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1  | INTRODUCTION

In mammals, spermatogenesis is a sequential, organized process of 
self- renewal and differentiation of spermatogonial stem cells (SSCs) 
that are found in the testis and that result in the continuous produc-
tion of spermatozoa throughout the life of a man.1-4 Spermatogenesis 
protects genomic integrity and plays an essential role in the preser-
vation of the species and genetic diversity.5 The processes in sper-
matogenesis are conserved among mammalian species. However, 
the transformation of spermatogenesis from self- renewing stem 

cells to mature spermatozoa is completely different and unique 
among species. The process lasts 35 days in mice,6 74 days in hu-
mans,3 and 63 days in cattle.7 For the duration of this transforma-
tion, the SSCs undergo mitotic multiplication, meiotic recombination 
of genetic material and morphological changes into spermatozoa.8 
This is a highly productive process that begins at puberty in male 
animals and ultimately produces 100 million spermatozoa in adult 
men9 and 6000 million spermatozoa in mature bulls.10 Male fertility 
completely relies on the steady state of spermatogenesis in pubertal 
animals.
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Abstract
Background: Spermatogonial stem cells (SSCs) in the mammalian testis are unipotent 
stem cells for spermatozoa. They show unique cell characteristics as stem cells and 
germ cells after being isolated from the testis and cultured in vitro. This review intro-
duces recent progress in the development of culture systems for the establishment of 
SSC lines in mammalian species, including humans.
Methods: Based on the published reports, the isolation and purification of SSCs, iden-
tification and characteristics of SSCs, and culture system for mice, humans, and do-
mestic animals have been summarized.
Results: In mice, cell lines from SSCs are established and can be reprogrammed to 
show pluripotent stem cell potency that is similar to embryonic stem cells. However, it 
is difficult to establish cell lines for animals other than mice because of the dearth of 
understanding about species- specific requirements for growth factors and mecha-
nisms supporting the self- renewal of cultured SSCs. Among the factors that are associ-
ated with the development of culture systems, the enrichment of SSCs that are 
isolated from the testis and the combination of growth factors are essential.
Conclusion: Providing an example of SSC culture in cattle, a rational consideration was 
made about how it can be possible to establish cell lines from neonatal and immature 
testes.
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The development of a culture system and successful establish-
ment of SSC lines in rodents has attracted much attention from 
researchers. Although SSCs from many mammalian species have 
been shown to proliferate for more than 6 months in the seminif-
erous tubules of immunodeficient mice, no germ cell (GC) line has 
been established in most mammalian species, other than mice. It is 
still unknown whether this lack of cell line is related to the lack of 
knowledge regarding culture conditions and the factors regulating 
and maintaining SSCs in culture.

This review summarizes the recent progress in the development of 
the culture system and possible challenges in establishing a SSC line in 
human and livestock species.

2  | SPERMATOGONIAL STEM CELLS

Spermatogonial stem cells originate from gonocytes, they are a 
 derivative of primordial germ cells (PGCs), which are cells from a 
germ line lineage that arises from the extraembryonic mesoderm 
at the posterior end of the primitive streak. They migrate to the 
urogenital ridge, which forms gonads.11 The PGCs that cease their 
proliferation in the male genital ridge are called gonocytes. After 
birth, the gonocytes resume their proliferation, migrate to the base-
ment membrane of the seminiferous tubules, and transform into 
SSCs. The transition of gonocytes to SSCs after birth occurs within 
3 days in mice12 and 20 weeks in bulls.13

The SSCs have a unique ability for both self- renewal and cell 
differentiation toward spermatogenesis (Figure 1). The existing 
self- renewal model of SSCs was originally proposed by Huckins1 
in rats and Oakberg6 in mice. This model proposes that only Asingle 
(As) spermatogonia act as stem cells and give rise to committed 
cells that divide into Apair (Apr) and Aalign (Aal) cells during sper-
matogenesis. The extended studies of the self- renewal model 
of As spermatogonia (As model) using genetic labeling, lineage 
tracing analysis, and live imaging have provided a striking obser-
vation that As spermatogonial cells represent heterogeneity14 
and showed that populations of Apr and Aal SSCs change their 
behavior during regeneration and acquire stem cell potential. 
The actual cell number of SSCs having stem cell potential is very 
low, with ~2000 cells per testis, as calculated by using a pulse- 
labeling strategy14 and ~3000 cells per testis by using a serial 
transplantation assay.15 This number is very low, compared to the 
As model based on morphological characteristics,16 which was 
estimated at ~35 000 cells per testis. These findings support the 
heterogeneity of As SSCs in states of morphological similarity. In 
humans, the spermatogonial renewal model was first proposed 
by Clemont in 1966.17 The model postulates that the Adark and 
Apale spermatogonia, similar to Apr and Aal in rodents, occur in 
the human testis and that the Adark spermatogonia are mostly un-
differentiated and reserved as stem cells, whereas the Apale sper-
matogonia were renewing and were spermatogonia in the early 
stages of differentiation.

F IGURE  1 Schematic diagram of the developmental origin of spermatogonia. During embryonic development, primordial germ cells 
differentiate into gonocytes and both cell types are called “embryonic primitive germ cells.” Gonocytes will migrate to the basal compartment 
of the seminiferous tubule and initiate spermatogenesis by producing spermatogonial stem cells (SSCs) (Asingle or Adark spermatogonia). 
These processes occur soon after birth in rodents but take several weeks in domesticated species and humans. The SSCs will self- renew 
and differentiate into their progenitors. Both the SSCs and their progenitors (Apair and Aalign or Apale spermatogonia) also are called “male 
undifferentiated germ cells.” Finally, differentiating spermatogonia enter meiosis and produce mature sperm via spermatogenesis

Species Donor- derived spermatogenesis Reference

Pig (homologous) Complete Honaramooz, Megee, 
Dobrinski27

Goat (homologous) Complete Honaramooz, Behboodi, Megee, 
et al28

Cattle (autologous) Complete Izadyar29

Cattle (homologous) Not demonstrated

Cattle (homologous) Not demonstrated Hill, Dobrinski30

Goat Complete with the integration of 
a transgene (adenovirus)

Honaramooz, Megee, Zeng, 
et al31

TABLE  1 Germ cell transplant and 
transgenesis in domestic animals
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3  | SPERMATOGONIAL STEM CELL NICHE 
IN THE TESTIS

Adult stem cells can self- renew only in a specialized microenviron-
ment called a niche, which provides architectural support, growth 
factors, and extrinsic stimuli for SSCs.18,19 The SSCs reside in the 
basement of the seminiferous tubules and constitute a niche that is 
surrounded by Sertoli cells, Leydig cells, and peritubular myoid cells.20 
The Sertoli cells seem to play a particularly important role in the SSC 
niche because numerous factors, such as glial cell- derived neuro-
trophic factor (GDNF), fibroblast growth factor 2, kit ligand, activin A, 
and bone morphogenic protein 4 (BMP4), are produced by Sertoli cells 
and affect the self- renewal, proliferation, and differentiation of the 

SSCs.21 Recent evidence suggests that As, Apr, and Aal spermatogonia 
can be found along the peritubular blood vessels and are preferentially 
located in a specific compartment that serves as the niche.22,23

4  | IDENTIFICATION OF 
SPERMATOGONIAL STEM CELLS

4.1 | Transplant assay of the isolated spermatogonial 
stem cells

The first transplant assay for the identification of SSCs in mice was 
performed by Brinster and Zimmermann.24 The recipient mice are 

TABLE  2 Overview of spermatogonial markers in rodents, humans, and domestic animals

Molecular marker

Species

Human Mouse Cattle Pig Sheep Goat Buffalo

VASA/DDX4 ND + 
(Sakai, Noce, Yamashina39)

+ 
(Fujihara, Kim, Minami, Yamada, 
Imai40)

ND + 
(Borjigin, Davey, Hutton, 
Herrid41)

ND + 
(Goel, Reddy, Mandal, Fujihara, 
Kim, Imai42)

UCHL1 + 
(He, Kokkinaki, Jiang, Dobrinski, Dym43)

+ 
(Kwon, Kikuchi, Setsuie, Ishii, Kyuwa, 
Yoshikawa44)

+ 
(Herrid, Davey, Hill45)

+ 
(Luo, Megee, Rathi, Dobrinski46)

+ 
(Rodriguez- Sosa, Dobson, 
Hahnel47)

+ 
(Heidari, 
Rahmati- ahmadabadi48)

+ 
(Goel, Reddy, Mandal, Fujihara, 
Kim, Imai42)

DBA ND ND + 
(Izaydar49)

+ 
(Goel, Sugimoto, Minami, Yamada, Kume, 
Imai50)

+ 
(Borjigin, Davey, Hutton, 
Herrid41)

ND + 
(Goel, Reddy, Mandal, Fujihara, 
Kim, Imai42)

PLZF ND + 
(Buaas, Kirsh, Sharma, et al51)

+ 
(Reding, Stepnoski, Cloninger, 
Oatley52)

+ 
(Goel, Sugimoto, Minami, Yamada, Kume, 
Imai50)

+ 
(Borjigin, Davey, Hutton, 
Herrid41)

ND ND

THY1 + 
(He, Kokkinaki, Jiang, Dobrinski, Dym43)

+ 
(Kubota, Avarbock, Brinster53)

+ 
(Reding, Stepnoski, Cloninger, 
Oatley52)

ND ND + 
(Abbasi, Tahmoorespur, 
Morteza, Nasiri54)

+ 
(Rafeeqi, Kaul55)

POUF1 ND + 
(Pesce, Wang, Wolgemuth, Schöler56)

+ 
(Fujihara, Kim, Minami, Yamada, 
Imai40)

+ 
(Goel, Sugimoto, Minami, Yamada, Kume, 
Imai50)

ND ND + 
(Goel, Reddy, Mandal, Fujihara, 
Kim, Imai42)

NANOG ND ND ND ND ND ND ND

GFRα1 + 
(He, Kokkinaki, Jiang, Dobrinski, Dym43)

+ 
(Naughton, Jain, Strickland, Gupta, 
Milbrandt57)

+ 
(Sahare, Kim, Otomo, et al58)

+ 
(Lee, Park, Lee, et al59)

ND ND ND

GFR125 ND + 
(Seandel, James, Shmelkov, et al60)

ND ND ND ND ND

RET ND + 
(Naughton, Jain, Strickland, Gupta, 
Milbrandt57)

ND ND ND ND ND

ID4 ND + 
(Oatley, Brinster61)

ND ND ND ND ND

ITGA6 ND + 
(Shinohara, Avarbock, Brinster62)

+ 
(de Barros, Worst, Saurin, Mendes, 
Assumpção, Visintin63)

ND ND ND ND

ITGB1 ND + 
(Shinohara, Avarbock, Brinster62)

ND ND ND ND ND

+, expression of the protein in undifferentiated SSCs; ND, not determined.
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depleted for endogenous SSCs through treatment with the antican-
cer drug, Busulfan, and the transplanted donor- derived SSCs result 
in complete spermatogenesis. This assay provides functional and 
quantitative analyses of SSCs, in which donor- derived colonies are 
generated from single transplanted SSCs.15 In addition, cross- species 
transplants between mice and rats,25 as well as mice and hamsters,26 
results in complete spermatogenesis and the production of healthy 
offspring. Surprisingly, the transplant of GCs from non- rodent spe-
cies (Table 1)27-31 (ie, rabbits and dogs32), as well as pigs, cattle, and 
horses,33 shows the colonization of cells in the mouse testis, but 
there is a lack of complete spermatogenesis. This finding raises ques-
tions regarding whether transplants can be used as a bioassay for the 
determination of stem cell potential in non- rodent species.34

Apart from the identification of SSCs, a transplant technique 
has been used for multiple applications, including the restoration 
of infertility, generation of transgenic and knockout animals, and 
the evaluation of the culture system and cell markers.35,36 The 
transplant of human SSCs into immunodeficient mice was first 
shown by Nagano, Patrizio, and Brinster.37 The isolated SSCs 
could colonize and survive for 6 months in mouse testes. The 
number of SSCs was significantly reduced 2 months after the 
transplant and no cell differentiation into meiosis was observed. 
The xenotransplant of human SSCs to the mouse testis by using 
cultured cells shows a potential regenerative technique for fer-
tility preservation in patients with cancer. Similarly, the auto-
transplant of SSCs in prepubertal patients with cancer has been 

TABLE  2 Overview of spermatogonial markers in rodents, humans, and domestic animals

Molecular marker

Species

Human Mouse Cattle Pig Sheep Goat Buffalo

VASA/DDX4 ND + 
(Sakai, Noce, Yamashina39)

+ 
(Fujihara, Kim, Minami, Yamada, 
Imai40)

ND + 
(Borjigin, Davey, Hutton, 
Herrid41)

ND + 
(Goel, Reddy, Mandal, Fujihara, 
Kim, Imai42)

UCHL1 + 
(He, Kokkinaki, Jiang, Dobrinski, Dym43)

+ 
(Kwon, Kikuchi, Setsuie, Ishii, Kyuwa, 
Yoshikawa44)
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(Herrid, Davey, Hill45)
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(Luo, Megee, Rathi, Dobrinski46)
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(Rodriguez- Sosa, Dobson, 
Hahnel47)
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(Heidari, 
Rahmati- ahmadabadi48)
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(Goel, Reddy, Mandal, Fujihara, 
Kim, Imai42)
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(Izaydar49)
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(Goel, Sugimoto, Minami, Yamada, Kume, 
Imai50)

+ 
(Borjigin, Davey, Hutton, 
Herrid41)

ND + 
(Goel, Reddy, Mandal, Fujihara, 
Kim, Imai42)

PLZF ND + 
(Buaas, Kirsh, Sharma, et al51)

+ 
(Reding, Stepnoski, Cloninger, 
Oatley52)

+ 
(Goel, Sugimoto, Minami, Yamada, Kume, 
Imai50)

+ 
(Borjigin, Davey, Hutton, 
Herrid41)

ND ND

THY1 + 
(He, Kokkinaki, Jiang, Dobrinski, Dym43)

+ 
(Kubota, Avarbock, Brinster53)

+ 
(Reding, Stepnoski, Cloninger, 
Oatley52)

ND ND + 
(Abbasi, Tahmoorespur, 
Morteza, Nasiri54)

+ 
(Rafeeqi, Kaul55)

POUF1 ND + 
(Pesce, Wang, Wolgemuth, Schöler56)

+ 
(Fujihara, Kim, Minami, Yamada, 
Imai40)

+ 
(Goel, Sugimoto, Minami, Yamada, Kume, 
Imai50)

ND ND + 
(Goel, Reddy, Mandal, Fujihara, 
Kim, Imai42)

NANOG ND ND ND ND ND ND ND

GFRα1 + 
(He, Kokkinaki, Jiang, Dobrinski, Dym43)

+ 
(Naughton, Jain, Strickland, Gupta, 
Milbrandt57)

+ 
(Sahare, Kim, Otomo, et al58)

+ 
(Lee, Park, Lee, et al59)

ND ND ND

GFR125 ND + 
(Seandel, James, Shmelkov, et al60)

ND ND ND ND ND

RET ND + 
(Naughton, Jain, Strickland, Gupta, 
Milbrandt57)

ND ND ND ND ND

ID4 ND + 
(Oatley, Brinster61)

ND ND ND ND ND

ITGA6 ND + 
(Shinohara, Avarbock, Brinster62)
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(de Barros, Worst, Saurin, Mendes, 
Assumpção, Visintin63)

ND ND ND ND

ITGB1 ND + 
(Shinohara, Avarbock, Brinster62)

ND ND ND ND ND

+, expression of the protein in undifferentiated SSCs; ND, not determined.
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considered to be a feasible way to restore infertility after cancer 
treatment.38

4.2 | Biochemical characterization of the 
spermatogonial stem cells

Defining the SSC populations by using biochemical markers that dis-
tinguish them from spermatogonia in other stages of differentiation 
was a great tool for the isolation of potential SSCs and the develop-
ment of culture systems in rodents. In recent years, several molecu-
lar markers have been identified for SSCs in rodents (Table 2).39-63 
Most of these markers are expressed in progenitor SSCs, including 
As spermatogonia and undifferentiated spermatogonia (Apr and 
Aal spermatogonia). Traditionally, As spermatogonia have been in-
cluded in the SSC population that self- renews in order to maintain a 
foundational stem cell pool and the transition to Apr spermatogonia 
represents the initial step of spermatogenesis.1,6 Recent findings 
show that the SSC population is not limited to the As spermatogonia 
population.64 Some progenitor SSCs also exhibit stem cell behavior.

Some of these markers are identified as SSC markers in domestic 
animals (Table 2) and are conserved among mammalian species. The 
markers, GPR125, GFR1, THY1, ZBTB16, SSEA- 4, and PLZF, that have 
been identified for SSCs in rodents have also been characterized in 
human spermatogonia and more differentiated GCs.43,65,66

5  | IN VITRO CULTURE OF THE 
SPERMATOGONIAL STEM CELLS

5.1 | Isolation and enrichment of the spermatogonial 
stem cells

The isolation and enrichment of SSCs is the first step towards estab-
lishing GS cell lines. The isolation of SSCs is challenging because of 
their limited number in the testis. A two- step enzymatic digestion was 
first proposed by Davis and Schuetz,67 which is the most widely used 
technique for the isolation of SSCs in rodents. For further enrichment 
of SSCs, different approaches, such as differential plating,68 percoll 
gradient,23 magnetic- activated cell sorting (MACS) or fluorescence- 
activated cell sorting (FACS) have been used independently or in com-
bination. In livestock species, SSC isolation and enrichment methods 
have progressed during the last few years. Differential plating is one 
feasible method for the enrichment of SSCs, along with MACS and 
FACS for bovine SSCs.69

5.2 | Establishment of a culture system for germ 
cell lines

The limited number of SSCs in the testis4 hampers studies that eluci-
date biological characteristics and for applying SSCs. One approach 
to solve this problem is to develop a culture system that supports the 
self- renewal of SSCs and maintains their GC and stem- cell potentials. 
Glial cell- derived neurotrophic factor was shown to be the first mol-
ecule that regulates the self- renewal and differentiation of mouse 

SSCs.70 Glial cell- derived neurotrophic factor signals act through 
the multicomponent receptor complex that is composed of GFRα- 1 
and RET tyrosine kinases in various cell types.71 The GFRα- 1 and 
RET also have been recognized as spermatogonial markers that are 
expressed in gonocytes, SSCs, and differentiated spermatogonia.72 
These coreceptors of GDNF- mediated signaling have been shown to 
be necessary for the self- renewal of GCs in rodents.57 Subsequently, 
Nagano, Ryu, Brinster, Avarbock, and Brinster developed a short- 
term culture system that is supplemented with GDNF that improves 
the survival of GCs.15 These cells complete spermatogenesis after 
transplant into the testis of immunodeficient mice. The long- term 
culture of SSCs is achieved by adding other growth factors and hor-
mones in addition to GDNF.73 These cells proliferate over a 2 year 
period (>1085- fold) in the presence of GDNF, while maintaining sta-
ble genetic and epigenetic properties and restoring spermatogenesis 
following transplant into the seminiferous tubules of infertile recipi-
ent mice. However, the growth factor requirements for the prolif-
eration of GCs is strain- specific: in mice, the C57BL/6 and 129/Sv 
strains require fibroblast growth factor (FGF) and GDNF,74 while 
strain DBA requires FGF, GDNF, and epidermal growth factor.75 By 
using species- specific culture components, culture systems and GC 
lines have been established in rats,76,77 hamsters,78 and rabbits.79

Spermatogonial stem cells under appropriate culture conditions ac-
quire embryonic stem (ES) cell- like characteristics called “multipotent 
GCs,” which were first generated from GCs in the neonatal mouse tes-
tis without the introduction of any exogenous reprogramming factor.80 
These cell populations failed to form colonies following testicular trans-
plants, which shows that they are devoid of GC potential and have the 
ability to differentiate into three germ layers. Later, successful evidence 
of the generation of a multipotent GS cell line was shown for adult 
mice.60,81

The successful translation of an in vitro culture of SSCs in rodents 
led to the establishment of a culture system for human SSCs from pre-
pubertal and adult testes.82,83 In humans, multipotent stem cell lines 
have been developed from SSCs by exposing the cells to ES cell cul-
ture conditions.84,85 These cell lines can form a teratoma after they 
are injected into immunodeficient mice. These findings provide an 
important foundation for developing methods for the generation of 
autologous stem cell lines from human SSCs that have been collected 
from patients with cancer before the initiation of cancer treatment and 
the subsequent autologous transplant after cancer treatment could be 
a means for preserving the fertility of male patients with cancer.86

5.3 | Spermatogonial stem cell culture in 
livestock species

In livestock species, long- term culture systems for GCs and the es-
tablishment of multipotent GC lines could reduce the time and costs 
for producing transgenic animals and to preserve endangered species. 
These systems also could be an alternative for pronuclear microinjec-
tion and somatic cell cloning.87 Although several attempts have been 
made to develop a culture system for livestock species, as shown in 
Table 3,40,58,88-94 most of these studies achieved only short- term SSC 
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cultures. The culture system for bovine SSCs has been demonstrated 
in the pre- pubertal testis29,49,89-91 and the neonatal testis.40 In pigs, 
cultured SSCs cannot survive more than 1 week50,92. In these studies, 
serum was used as an important component in the culture medium 
for the survival and self- renewal of SSCs. Some undefined factors in 
the serum induce cell differentiation, whereas others have detrimen-
tal effects on ES cells and GC survival in the culture.53,95 In order to 
overcome this problem, serum- free culture systems have been devel-
oped for long- term cultures of SSCs in mice74,96 and rats.77 However, 
no long- term culture system for livestock species has been devel-
oped. In the authors’ laboratory, growth factors, matrix substrates for 
culture dishes, and serum- free supplements have been examined in 
order to develop a defined system for culturing primitive GCs (gono-
cytes) from the neonatal bovine testis.58,97,98 Poly- L- lysine is a suita-
ble substrate for the selective inhibition of the growth of somatic cells 
and makes it possible to maintain gonocytes. Among the serum- free 
supplements that were tested, knockout serum replacement (KSR) 
in the culture medium supports the proliferation and survival of the 
gonocytes after sequential passages of the colonies. Under these op-
timized culture conditions that consist of 15% KSR on poly- L- lysine- 
coated dishes, the stem cell and GC potentials of cultured gonocytes 
can be maintained for more than 2 months. Subsequently, also de-
veloped was a culture system to maintain the SSCs from immature 
and adult testis in cattle.99 H The SSCs from the immature testis are 
cultured under serum- free conditions in the presence of GDNF and 
bovine leukemia inhibitory factor- conditioning media. Established cell 
lines resemble ES- like cell properties and express both pluripotent 
and GC markers. However, the SSCs from the adult bovine testis are 
cultured in a low- serum concentration media that is supplemented 

with 6- bromoindirubin- 3’- oxime, which is a small- molecule inhibitor 
of glycogen synthase kinase- 3α that leads to the activation of the 
wingless- type (Wnt)/β- catenin signaling pathway.100 The established 
cell lines can be maintained under in vitro culture conditions for more 
than 3 months. This cell line has a normal karyotype and botryoidal 
morphology that is similar to the male GC lines from mouse SSCs. 
Taken together, this new finding provides a promising strategy to 
conserve GCs from livestock species at different stages of animal 
development.

6  | CONCLUSION

Recently, GCs with a GC lineage have been derived from ES cells101,102 
and induced pluripotent stem cells in mice.103-105 The molecules that 
are involved in GC commitment, such as BMP4 and Wnt3, have been 
identified102,106 and PGCs are induced from pluripotent stem cells under 
the control of these molecules and other cell differentiation- inducing 
factors.102,106 In humans, PGCs also are induced in similar culture condi-
tions.107-109 The induced mouse PGCs can be maintained in a normal 
manner and differentiated into spermatozoa and oocytes with the abil-
ity to develop to term.110,111 At this time, GC formation for the sper-
matozoa and oocytes was achieved under ex vivo conditions, in which 
somatic cells that were associated with spermatogenesis or oogenesis 
were cocultured and aggregated with the indicated PGC population.111 
Therefore, although additional studies are necessary in order to main-
tain and induce GCs in vitro, GS cell lines that have been established in 
some mammalian species might be candidates to produce spermatozoa 
and oocytes in vitro. These technologies in the near future will be helpful 

TABLE  3 Overview of the culture conditions for spermatogonial stem cells in domestic species

Reference Culture conditions Age of donor Culture term

Cat

Izadyar, Den Ouden, Stout, 
et al88

Compare MEM and KSOM medium 
0%- 10% FCS

5 mo MEM+2.5% FCS is effective for germ cell 
survival than KSOM, no expansion, showing 
differentiation during 150 days culture

Oatley, Reeves, McLean89 DMEMF + 10% FBS + GDNF 1- 2 mo 2 wk

Aponte, Soda, van de Kant90 MEM +2.5% FCS + GDNF 4- 6 mo 25 d, no passage, differentiation

Aponte, Soda, Teerds, Mizrak, 
van de Kant91

StemPro- SFM + GDNF, EGF, and FF 4- 6 mo 25 d, no appearance of colonies after passage

Fujihara, Kim, Minami, 
Yamada, Imai40

DMEMF12 + 10% FCS 1- 10 d 1.5 mo

Sahare, Kim, Otomo, et al58 DMEMF12 + 15% KSR on poly- L- 
lysine- coated dishes

1- 10 d >2 mo

Pig

Dirami, Ravindranath, Pursel, 
Dym92

DMEMF12 + 10% FCS 2 mo 1 wk

Goel, Fujihara, Tsuchiya, et al93 DMEMF12 + 10% FCS 1- 10 d 3 wk, reduction of germ cells every passage

Goel, Fujihara, Tsuchiya, et al94 StemPro SFM + GDNF, EGF, and FF 3- 4 d 9 passages (30 d), reduction of germ cells every 
passage

DMEMF, Dulbecco’s Modified Eagle Medium/Nutrient Mixture F- 12; EGF, epidermal growth factor; FCS, fetal calf serum; FF, feeder- free; GDNF, glial 
cell- derived neurotrophic factor; KSOM, potassium simplex optimized medium; KSR, knockout serum replacement; MEM, minimum essential medium; 
SFM, serum-  and feeder- free medium.
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for the retention of the fertility of patients before cancer therapy, the 
production of transgenic animals for human disease models, domestic 
animal improvement, and the conservation of endangered species.
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