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Due to rapid progress of genome sequencing technology, whole genome sequences of organisms ranging from bacteria 
to human have become available. In order to understand the meaning behind the genetic code, we have been developing 
algorithms and software tools for analyzing biological data based on advanced information technologies such as theory of 
algorithms, artificial intelligence, and machine learning. We are currently studying the following topics: systems biology, 
scale-free networks, protein structure prediction, inference of biological networks, chemo-informatics, and discrete and 
stochastic methods for bioinformatics.
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Exact Identification of the Structure of  
a Probabilistic Boolean Network from Samples

Various kinds of mathematical models have been uti­
lized for understanding dynamical behavior of biological 
systems. Among them, the Boolean network (BN) is a sim­
ple but well-studied discrete model, especially for model­
ing genetic regulatory networks. In a BN, each node takes 
a Boolean value, 0 or 1, at each time step, and the states of 
all nodes are updated synchronously according to Boolean 
functions assigned to nodes, where each node corresponds 
to a gene, and 1 and 0 mean that genes are active and inac­
tive, respectively. Since a BN is a deterministic model and 
thus cannot cope with such effects as noise and uncertainty, 
several probabilistic extensions of a BN have been pro­
posed and studied. Among them, the probabilistic Boolean 
network (PBN) has been well-studied. Different from a 
BN, multiple Boolean functions can be assigned to each 
node in a PBN and one function is randomly selected at 
each time step according to the prescribed probability dis­
tribution (Figure 1).

For both BNs and PBNs, it is important to infer the net­
work model from such data as gene expression time series 
data and many methods have been proposed. However, al­
most no theoretical studies have been done on inference of 
a PBN from sample data. Since it is quite difficult to exact­
ly determine the probabilities from samples, we focus on 
determining only the structure (graph structure + Boolean 
functions) of a PBN and study the number of samples re­
quired for uniquely determining the structure. We show via 
theoretical analysis and computer simulation that the struc­
ture of a PBN can be exactly identified with high probabil­
ity from a relatively small number of samples for interest­
ing classes of PBNs of bounded indegree (i.e., the number 
of edges per node is bounded by a constant). On the other 
hand, we also show that there exist classes of PBNs for 
which it is impossible to uniquely determine the structure 
of a PBN from samples. We are also performing detailed 
theoretical analyses with focusing on an important subclass 
of PBNs which consist of Boolean threshold functions.

Observability of Singleton and Periodic 
Attractors in Boolean Networks

Knowing internal states of complex systems is important 
for diagnosing various kinds of biological, artificial, and 
social systems. Especially, it is important to identify a 
small set of variables so that we can reconstruct the sys­
tem’s complete internal state at any given time step from 
time-series data of these variables. In such a case, the sys­
tem is called observable. This observability problem has 
been well-studied for linear systems. However, biological 
systems contain non-linear elements to which existing the­
ory/methods cannot be effectively applied. Furthermore, 
existing studies suggest that a large number of variables/
nodes are required to observe the whole state of certain 
kinds of non-linear biological systems.

In order to cope with this difficult situation, we do not 
intend to identify the whole state instead focus on identifi­
cation of statically and periodically stable states (attrac­
tors) because attractors are often considered to correspond 
to cell types. In this study, we adopt a Boolean network 
(BN) as a non-linear model of biological systems and con­
sider the problem of identifying a minimum set of sensor 
nodes to discriminate static and periodic attractors using 
the BN (Figure 2), which might be useful to identify cell 
types. We prove that one node is not necessarily enough 
but two nodes are always enough to discriminate two peri­
odic attractors by making use of the Chinese remainder 
theorem. Based on this, we develop an algorithm to deter­
mine the minimum number of nodes to discriminate all 
given attractors. The results of computational experiments 
suggest that attractors (corresponding to cell types) in real­
istic BN models can be discriminated by observing the 
states of only a small number of nodes.

Figure 1. Example of a probabilistic Boolean network (PBN). (A) Graph 
structure of PBN. (B) Boolean functions and corresponding probabilities 
assigned to each node.

Figure 2. These four attractors (two statically stable and two periodically 
stable states) can be discriminated by observing time series data of two 
nodes (shown by blue dotted curves), where four attractors correspond to 
four different cell types.




