sum over local terms according to the weight w, 26) which
is defined additively from the following rule:

weight

gij(x), Γ [g] 0

∂i 1

R, Rij , · · · 2

δΓ/δgij(x) d

We then substitute (4.5) into the flow equation (4.1) and rearrange the resulting
equation with respect to the weight. The parts of weight 0 and 2 give

2Λ− γ1Λ2 =
[
{Sloc, Sloc}

]
0
+
[
{Sloc, Sloc, Sloc, Sloc}

]
0
, (4.7)

−R− γ2ΛR =
[
{Sloc, Sloc}

]
2
+
[
{Sloc, Sloc, Sloc, Sloc}

]
2
. (4.8)

These two equations determine [Lloc]0 and [Lloc]2 as

[Lloc]0 =W , [Lloc]2 = −ΦR, (4.9)

W = −2(d− 1)
l

+
1
l3

[
− 4d(d+ 1)a− 4db− 8c+ d(d2x3 + dx4 + x5)

]
,

Φ =
l

d− 2
− 2
(d− 1)(d− 2) l

[
d(d+ 1)a+ d b+ 2c

]

+
1
l

[
d x1 + x2 +

3(d2x3 + d x4 + x5)
2(d− 1)

]
, (4.10)

where (3.47) has been used. It is worthwhile to note that W and Φ can be written
in terms of only a, b and c upon substituting into (3.46):

W = −2(d− 1)
l

− 4(d+ 3)
3l3

[
d(d+ 1)a+ db+ 2c

]
,

Φ =
l

d− 2
+

2
(d− 2) l

[
d(d− 5)a− 2b− 2c

]
. (4.11)

For d > 4, the flow equation of weight 4 simply determines
[
Lloc

]
4
in the local

counterterm, as in the case of Einstein gravity (cf. Ref. 26)), while for d = 4 this
gives an equation that characterizes the generating functional Γ [g(x)]:

2
[
{Sloc, Γ}

]
4
+ 4
[
{Sloc, Sloc, Sloc, Γ}

]
4

= − 1
2κ2

5

([
{Sloc, Sloc}

]
4
+
[
{Sloc, Sloc, Sloc, Sloc}

]
4

+ γ3R2 + γ4R2
ij + γ5R

2
ijkl

)
. (4.12)
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From this, we can evaluate the trace of the stress tensor for the boundary field theory:

〈T i
i 〉g ≡ −2√

g
gij
δΓ

δgij
. (4.13)

In fact, using the values in (4.10), we can show that the trace is given by

〈T i
i 〉g =

2l3

2κ2
5

(−1
24

+
5a
3l2

+
b

3l2
+
c

3l2

)
R2 +

(
1
8
− 5a
l2

− b

l2
− 3c
2l2

)
R2

ij +
c

2l2
R2

ijkl

 .
(4.14)

This correctly reproduces the result∗) obtained in Refs. 9) and 10), where the Weyl
anomaly was calculated by perturbatively solving the equation of motion near the
boundary and by looking at the logarithmically divergent term, as in Ref. 6).

For the case of N = 2 superconformal USp(N) gauge theory in four dimensions,
we choose 2κ2

5 such that

1
2κ2

5

=
Vol(S5/Z2) (radius of S5/Z2)5

2κ2
, (4.15)

where 2κ2 = (2π)7g2s is the ten-dimensional Newton constant, 39) and the radius
of S5/Z2 could be set to (8πgsN)1/4. 8) In this relation, we note the replacement
N → 2N as compared to the AdS5×S5 case. This is because here we must quantize
the RR 5-form flux over S5/Z2 instead of over S5. 12) For the AdS5 radius l, we may
also set l = (8πgsN)1/4. Setting the values a = b = 0 and c/2l2 = 1/32N+O(1/N2),
as determined in Ref. 10), we find that the Weyl anomaly (4.14) takes the form

〈T i
i 〉g =

N2

2π2

[(−1
24

+
1

48N

)
R2 +

(
1
8
− 3
32N

)
R2

ij +
1

32N
R2

ijkl

]
+O(N0) .

(4.16)

This is different from the field theoretical result, 40)

〈T i
i 〉g =

N2

2π2

[(−1
24

− 1
32N

)
R2 +

(
1
8
+

1
16N

)
R2

ij +
1

32N
R2

ijkl

]
+O(N0) .

(4.17)

As was pointed out in Ref. 10), the discrepancy could be accounted for by possible
corrections to the radius l as well as to the five-dimensional Newton constant. In

∗) The authors of Refs. 9) and 10) parametrized the cosmological constant Λ as

Λ = −d(d − 1)
2L2

,

so that their L is related to our l, the radius of asymptotic AdS, as

l2 = L2

[
1− (d − 3)

(d − 1)L2

(
d(d+ 1)a+ db+ 2c

)]
.

Downloaded from https://academic.oup.com/ptp/article-abstract/105/6/1017/1834076
by Kyoto Daigaku user
on 13 March 2018



Higher-Derivative Gravity and the AdS/CFT Correspondence 1035

fact, if these corrections are

l = (8πgsN)1/4
(
1 +

ξ

N

)
,

1
2κ2

5

=
Vol(S5/Z2) (8πgsN)5/4

2κ2

(
1 +

η

N

)
,

(4.18)

then the field theoretical result is correctly reproduced for 3ξ + η = 5/4.

§5. Conclusion

In this paper, we investigated higher-derivative gravity systems in the context
of the AdS/CFT correspondence. Although higher-derivative gravity requires more
boundary conditions than Einstein gravity, we pointed out that by choosing the Neu-
mann boundary conditions for higher-derivative modes, the classical action can be
made such that it depends only on the boundary values of bulk fields. We further
derived a Hamilton-Jacobi-like equation that determines such a classical action. Us-
ing this equation, we computed the 1/N correction to the Weyl anomaly of N = 2
G = USp(N) superconformal field theory in four dimensions on the basis of the
holographic description in terms of type IIB string theory on AdS5 × S5/Z2. 12) We
found that the resulting Weyl anomaly correctly reproduces the holographic Weyl
anomaly given in Refs. 9) and 10), and is consistent with the field theoretical result
if we take into account the possible corrections discussed in Ref. 10).

Finally, we comment on how our Neumann boundary condition P = 0 can be
interpreted in the context of the holographic RG. To this end, we consider a toy
model with the Lagrangian

L =
1
2
q̇2 +

1
2
µ2q2 +

c

2
q̈2 , (5.1)

whose first-order form reads

L = pq̇ + PQ̇−H(q,Q; p, P ), (5.2)

with

H(q,Q; p, P ) = −1
2
µ2q2 − 1

2
Q2 +Qp+

1
2c
P 2. (5.3)

By performing an almost diagonal canonical transformation,
q
Q
p
P

 =


a1 a2

1
m2a3

1
M2a4

a3 a4 a1 a2
cM2a3 cm2a4 cM2a1 cm2a2
cm2a1 cM2a2 c a3 c a4



q′
Q′

p′
P ′

 , (5.4)

with

m2 =
1−√1− 4c µ2

2c
= µ2(1 +O(c)) ,

M2 =
1 +

√
1− 4c µ2

2c
=
1
c
(1 +O(c)), (5.5)
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a21 =
1
m2
a23 +

1
1− 2cµ2

, a22 =
1
M2
a24 −

1
1− 2cµ2

, (5.6)

the Lagrangian can be rewritten into the following form with normalized kinetic
term:

L = p′q̇′ + P ′Q̇′ −H ′(q′, p′; Q′, P ′), (5.7)

where

H ′(q′, Q′; p′, P ′) =
1
2
p′2 +

1
2
P ′2 − 1

2
m2q′2 − 1

2
M2Q′2. (5.8)

Since a bulk mode with mass M is coupled to a scaling operator with scaling di-
mension ∆ = 1

2

(
d+

√
d+ 4M2

)
, 2), 3) the relation (5.5) shows that the mode Q′ is

coupled to a highly irrelevant operator with large scaling dimension when c�1. The
essential point of this conclusion does not change even if the variable q corresponds
to a bulk field with spin.

Turning to higher-derivative gravity systems, the above example shows that
Kij (∼ Q ∼ Q′) is highly irrelevant in the dual CFT and is approximated well by
assuming that it takes a constant value along the renormalized trajectory, as long as
we consider the vicinity of the conformal fixed point. This is equivalent to demanding
that the corresponding beta function vanishes along the renormalized trajectory.
Since P ij , the conjugate momentum of Kij , can be regarded as the RG beta function
of Kij , this leads to our requirement, P ij = 0. The holographic RG structure in
higher-derivative systems will be explored in more detail in a subsequent paper. 34)
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Appendix A
Proof of Theorem

In this appendix, we give a detailed proof of Theorem, (2.35) and (2.36), for the
action

S =
∫ t

t′
dr

[
L0(qi, q̇i) + cL1(qi, q̇i, q̈i)

]
, (A.1)

where i runs over some values. In the following discussion, we focus only on the
upper boundary, for simplicity.

We first rewrite the zero-th order Lagrangian L0 into the first-order form by
introducing the conjugate momentum p0i of qi as

S[q(r), p0(r)] =
∫ t

dr

[
p0iq̇

i −H0(q, p0) + cL1(q, q̇, q̈)
]
, (A.2)

Downloaded from https://academic.oup.com/ptp/article-abstract/105/6/1017/1834076
by Kyoto Daigaku user
on 13 March 2018



Higher-Derivative Gravity and the AdS/CFT Correspondence 1037

through the Legendre transformation from (q, q̇) to (q, p0) defined by

p0i =
∂L0

∂q̇i
(q, q̇) . (A.3)

From this, the equation of motion for p0i and qi is given by

q̇i =
∂H0

∂p0i
, (A.4)

˙p0i = −∂H0

∂qi
+ c

[
∂L1

∂qi
− d

dr

(
∂L1

∂q̇i

)
+
d2

dr2

(
∂L1

∂q̈i

)]
. (A.5)

Let q̄(r), p̄0(r) be the solution to this equation of motion that satisfies the boundary
condition

q̄i(r=t) = qi . (A.6)

Since this condition determines the classical trajectory uniquely [together with the
lower boundary values q̄i(r= t′) = q′ i that we have not written here explicitly], the
boundary value of p̄0 is completely specified by t and q: p̄0(r = t) = p0(t, q). By
plugging the classical solution into the action S, the classical action is obtained as
a function of the boundary value qi and t:

S(t, q) = S[q̄(r), p̄0(r)]. (A.7)

In order to derive a differential equation that determines S(t, q), we then take the
variation of S(t, q). Using (A.4) and (A.5), this is easily evaluated to be

δS = δt
[
p0iq̇

i −H0(q, p0) + cL1(q, q̇, q̈)
]

+ δq̄i(t)
[
p0i + c

(
∂L1

∂q̇i
(q, q̇, q̈)− d

dr

(
∂L1

∂q̈i
(q̄, ˙̄q, ¨̄q)

)∣∣∣∣
r=t

)]
+ c δ ˙̄qi(t)

∂L1

∂q̈i
(q, q̇, q̈), (A.8)

where

q̇i ≡ dq̄i

dr
(r=t), q̈i ≡ d2q̄i

dr2
(r=t) , (A.9)

and δq̄i(t) and δ ˙̄qi(t) are understood to be δq̄i(r)|r=t and d δq̄i(r)/dr|r=t, respectively.
By expanding the classical solution q̄i(r) around r = t, we find that the variations
δq̄i(t) and δ ˙̄qi(t) are given by

δq̄i(t) = δqi − q̇i δt, δ ˙̄qi(t) = δq̇i − q̈i δt. (A.10)

Here it is important to note that q̇ can be written in terms of q and t, since the
classical solution is determined uniquely by the boundary value q. Actually it can
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be shown that

δq̇i =
∂2H0

∂qj∂p0i
δqj +

∂2H0

∂p0ip0j
δp0j

=
∂2H0

∂qj∂p0i
δqj +

∂2H0

∂p0ip0j

(
∂p0j

∂t
δt+

∂p0j

∂qk
δqk
)
, (A.11)

where we have used (A.4) as well as the fact that p0 = p0(t, q). From these relations,
the variation (A.8) is found to be

δS = pi δqi − H̃(q, p) δt, (A.12)

with

pi = p0i + c
[
∂L1

∂q̇i
(q, q̇, q̈)− d

dr

(
∂L1

∂q̈i
(q̄, ˙̄q, ¨̄q)

)∣∣∣∣
r=t

+
∂L1

∂q̈j

(
∂2H0

∂qi∂p0j
+

∂2H0

∂p0j∂p0k

∂p0k

∂qi

)]
, (A.13)

H̃(q, p) = H0(q, p0)

+ c
[
−L1(q, q̇, q̈) + q̇i

(
∂L1

∂q̇i
(q, q̇, q̈)− d

dr

(
∂L1

∂q̈i
(q̄, ˙̄q, ¨̄q)

)∣∣∣∣
r=t

)
+
∂L1

∂q̈i

(
q̈i − ∂2H0

∂p0i∂p0j

∂p0j

∂t

)]
. (A.14)

In order to compute H̃(q, p), we first note that the Hamilton equation appearing in
(A.4) and (A.5) gives the relation

q̈i =
∂2H0

∂p0i∂qj
∂H0

∂p0j
+

∂2H0

∂p0i∂p0j

(
∂p0j

∂qk
∂H0

∂p0k
+
∂p0k

∂t

)
. (A.15)

It is then easy to verify that H̃(q, p) takes the form

H̃(q, p) = H0(q, p)− cL1(q, q̇, q̈) +O(c2). (A.16)

Here q̇i and q̈i in L1 can be replaced by

f i
1(q, p) ≡

{
H0(q, p), qi

}
=
∂H0

∂pi
(q, p) (A.17)

and

f i
2(q, p) ≡

{
H0(q, p),

{
H0(q, p), qi

}}
=
∂2H0

∂pi∂qj
(q, p)

∂H0

∂pj
(q, p)− ∂2H0

∂pi∂pj
(q, p)

∂H0

∂qj
(q, p) , (A.18)

respectively, up to O(c2). This completes the proof of (2.35) and (2.36).
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Appendix B
ADM Decomposition

In this appendix, we summarize the components of the Riemann tensor, Ricci
tensor and scalar curvature written in terms of the ADM decomposition.

In the ADM decomposition, the metric takes the form

ds2 = ĝµν dX
µdXν

= N(x, r)2dr2 + gij(x, r)
(
dxi + λi(x, r)dr

)(
dxj + λj(x, r)dr

)
. (B.1)

Here we use the following basis instead of the coordinate basis ∂µ:

ên̂ =
1
N
(∂r − λi∂i, ), êi = ∂i. (B.2)

In this basis, the components of the metric are given by(
ĝ(ên̂, ên̂) ĝ(ên̂, êj)
ĝ(êj , ên̂) ĝ(êi, êj)

)
=

(
1 0
0 gij

)
. (B.3)

For the purpose of computing the Riemann tensor in this basis, it is useful to start
with the formula

R̂σ
ρµν êσ = R̂(êµ, êν)êρ

=
[
∇̂êµ

, ∇̂êν

]
êρ − ∇̂[̂eµ ,̂eν ] êρ. (B.4)

Each component can be calculated explicitly by using the equations

∇̂êi
êj = −Kij ên̂ + Γ

k
ij êk,

∇̂êi
ên̂ = K

k
i êk,

∇̂ê
n̂

êj =
1
N
∂jN ên̂ +

(
Kk

j +
1
N
∂jλ

k
)
êk,

∇̂ê
n̂

ên̂ = − 1
N
gkl ∂kN êl,[

ên̂, êi
]
=

1
N
∂iN ên̂ +

1
N
∂iλ

k êk, (B.5)

where Kij is the extrinsic curvature and Γ i
jk is the affine connection with respect to

gij . We thus obtain

R̂ijkl = Rijkl −KikKjl +KilKjk,

R̂n̂jkl = ∇lKjk −∇kKjl,

R̂n̂jn̂l = (K2)jl − Ljl, (B.6)

with

Lij =
1
N

(
K̇ij − λk ∇kKij −∇iλ

kKkj −∇jλ
kKkj +∇i∇jN

)
. (B.7)
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The components of the Ricci tensor R̂µν ≡ R̂ρ
µρν = R̂νµ are given by

R̂ij = Rij + 2(K2)ij −KKij − Lij ,

R̂in̂ = ∇kKki −∇iK,

R̂n̂n̂ = K
2
ij − gijLij , (B.8)

and the scalar curvature is

R̂ = R+ 3K2
ij −K2 − 2gijLij . (B.9)

Appendix C
Boundary Terms

In this appendix, we supplement the discussion of the possible boundary terms
given in §3.

We first consider the infinitesimal transformation

xi → x′i = xi + εi(x, r), r → r′ = r + ε(x, r). (C.1)

Under this transformation, N,λi and gij are found to transform as

1
N ′ =

1
N
(1 + ε̇− λi∂iε),

λ′i = λi − ∂iε
jλj − ε̇λi − ∂iε (N2 + λ2)− gij ε̇j ,

g′ij = gij − ∂iε
kgkj − ∂jε

kgik − ∂iε λj − ∂jε λi. (C.2)

Furthermore, Γ i
jk, the affine connection defined by gij , transforms under the diffeo-

morphism (C.1) as

Γ ′i
jk = Γ

i
jk − ∂j ∂kε

i + Γm
jk ∂mε

i − Γ i
mk ∂jε

m − Γ i
jm∂kε

m + δ̃Γ i
jk, (C.3)

with

δ̃Γ i
jk = −λi∇j∇kε− ∂jε∇kλ

i − ∂kε∇jλ
i −Ngil(∂jεKlk + ∂kεKlj − ∂lεKjk).

(C.4)

Note that δ̃Γ i
jk does not contain εi. From these relations, it is straightforward to

verify that the extrinsic curvature transforms as

K ′
ij = Kij − ∂iε

lKlj − ∂kε
lKjl

+N∇i∇jε+ ∂iε (∂jN − λlKjl) + ∂jε (∂iN − λlKlj). (C.5)

We can also show that the Riemann curvature Ri
jkl transforms under (C.1) as

R′i
jkl = R

i
jkl + ∂mε

iRm
jkl − ∂jε

mRi
mkl − ∂kε

mRi
jml − ∂lε

mRi
jkm

−∂kε Γ̇
i
lj + ∂lε Γ̇

i
kj +∇kδ̃Γ

i
lj −∇lδ̃Γ

i
kj . (C.6)
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As argued in §3, we focus on the diffeomorphism that obeys the condition (3.6).
This is equivalent to the following relation in an infinitesimal form:

∂iε(r = r0) = 0. (C.7)

Therefore, we find that the boundary action (3.7) is invariant under this diffeomor-
phism.

We remark that in the above, we have discarded boundary terms of the form

S′
b =

∫
Σd

ddx
√
g
(
KijLij +KgijLij

)
, (C.8)

although these are allowed by the diffeomorphism.∗) The reason is that if there were
such boundary terms, they would require us to further introduce an extra boundary
condition, since

δS′
b =

∫
Σd

ddx
√
g
[
· · ·+ δK̇ijP

ij
2 (gkl,Kkl)

]
. (C.9)

Appendix D
Coefficients in Eq. (3.18)

We have the following values for the coefficients in Eq. (3.18):

A1 =
2b− x2

2(b+ 4c)
, A2 =

4b+ 8c− 3x5

2(b+ 4c)
, A3 = −b+ x4

b+ 4c
,

A4 = −4ab− 16ac+ bx1 + 4cx1 − 4ax2 + 2b2 − bx2

2(b+ 4c)(4da+ (d+ 1)b+ 4c)
,

A5 = −4ab− 16ac+ 2b2 + bx4 + 4cx4 − 12ax5 − 3bx5

2(b+ 4c)(4da+ (d+ 1)b+ 4c)
,

A6 =
4ab− 16ac− 3bx3 − 12cx3 + 8ax4 + 2b2 + 2bx4

2(b+ 4c)(4da+ (d+ 1)b+ 4c)
, (D.1)

B1 =
1

4(b+ 4c)(4da+ (d+ 1)b+ 4c)

×
[
4b3 + 4(d+ 1)ab2 + 4ax2

2 − 4b2x2 + bx2
2 + 64ac2 − 8abx2

+16(d− 2)abc− 4dcx1
2 − dbx1

2 + 4b2x1 + 16bcx1 − 8cx1x2

+32acx2 − 2bx1x2 + 8dabx1 + 32dacx1

]
,

B2 =
16bc+ 4bx2 − x2

2

4(b+ 4c)
, B3 = c, (D.2)

C1 =
1

4(b+ 4c)(4da+ (d+ 1)b+ 4c)
∗) By definition, the (d + 1)-dimensional scalar curvature R̂ is a scalar. It thus follows from

(B.9) that Lij(r = r0) transforms as a tensor under the diffeomorphism with (C.7).

Downloaded from https://academic.oup.com/ptp/article-abstract/105/6/1017/1834076
by Kyoto Daigaku user
on 13 March 2018



1042 M. Fukuma, S. Matsuura and T. Sakai

×
[
8b3 − 8abx2 − 16(d+ 1)bcx1 − 64c2x1 − 32dacx1

−4db2x1 + 8dabx1 − 4b2x2 + 32acx2 + 8 dabx4 − 24abx5

+24ax2x5 + 6bx2x5 − 12b2x5 + 32(d− 2)abc− 2dbx1x4

+8(d+ 1)ab2 + 16bcx4 + 4b2x4 − 2bx2x4 − 6bx1x5

−8cx2x4 − 8dcx1x4 + 32dacx4 − 24cx1x5 + 96acx5 + 128ac2
]
,

C2 =
1

4(b+ 4c)(4da+ (d+ 1)b+ 4c)

×
[
− 16b2c+ 8bcx2 + 64c2x1 + 32dacx1 − 32(d+ 2)abc

−8(7d+ 5)ab2 − (d− 3)bx2x4 − 4(d− 4)ax2x4

+8(d− 2)abx4 + 2(d− 3)b2x4 + 3(d− 1)bx2x3 − 6(d− 1)b2x3

−4(d+ 3)b3 + 32acx2 + 24(d+ 1)abx2 + 16(d+ 1)bcx1

+64da2x2 − 12cx2x3 + 2(d+ 3)b2x2 + 8dabx1 + 4db2x1

−6dbx1x3 + 24bcx3 − 4bx1x4 + 12dax2x3 + 8bcx4 + 96dacx3

−4cx2x4 − 16cx1x4 + 64acx4 − 24dcx1x3 − 128da2b− 128ac2
]
,

C3 =
32bc+ 6bx5 − 3x2x5 + 64c2 − 8cx2

2(b+ 4c)
,

C4 =
−8bc+ 2bx4 − 2bx1 − x2x4 − 8cx1 + 4cx2

b+ 4c
, C5 = −12c− 2x2,

(D.3)

D1 =
8bc− 9x5

2 − 48cx5 − 32c2

4(b+ 4c)
,

D2 =
−4bx5 − 16bc− 16cx4 − 6x4x5 + 8cx5

2(b+ 4c)
,

D3 =
1

4(b+ 4c)(4da+ (d+ 1)b+ 4c)

×
[
− 6bx4x5 − 64c2x4 + 96acx5 − 16(d+ 1)bcx4 − 32dacx4 + 128c3

−4db2x4 − 24cx4x5 + 32(d+ 2)bc2 − dbx4
2 − 4dcx4

2 + 8(d+ 1)b2c
+4b3 + 64(2d+ 1)ac2 + 4(d+ 1)ab2 + 16(3d− 2)abc− 24abx5

−12b2x5 − 8dabx4 + 9bx5
2 + 36ax5

2
]
,

D4 =
1

4(b+ 4c)(4da+ (d+ 1)b+ 4c)

×
[
− 8b3 − 32cx4

2 + 48ax4x5 − 16dax4
2 + 24abx5 + 12b2x5 + 12bx4x5

−24dabx3 − 96dacx3 + 64c2x4 − 96acx5 − 192c2x3
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−72cx3x5 + 32(d+ 2)abc− 48(d+ 1)bcx3 − 8(3d+ 2)abx4

+16(d− 1)bcx4 + 32(d+ 2)acx4 + 16(d+ 1)b2c− 4(d+ 2)bx4
2

−4(d+ 4)b2x4 − 8(d+ 1)ab2 − 128ac2 − 6dbx3x4

−18bx3x5 − 24dcx3x4 − 12db2x3 + 64bc2
]
,

D5 =
1

4(b+ 4c)(4da+ (d+ 1)b+ 4c)

×
[
16ax4

2 + 64c2x3 − 8dabx3 − 32dacx3 − 12bx3x4 − 48cx3x4,

+4(d− 2)b2x3 − 64acx4 + 8b2x4 + 4bx4
2 + 4b3 + 64ac2 − 9dbx3

2

−36dcx3
2 + 4(d+ 1)ab2 + 16(d− 2)abc+ 16abx4 + 16(d− 1)bcx3

]
,

(D.4)
E1 = 4b+ 2x1 − x2, E2 = −2b+ 8c− 2x2, E3 = −8c− x2,

E4 = 2b− 2x1. (D.5)
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