
1 

Non-free ionic transport of sodium, magnesium, and calcium in streams of two 1 

adjacent headwater catchments with different vegetation types in Japan 2 

 3 

Tomomi TERAJIMA*a, Mihoko MORIIZUMI*b, and Tomohiro NAKAMURA*c 4 

 5 

*a: Disaster Prevention Research Institute, Kyoto University. Gokasho, Uji, Kyoto 6 

611-0011, Japan; terajima@scs.dpri.kyoto-u.ac.jp 7 

*b: Faculty of Agriculture, Ryukoku University. 1-5, Yokoya, Seta-Ohecho, Otsu, 8 

Shiga 520-2194, Japan; moriizu@agr.ryukoku.ac.jp 9 

*c: Suuri-Keikaku Co. Ltd. 2-5-4 Sarugaku-cho, Chiyoda, Tokyo 101-0064, Japan; 10 

nakamura_tomohiro@sur.co.jp 11 

 12 

Corresponding author: T. Terajima 13 

Tel: +81-774-38-4628 14 

Fax: +81-774-38-4118 15 

E-mail address: terajima@scs.dpri.kyoto-u.ac.jp 16 

 17 

SUMMARY 18 

Sodium (Na), magnesium (Mg), calcium (Ca) are usually believed to occur mostly as 19 

free ions in the fresh water and consequently little is known about their chemical 20 

species. To understand the importance of non-free ionic fractions (NIF) of major 21 

metals in freshwater streams, Na, Mg, Ca, silicon (Si), and fulvic acid-like materials 22 

(FAM) were measured in streams of mountainous adjacent headwater catchments 23 
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dominated by different vegetation types (planted evergreen coniferous forest and 1 

natural deciduous broadleaf forest). During both no rainfall periods and rainstorms, the 2 

proportion of NIF relative to total elements was lower in the coniferous catchment than 3 

in the deciduous catchment, although it sometimes accounted for half or more of the 4 

total concentrations of Na, Mg, and Ca in both catchments. The solubility of metal 5 

compounds was higher than the measured maximum concentrations of Na+, Mg2+, and 6 

Ca2+ to the extent that inorganic bonding was hardly possible. During no rainfall 7 

periods when FAM was slightly produced into the streams, the fluxes of NIF and Si 8 

were highly correlated (r > 0.92, p < 0.0001, n = 30) in both catchments. During a 9 

small rainstorm, the flux of NIF correlated weakly with that of Si but did not correlate 10 

with that of FAM in both catchments. In contrast, during a heavy rainstorm, the flux of 11 

NIF correlated strongly (r ≥ 0.83, p < 0.0001, n = 26) with that of FAM in the 12 

deciduous catchment where relatively deep soil water compared to near-surface water 13 

was the predominant component of stream water. However, during the heavy rainstorm 14 

in the coniferous catchment, only the flux of NIF originated in the quick-flow 15 

component (i.e., surface or near-surface water) in stream waterNIF) correlated 16 

strongly (r ≥ 0.81, p < 0.0001, n = 22) with that of FAM. These findings imply that 17 

heavy rainstorms may enhance the bonding of the major metals with humic substances 18 

mainly in the deciduous catchment; and also exhibit that, in the headwater catchments, 19 

both water flow pathways resulted from the different vegetation types play a very 20 

important role to promote the bonding of major metals with humic substances in 21 

stream water. 22 

 23 
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1. Introduction 4 

Major metals such as sodium (Na), magnesium (Mg), and calcium (Ca), which are 5 

the vital elements involving the metabolism and physiological function of life, are 6 

thought to occur mainly (> 98%) as free ions in freshwater environments (e.g., 7 

Mantoura et al., 1978). On the contrary, the biogeochemical implication (i.e., bonding) 8 

of the major metals, humic substances, and nano-scale phyllosilicates represented by 9 

clay minerals (Wilson et al., 2008) has been mentioned in particular in the laboratory 10 

and modeling studies (e.g., Choppin and Shanbhag, 1981; Livens, 1991; Romkens et 11 

al., 1996; Majzik, A. and Tombacz, E., 2007; Takahashi et al., 1999 and 2002). This 12 

discrepancy regarding major metal species implies that little is known about their 13 

transport forms (i.e., chemical species) in freshwater environments. 14 

In contrast, as described by Tipping (1993), the information regarding the effect of 15 

environmental factors (topography, geology, climate, hydrology, vegetation, etc.) on 16 

metal bonding must be very useful to allow the calculation and modeling of chemical 17 

speciation under natural condition in freshwater environments. Furthermore, the 18 

insights related to the interaction between aquatic and terrestrial biogeochemistry will 19 

also facilitate a better understanding of controls on humic substance production, 20 

consumption, and flux across whole landscapes and biomes (McDowell, 2003). 21 

However, the effects of environmental factors on bonding possibility of major metals 22 

to humic substances and nano-scale phyllosilicates and consequently the transport in 23 
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bonding in stream water are as yet unclear. 1 

Accordingly, characterizing the bonding of major metals to humic substances and 2 

nano-scale phyllosilicates in field sites must provide useful information about the 3 

chemical regimes in stream catchments, and besides, give a novel knowledge in 4 

catchment hydrology. If the free ions of major metals combined with humic substances 5 

and nano-scale phyllosilicates, the relationships between the fluxes of combined 6 

materials (i.e., non-free ionic fraction of the major metals), humic substances, and 7 

nano-scale phyllosilicates can be the good indices to explore broadly both the 8 

implication as represented by the bonding of Na, Mg, and Ca and consequently the 9 

characteristics of bonding resulted from the environmental factors. 10 

Thus we measured Na, Mg, Ca, and silicon (Si) in streams of two mountainous 11 

adjacent headwater catchments composed of differing vegetation. Fulvic acid-like 12 

materials (FAM), representative of dissolved organic matter (DOM) in the streams that 13 

we observed (Terajima and Moriizumi, 2013) and usually accounts for 60% to 99% of 14 

DOM in stream or ground water (Thurman, 1985; Malcolm, 1990; Artinger et al., 15 

2000), were also measured to understand the interaction among the major metals, clay 16 

minerals, and humic substances. Additionally, FAM and dissolved organic carbon 17 

(DOC) was measured for soil extracts from both catchments to determine where FAM 18 

and DOC are stored in the soil profile and examine water flow pathways along the 19 

slopes. Subsequently we broadly estimated how stream water chemistry (i.e., bonding 20 

possibility) was provided and how slope hydrology depending on differing vegetation 21 

(i.e., environmental factor) affected the transport of major metals. 22 

 23 
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2. Site description 1 

2.1. Topography, geology, and climate 2 

The study area consisted of two mountainous headwater catchments with differing 3 

vegetation in the Nariki catchment (35˚50N and 139˚10E at the rain gauge in Fig. 1a), 4 

which is about 40 km west of central Tokyo. Slope gradients in the catchment range 5 

between 35° and 45°, and Mt. Kuro-yama, at 842 m, is the highest point. The 6 

catchment is underlain by sandstone and mudstone bedrock of Jurassic age that also 7 

contains some chert. The rock layers dip 60 - 90° northeast and strike NW-SE (Inosato 8 

et al., 1980; Tokyo Prefectural Public Work Institute, 2002). 9 

According to data from the Automated Meteorological Data Acquisition System 10 

(AMeDAS) of the Japan Meteorological Agency, the average annual precipitation 11 

between 1976 and 2009 at Ohme city (35°47N, 139°18E; 10 km southeast of the 12 

Nariki catchment and 100 m in elevation) was 1487 mm, and the average minimum, 13 

maximum, and annual air temperatures during the same period were –6.7 °C in late 14 

January, 36.9 °C in mid-August, and 14.2 °C, respectively. Rainstorms occur mainly 15 

from mid-June to late July (the rainy season), and in the typhoon season which lasts 16 

from mid-August to mid-October. About 80% of the annual precipitation falls during 17 

these periods. Dry conditions prevail in winter, from early December to early March, 18 

although snow usually accumulates in the Nariki catchment to a maximum depth of 10 19 

to 20 cm in February. The stream water temperature of both headwater catchments 20 

ranged from 10 °C in winter to 23 °C in summer. 21 

 22 

2.2. Experimental catchments 23 
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A first headwater stream (first-order stream; 70 m in length) on the north side of 1 

the Nariki River (Figs. 1a and 1b) is densely surrounded by an unmanaged evergreen 2 

coniferous forest composed of Japanese cedar (Cryptomeria japonica) and Hinoki 3 

cypress (Chamaecyparis obtusa) which were planted in 1961 (Coniferous catchment: 4 

1.29 ha, 100 m in relief; Fig. 2a). In 2007, the catchment contained 2000 to 2500 trees 5 

ha–1, most with trunk diameters of ≤ 20 cm. The forest canopy is mostly closed, with 6 

little understory vegetation owing to the weak penetration of sunlight to the forest floor. 7 

The litter layer on the forest floor is very thin, and mineral soil is exposed in some 8 

places. 9 

A second headwater stream (first-order stream; 70 m in length) on the south side of 10 

the Nariki River (Fig. 1a and 1c) is surrounded by a natural deciduous broadleaf forest 11 

(Deciduous catchment: 1.28 ha, 100 m in relief; Fig. 2b). The dominant tree species in 12 

this catchment are oak (Quercus serrata and Quercus mongolica), beech (Fagus 13 

japonica), chestnut (Castanea crenatus), and Japanese maple (Acer palmatum). The 14 

understory vegetation is dense in comparison to that in the coniferous catchment, and 15 

there is a thick litter layer on the forest floor. 16 

The riparian zone (the flat bottomland along the streams) is very small and narrow 17 

in both catchments (Figs. 1b and 1c). Thus the contribution of subsurface and 18 

groundwater flow for the stream water generation, which had been involved in the 19 

riparian zone before rainstorms, seems to be relatively small compared to those from 20 

the slopes. 21 

The boundary between soil and bedrock was determined by cone penetration test to 22 

occur at N10 = 50, and the soil depth (N10 ≤ 50) in both catchments was ≤ 3 m. The 23 
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structure of the soil profile (the soil horizons present and their thicknesses) is similar 1 

along the slopes of both catchments. In both catchments, the soils are classified as 2 

Cambisols (according to the classification by the Food and Agriculture Organization of 3 

the United Nations), and soil pH ranges between 3.8 and 5.2 throughout the vertical 4 

soil profile in both catchments. The strongly organic-rich soil horizons, the A0 to AB 5 

horizons, are up to 25 cm thick in both catchments, and a gravel rich mineral soil (B 6 

horizon) is below 15 to 25 cm depth. The soil parent material is presumably derived 7 

from upslope via soil creep or rock slides because many discrete angular stones and 8 

sediment particles in various size are included and mixed intricately throughout the 9 

soil profiles. The saturation hydraulic conductivity (Ksat) of the soil above 80 cm depth 10 

in both catchments ranges mostly between 10–2 and 10–3 cm s–1. Soil porosity in the 11 

coniferous catchment gradually decreases with soil depth, ranging between 70% at 10 12 

cm depth and 45% at 70 cm depth, whereas soil porosity in the deciduous catchment is 13 

relatively constant, decreasing from 70% near the soil surface to 53% at 70 cm depth. 14 

The gravitational water drainage capacity of the soil in the coniferous catchment is 15 

below 5%, except between 0 and 5 cm depth, where it is 28%. In the deciduous 16 

catchment, it is constant at 9% throughout the soil profile up to 50 cm depth (Hirano et 17 

al., 2008). 18 

A unique high permeable and organic rich layer, the so-called biomat (Ks > 10-2 cm 19 

s-1; porosity above 70%), consisting of a dense network of fine roots of Japanese cedar 20 

and Hinoki cypress within the loose litter and root-permeated zone (Sidle et al., 2007), 21 

was common on the slope surface (above 0 cm depth) in the coniferous catchment. Its 22 

thickness varied from a few centimeters to 20 cm in the coniferous catchment, but it 23 
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was rare in the deciduous catchment (Terajima and Moriizumi, 2013). Thus water flow 1 

through the biomat (i.e., biomatflow) during rainstorms appeared predominantly in the 2 

coniferous catchment (Hirano et al., 2008). 3 

On the basis of the above facts, the characteristics of the environmental factors in 4 

the two headwater catchments are briefly summarized as follows: The same or similar 5 

characteristics are geography, topography (i.e., catchment area, elevation, relief, slope, 6 

stream order, and stream length), geology, soil (i.e., type and depth), and climate. In 7 

contrast, the different characteristics are vegetation, soil profile (i.e., biomat and little 8 

litter layer predominant in the coniferous catchment), and resultantly hillslope 9 

hydrology (i.e., biomatflow predominant in the coniferous catchment). 10 

 11 

3. Instrumentation and data collection  12 

3.1. Soil collection and soil water extraction 13 

We collected soil samples at slope surfaces and at 20 to 30 cm intervals up to 140 14 

cm depth (within the limits of the possible to excavate manually) at the ridgetop, mid-, 15 

and lower slopes in both catchments.  16 

The collected soil samples (soil pH ranged between 3.8 and 5.2) were air-dried and 17 

subsequently 3 g of the samples were shaken for 24 h in 60 mL of ultrapure water (pH 18 

5.6, 18.2 Mcm, and dissolved organic carbon (DOC) < 0.01 g L-1) obtained from 19 

an Advantec Japan ® water purification system (model number: RFU585DA). Then, 20 

the soil extracts were filtered for the measurements of excitation-emission matrix 21 

fluorescence spectrum (EEM spectrum) and DOC to obtain the information on the 22 

storage of water extractable FAM and DOC in soil. The EEM analysis for soil extracts 23 
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is described in Section 3.4.4. The DOC concentration was measured with a Shimadzu 1 

® organic carbon analyzer (model number: TOC-V; Detection limit is 0.004 mg L-1and 2 

measurement error was ≤ ± 0.075 mg L-1). 3 

The absolute values of the EEM spectrum in soil extracts are variable on account of 4 

the measurement method based on the proportion of air-dried soil weight relative to 5 

ultrapure water volume. Thus, the values of EEM spectrum in soil extracts are 6 

impossible to compare directly with those in stream water. 7 

 8 

3.2. Measurement of rainfall and stream discharge 9 

A rain gauge (0.2 mm count–1), which recorded precipitation at 5-min intervals, 10 

was installed in an open space near the two catchments (710 m elevation; Fig. 1a) 11 

where rainfall was unlikely to be intercepted by the tree canopies because of no 12 

canopies beyond 45° in elevation. According to our past study (Nogi, 2007; 13 

unpublished), the average annual rainfall interception by the tree canopy was about 14 

18% and 16% of total rainfall in the coniferous and deciduous catchments, respectively. 15 

Moreover, the concentration of Na+, Mg2+, and Ca2+ supplied by rainfall (through fall + 16 

stem flow) into the forests in both catchments differed by < 1.0 mg L–1. These things 17 

imply that the flux of Na+, Mg2+, and Ca2+ into the forests was < 4.66×10-2 mg s–1 and 18 

< 4.98×10-2 mg s–1 in the coniferous and deciduous catchments, respectively; mostly 19 

similar in both catchments. In contrast, the flux of potassium ions (K+) into the forests 20 

in the coniferous catchment was 50% of that in the deciduous catchment. 21 

Stream discharge in the two catchments was measured from January 2006 to 22 

September 2007 using parshall flumes (15 cm size) installed at the lower end of the 23 
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streams in both catchments (Figs. 1b and 1c). Water levels in the flumes were recorded 1 

at 5-min intervals by a Trutrack ® automatic sensors (model number: WT-HR64K), 2 

and the relationship between the water level and the stream discharge manually 3 

measured at the flumes, the H-Q relation, was used to estimate the specific stream 4 

discharge (m3d-1ha-1 or L s–1ha-1) throughout the observation period. 5 

 6 

3.3. Stream water collection 7 

Quick-flow component in stream water is very difficult to quantify immediately in 8 

field sites. Thus in our study, notwithstanding the time intervals after rainstorms, the 9 

baseflow situation was qualitatively defined as when the hydrograph was on the falling 10 

limb and stream discharge seemed to be small and constant even though the small 11 

rainfall was supplied; implying when the quick-flow component seemed not to 12 

contribute directly to stream discharge (i.e., no increase in stream discharge). 13 

Stream water during no rainfall periods (baseflow) in both catchments was 14 

manually and randomly collected in polyethylene bottles from January 2006 to August 15 

2007 (total numbers of baseflow samples in both catchments were 54, but were 30 for 16 

collection from October 2006 to August 2007). The minimum and maximum stream 17 

discharge (i.e., baseflow discharge in this case) at collection were 0.02 L s-1 ha-1 (8 18 

May 2006) and 3.19 L s-1 ha-1 (8 October 2006) in the coniferous catchment, and 0.53 19 

L s-1 ha-1 (23 March 2006) and 5.06 L s-1 ha-1 (8 October 2006) in the deciduous 20 

catchment, respectively.  21 

Two rainstorms (Storm 1 and Storm 2, 26 to 27 September 2006 and 14 to 16 July 22 

2007, respectively) caused increased stream water. Flow samples were collected during 23 
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these storms in polyethylene bottles by at 60 to 90 min intervals through an American 1 

SIGMA ® water samplers (model number: 900) on the upstream side of the partial 2 

flumes. The numbers of water samples in both catchments were 24 and 29 for Storm 1 3 

and Storm 2, respectively. Storm 1 had a small-scale rainstorm with 40.4 mm of total 4 

rainfall, maximum rainfall intensity of 1.9 mm 5 min–1, and 8.2 days yr-1 in rainfall 5 

frequency for the same storm scale. In contrast, Storm 2 was a typhoon storm with 6 

117.0 mm of total rainfall, maximum rainfall intensity of 1.6 mm 5 min–1, and 2.9 days 7 

yr-1 in rainfall frequency for the same storm scale. 8 

Glass bottles were also used for intermittent manual sampling of the stream water 9 

during no rainfall periods and rainstorms to verify the effect of chemical adsorption 10 

caused by the difference in collection materials. The concentration of major metals and 11 

EEM spectrum of stream water was then compared with those of the water samples 12 

collected simultaneously in the polyethylene bottles; they were below measurement 13 

errors for total elements and ionic materials described in Sections 3.4.1. and 3.4.2. and 14 

< 0.13 QSU for FAM. This finding implies that no influence to the concentration of 15 

major metals and the EEM spectra of samples was brought by the difference in 16 

collection materials. 17 

Water samples collected in polyethylene bottles were transferred to glass bottles as 18 

soon as possible. The samples during no rainfall periods were stored at 4 °C within one 19 

day after collection, whereas the samples during rainstorms were stored within 3 days 20 

after collection, because the water collection during rainstorms ran for 2 or 3 days. All 21 

stream water samples were filtered within 5 days (120 hrs,) after collection. The 22 

0.45-m mixed cellulose ester filters (Advantec Japan or Sartorius Mechatronics 23 
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Japan) were used in the filtration. Then analyses were conducted for total elements 1 

(T-Na, T-Mg, T-Ca, and T-Si), free ions (Na+, Mg2+, and Ca2+; K+ was scarcely detected 2 

in the stream water), and EEM spectra. 3 

 4 

3.4. Measurement of concentrations in water samples 5 

3.4.1. Total elements (T-Na, T-Mg, T-Ca, and T-Si) 6 

At first, 5 mL of hydrochloric acid (HCl: 3 mol L–1) was added to 40 mL of filtered 7 

water to obtain the high sensitivity for the measurement of major metals by adjusting 8 

the pH between 0.5 and 1.0, the approximate pH of standard solutions for the major 9 

metals of an inductively coupled plasma atomic emission spectrometer (ICP) that we 10 

used. A Shimadzu ® ICP (model number: ICPS-1000 IV, Detection limit is 0.01 mg 11 

L-1) was used to measure the concentration of total elements in the filtrate. The 12 

injection volume of water sample was 30 mL. Standard solutions for Na, Mg, Ca, and 13 

Si, of which the concentrations were 1, 5, and 25 mg L–1, were used to calibrate the 14 

results (measurement errors: ≤ ± 0.01 mg L-1 for Na-, ≤ ± 0.04 mg L-1 for Mg-, ≤ ±0.17 15 

mg L-1 for Ca-, and ≤ ± 0.01 mg L-1 for Si-analyses). 16 

 17 

3.4.2. Free ions (Na+, Mg2+, and Ca2+) 18 

Free ions in the stream water filtrate without added HCl were measured with a 19 

TOA-DKK ® ion chromatograph (IC; model number: IA-200 for anions and IA-300 20 

for cations). The minimum injection volume of water sample into the instruments was 21 

0.2 mL for anions and 0.02 mL for cations, measurement temperature was 40 ± 4˚C, 22 

and detection limit is 0.01 mg L-1. The eluant (mixed solution of phthalic acid, tris 23 
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hydroxymethyl aminomethane, and boric acid for anions; and methane-sulfonic acid 1 

solution for cations) have a pH of 3.0. Single-point calibration by measurement of a 2 

standard solution of each ion (10 mg L–1 of Cl-, NO3
-, Na+, and Mg2+, and 20 mg L-1 of 3 

SO4
2-, K+, and Ca2+) was used (measurement errors: ≤ ± 0.1 mg L-1). Bicarbonate 4 

(HCO3
-) was measured by the titration for the stream water samples of 50 mL, which 5 

was calculated from the alkalinity under pH=4.8 (measurement error: ≤ ± 0.3 mg L-1). 6 

The pH of the stream water during the observation period ranged between 6.0 and 7 

8.0. Thus, the concentrations of ions measured by IC with an eluant pH of 3.0 may 8 

have been somewhat higher than their natural concentrations in the stream water. 9 

Although we didn’t quantify the concentration of organic acid (OA), chromatic peaks 10 

likely to be the formic acid and oxalic acid were detected mainly in water samples 11 

from the coniferous catchment. 12 

 13 

3.4.3. Non-free ionic fraction (NIF) 14 

Strellis et al. (1996) indicated that laboratory standard calibration was the most 15 

likely sources of large systematic errors in ICP and IC analyses. Thus, the 16 

concentrations of the standard solutions, used for each calibration for ICP and IC, were 17 

alternately measured with IC and ICP to identify and correct any instrumental 18 

discrepancies between ICP and IC analyses. Each measured concentration, however, 19 

ranged within the measurement error, implying that the measured concentrations were 20 

mostly same as the originals of each standard solution and consequently the 21 

instrumental discrepancies were negligible in our measurement. 22 

The difference in concentration between total elements and free ions of metal 23 
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elements were equated with the concentration of non-free ionic fractions (NIF: all 1 

materials that were not measurable with IC). 2 

 3 

3.4.4. Fulvic acid-like materials (FAM) 4 

The EEM spectra in the filtrate for the soil extracts and stream water samples 5 

without added HCl were measured with a JASCO ® 3-dimensional EEM spectrometer 6 

(model number: FP-6600), at excitation wavelengths of 220–550 nm and emission 7 

wavelengths of 250–600 nm (i.e., Ex/Em: 220-550/250-600) and a scanning speed of 8 

2000 nm min–1 (measurement error was ≤ ± 0.08 QSU). In our measurements (e.g., Fig. 9 

3), a visible single peak in fluorescence intensity corresponding to FAM appeared in 10 

the water samples during rainstorms at around Ex/Em: 340/440 (Coble et al., 1993; 11 

Suzuki et al., 1998; Mostofa et al., 2005; Fellman et al., 2010), which could reflect the 12 

terrestrially organic matter derived from vascular plants or soil organic matter in 13 

wetlands and forested environment (Coble, 1996; Coble et al., 1998). Although another 14 

peak in fluorescence intensity appeared at around Ex/Em: 260/440 (Fig. 3c to 3f) 15 

corresponding to fluorescence that resembles fulvic acid (Fellman et al., 2010), we 16 

adopted exclusively the peaks at around Ex/Em: 340/440 for our analyses. In contrast, 17 

as shown in Fig. 3a and 3b, we did not measure FAM during no rainfall periods 18 

because visible fluorescent peaks did not always appear, so that no data is presented. 19 

 Irrespective of stream discharge during rainstorms, some stream water samples (2 20 

and 5 samples for Storm 1 in the coniferous and deciduous catchments, respectively, 21 

and 10 samples for Storm 2 in both catchments) exhibited small peaks at around 22 

Ex/Em: 270/320 (< 2.4 QSU and < 1.3 QSU in the coniferous and deciduous 23 
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catchments, respectively), possibly corresponding to peaks in amino acid-like (or 1 

protein-like) materials (Coble et al., 1993; Fellman et al., 2010). As shown in Fig. 3, 2 

the peaks indicating humic acid-like (e.g., at around Ex/Em: 480/520) and other 3 

unknown materials were not detected visibly in our analyses. 4 

To determine the fluorescence intensity of FAM (F-FAM), the peaks in fluorescence 5 

intensity corresponding to FAM were normalized relative to the fluorescence intensity 6 

of a 10 g L–1 quinine sulfate solution (= 10 QSU) at Ex/Em: 345/440; close to the 7 

peak obtained for FAM (Ex/Em: 340/440). The solvent (sulfuric acid, 0.1 mol L–1; 8 

Wako Pure Chemical Industries Japan) of this solution exhibited no fluorescence 9 

spectrum. The fluorescence intensity of the quinine sulfate solution was verified every 10 

140 min (for every batch of seven water samples) to determine any instrumental errors 11 

which may have been caused by fluctuations in illumination. 12 

In Terajima and Moriizumi (2013), the correlation lines of the F-FAM relative to 13 

DOC concentration showed the linear correlations with different slopes for each water 14 

sample at DOC < 22 mg L-1 and F-FAM < 120 QSU but became convex at DOC > 22 15 

mg L-1 and F-FAM > 120 QSU. This shows that attenuation of the FAM spectrum due 16 

to high FAM concentration probably began at values > 120 QSU. F-FAM of the soil 17 

extracts from soil surfaces were greater than > 120 QSU (Fig. 4a). Thus the FAM 18 

spectrum of these samples (without dilution) could have been attenuated and 19 

consequently natural F-FAM of the soil extracts at soil surfaces may be greater than 20 

the data shown in Fig. 4a. In contrast, because the F-FAM of all stream water filtrate 21 

was < 20 QSU, we did not dilute the water samples to avoid FAM spectrum 22 

attenuation. 23 
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The F-FAM of water should usually be corrected for the inner filtering effect, for 1 

example, on the basis of Lakowicz (1999). However, the correction coefficients of the 2 

stream water filtrate, of which all F-FAM was below 20 QSU in our study, ranged 3 

within the measurement error of the fluorescence intensity of 10 g L-1 quinine sulfate 4 

solution. Accordingly, except for the soil extracts, the inner filter correction of the 5 

stream water filtrate found to be negligible and thus we did not conduct the correction 6 

for stream water. 7 

 8 

3.5. Statistical analysis 9 

To understand roughly the bonding possibility of NIF in the headwater streams, we 10 

examined the relationship between stream discharge, the fluxes of Si, NIF, and FAM 11 

by calculating their linear correlation coefficients (r-values with p- and n-values) 12 

during no rainfall periods and two rainstorms. Then, total elements, free ions, NIF, and 13 

Si (all units are in [mg L–1]) were multiplied by the specific stream discharge at 14 

corresponding water correction [L s–1 ha–1] to obtain their specific fluxes [mg s–1 ha–1]. 15 

In addition, to equivalently compare the relative differences in NIF transport affected 16 

by the FAM amount in the stream water of the coniferous and deciduous catchments, 17 

the F-FAM [QSU] (i.e., apparent concentration) was multiplied by the specific stream 18 

discharge at corresponding water collection [L s–1 ha–1] and we obtained the apparent 19 

specific flux of FAM [QSU L s–1 ha–1] in the stream water of both catchments. 20 

Because the specific flux is obtained from multiplying the concentration of major 21 

metals by specific stream discharge, the relationship between the specific flux and 22 

specific stream discharge seems inevitably to show a good correlation. For example in 23 
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a headwater in Japan, however, the flux of wash load (i.e., multiplying the 1 

concentration of wash loads by stream discharge) does not always necessarily represent 2 

good correlations with stream discharge (Terajima et al., 1997). Besides, the sources of 3 

stream water, major metals, Si, NIF, and FAM are surmised to be spatially and 4 

temporally different even in small headwater catchments: which seems too hard to 5 

understand the relationship between the complicated hydrological processes and the 6 

cause of changes in concentration. In addition, the specific flux is convenient both to 7 

compare the chemical characteristics in various streams where catchment area and 8 

stream discharge is usually different and to separate the flow component of stream 9 

water as described in Section 3.6. Accordingly, in the strict sense, although the 10 

relationships between specific stream discharge, the specific flux of major metals, Si, 11 

NIF, and FAM do not necessary reveal the bonding forms of Na, Mg, and Ca in stream 12 

water, the specific flux (involving the difference in stream discharge and catchment 13 

area) can be one of the useful factors capable of understanding the transport dynamics 14 

based on the mass balance of chemical materials. 15 

 16 

3.6. Separation of the stream water components and NIF 17 

Hirano et al. (2009) suggested that in the catchments we observed, the Si 18 

concentration could be used as index for assessing the baseflow component of the 19 

stream water. The baseflow component of the stream water derives from groundwater 20 

or deep subsurface water, and as a result of reactions between the water and the soil or 21 

basement rocks during the relatively long contact time between them, the Si 22 

concentration in the baseflow is high (Wels et al., 1991). Hirano et al. (2009) also 23 
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showed that, based on the mass conservation law and the Si flux, the baseflow 1 

component of the stream water during rainstorms could be calculated as follows: 2 

Q (baseflow in rainstorm) = Q (rainstorm) (1 – Q (quick-flow) / Q (rainstorm)),           (1) 3 

where Q (baseflow in rainstorm) is the baseflow component of the stream water during 4 

rainstorms; Q (rainstorm) is the measured stream discharge during rainstorms, including 5 

both baseflow and quick-flow components; and Q (quick-flow) is the quick-flow 6 

component of the stream water calculated from the Si flux of near-surface water, as 7 

represented by rainwater containing relatively low Si concentrations (a maximum of 8 

0.27 mg L–1 in the presented case). Thus, in Eq. 1, Q (quick-flow) / Q (rainstorm) is the ratio of 9 

the quick-flow component to the total stream discharge during rainstorms, and (1 – Q 10 

(quick-flow) / Q (rainstorm)) represents the ratio of the baseflow component to the total stream 11 

discharge during rainstorms. Both these ratios can change over the course of a storm. 12 

The NIF flux originating from the quick-flow component of the stream water 13 

(NIF) is calculated as follows: 14 

NIF = NIF (rainstorm) – NIF (baseflow in rainstorm),                 (2) 15 

where NIF (rainstorm) is the measured NIF flux in the stream water during rainstorms, 16 

including both the baseflow and quick-flow components; and NIF (baseflow in rainstorm) is 17 

the NIF flux derived from the baseflow component during rainstorms, of which the 18 

calculation will be presented in Section 5.3.1. (i.e., Eq. 5). In Eq. 2, NIF would be 19 

derived mostly from relatively shallow soils with high FAM (Fig. 4a) resulted from 20 

shallow subsurface and near-surface water as biomatflow. 21 

On the basis of Eqs. 1 and 2, with combining the other Eqs. noted in the sections of 22 

5.2.1 and 5.3.1 (i.e., Eqs. 3 to 6), NIF dynamics in stream water and bonding 23 

http://ejje.weblio.jp/content/mass+conservation+law
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possibility of the major metals with FAM and/or nano-scale phyllosilicates such as clay 1 

minerals will be discussed. 2 

 3 

4. Results 4 

4.1. FAM distribution in soil 5 

The concentrations of water extractable FAM and DOC in soils in the coniferous 6 

and deciduous catchments are shown in Fig. 4. Regardless of the slope position, FAM 7 

(Fig. 4a) in the coniferous catchment occurred mainly in the shallow part of soil above 8 

50 cm depth. In the deciduous catchment, higher FAM was measured at the mid and 9 

lower slope positions than at the ridge top, even below 50 cm depth. The distribution 10 

of DOC (Fig. 4b) was similar to that of FAM though the concentrations below 50 cm 11 

depth ranged between a few mg L-1 and 10 mg L-1 especially in the coniferous 12 

catchment. 13 

  14 

4.2. Major metals and Si in stream water during no rainfall periods 15 

We examined the changes in stream water chemistry and the proportion of NIF 16 

relative to total elements in stream water (baseflow) during no rainfall periods from 17 

2006 to 2007 (Fig. 5). The pH of the stream water ranged between 6.0 and 7.0 in both 18 

catchments, however, that of the baseflow during the summer season tended to have 19 

been 0.5 - 1.0 pH units higher than that during the winter season in both catchments.  20 

Fig. 5 shows that, except for the concentrations of T-Ca and Ca2+ in the coniferous 21 

catchment, which respectively ranged from 6 to 10 mg L–1 and from 5 to 8 mg L–1, the 22 

concentrations of the total elements (T-Na, -Mg, and -Ca) and free ions (Na+, Mg2+, 23 
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and Ca2+) were mostly below 5 mg L–1 in both catchments. 1 

The concentrations of total elements were higher in the coniferous catchment than 2 

in the deciduous catchment throughout the observation period. In addition, Fig. 6 3 

shows that the flow chemistry in free ions showed the Ca-HCO3 type in both 4 

catchments. Although the concentration of free ions tended to rise through winter into 5 

summer in both catchments, it was higher in the coniferous catchment than in the 6 

deciduous catchment (i.e., mean concentrations were 1.4, 0.4, and 3.6 mg L-1 higher 7 

for T-Na, T-Mg, and T-Ca, respectively; and 1.4, 0.4, and 3.6 mg L-1 higher for Na+, 8 

Mg2+, and Ca2+, respectively). 9 

The mean Si concentration was 6.22 mg L-1 in the coniferous catchment and 4.88 10 

mg L-1 in the deciduous catchment, 1.3 times higher on average in the coniferous 11 

catchment than in the deciduous catchment. However, because the stream discharge 12 

(i.e., baseflow in this case) in the coniferous catchment was about 0.7 - 0.8 times less 13 

on average than that in the deciduous catchment, the specific fluxes of Si were 14 

eventually similar in the two catchments throughout the observation period. 15 

The proportion of NIF relative to total element ranged from 0.6% to 40.0% in the 16 

coniferous catchment and from 7.3% to 58.0% in the deciduous catchments (refer to no 17 

rainfall periods in Table 1a). They tended to become lower (7% to 19 % on average) 18 

after May 2007 except during rainfall periods and NIF-Ca in the deciduous catchment 19 

(Fig. 5), resulting from the rise of concentration of free ions relative to total elements 20 

through winter into summer as shown in Fig. 6. In addition, the proportions of NIF in 21 

the coniferous catchment (Table 1a) were 13.6% (in NIF-Na), 11.3% (in NIF-Mg), and 22 

25.4% (in NIF-Ca) lower on average, with a significant difference under all p < 0.0001 23 
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and n = 30, than those in the deciduous catchment. Thus in the stream water during no 1 

rainfall periods, although the concentrations of total elements and free ions were 2 

mostly higher in the coniferous catchment than in the deciduous catchment, the 3 

proportion of NIF in the stream water were less in the coniferous catchment than in the 4 

deciduous catchment. 5 

 6 

4.3. Major metals, Si, and FAM in stream water during rainstorms 7 

We next examined the changes in stream water chemistry and the proportion of 8 

NIF relative to total elements during rainstorms. The changes in pH of low and peak 9 

stream discharge during the rainstorms in the two catchments were from 6.0 to 7.5. The 10 

result in Storm 2 (a typhoon storm with total rainfall of 117 mm) is specifically shown 11 

in Fig. 7. In the coniferous catchment, stream discharge initially peaked at 2.5 L s–1 12 

ha–1 at 00:00 LT on 15 July and peaked a second time at 8.5 L s–1 ha–1 at 12:30 LT on 13 

15 July. In contrast, in the deciduous catchment, the stream discharge during the 14 

morning of 15 July was about 1 L s–1 ha–1 without clear peak, but a peak of 8.0 L s–1 15 

ha–1, similar in amount to the second peak in the coniferous catchment, occurred at 16 

12:30 LT on 15 July. 17 

T-Na and Na+ concentrations in the coniferous catchment were relatively about 1.0 18 

and 1.4 mg L-1 higher on average than those in the deciduous catchment. However, 19 

T-Mg and Mg2+ concentrations were almost the same in both catchments: same on 20 

average in T-Mg and 0.2 mg L-1 higher on average in Mg2+ in the coniferous catchment 21 

than in the deciduous catchment. In contrast, T-Ca concentrations were similar in both 22 

catchments (0.18 mg L-1 lower on average in the coniferous catchment than in the 23 
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deciduous catchment), whereas Ca2+ concentrations in the coniferous catchment were 1 

about 1.7 mg L-1 higher on average than those in the deciduous catchment. These facts 2 

provide that the NIF-Ca concentration (ratio) in the coniferous catchment was 3 

consequently lower than tthhaatt in the deciduous catchment. 4 

The mean Si concentration in the coniferous catchment was 6.09 mg L-1 and that in 5 

the deciduous catchment was 3.50 mg L-1, 2.59 mg L-1 higher in the coniferous 6 

catchment than in the deciduous catchment. This difference in concentrations resulted 7 

in higher Si fluxes in the coniferous catchment than in the deciduous catchment during 8 

Storm 2, because stream discharge was similar for the two catchments.  9 

The maximum apparent concentrations of FAM in Storm 2 were 12 QSU in the 10 

coniferous catchment and 15 QSU in the deciduous catchment, whereas they were 8.6 11 

QSU and 8.7 QSU in Storm 1, respectively. Because the maximum stream discharge in 12 

Storm 2 was similar in both catchments, the apparent flux of FAM in the coniferous 13 

catchment was lower than that in the deciduous catchment. 14 

The proportion of NIF relative to total elements during the rainstorms (refer to 15 

Table 1b and 1c) ranged, in the coniferous catchment, from 5.9% to 41.8% in Storm 1 16 

and from 1.9% to 72.4% in Storm 2. Contrastively, that in the deciduous catchment 17 

ranged from 23.4% to 49.6% in Storm 1 and 24.5% to 60.5% in Storm 2. The mean 18 

proportions of NIF in the coniferous catchment were 10.2% to 26.3% lower in Storm 1 19 

and 12.2% to 19.1% lower in Storm 2 than those in the deciduous catchment, with a 20 

significant difference under all p < 0.0001, n = 22 (Storm 1), n = 29 (Storm 2), also 21 

similar to the results during no rainfall periods (Table 1a).  22 

The changes in chemical concentrations of major ions in stream water during the 23 
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rainstorms (piper trilinear diagrams; Piper, 1944) are shown in Fig. 8. On the basis of 1 

the combination of the rate of free ions expressed in Fig. 8, the flow modes 2 

contributing stream water are categorized as following 4 types: 3 

I : CaSO4-CaCl2 type (non-carbonate hardness) originated from surface flow to soil 4 

water 5 

II: Ca(HCO3)2 type (carbonate hardness) originated from soil water to shallow 6 

groundwater 7 

III: NaHCO3 type (carbonate alkali) originated from stagnated deep groundwater 8 

VI: NaSO4-NaCl type (non-carbonate alkali) originated from sea water or hot spring 9 

In the coniferous catchment, soil water and shallow ground water (Type I to II) 10 

seems to have been the main component of stream water during both rainstorms. 11 

However, the combination of major ions in Storm 2 (Fig. 8b left) changed 12 

discontinuously from the boundary of Type I and II to the edge of Type I during the 13 

rising limb of the hydrograph. In contrast, in the deciduous catchment, the combination 14 

distributed between the middle of Type I and Type II in both rainstorms and did not 15 

change discontinuously as indicated in the coniferous catchment.  16 

 17 

5. Discussion 18 

5.1. Mode of non-free ionic fraction in stream water 19 

We hardly detected K+ in the stream water of either catchment not only during no 20 

rainfall periods but also rainstorms, although it was detected in the shallow soil, 21 

indicating that K+ moved scarcely from the soil to the streams, possibly because most 22 

K+ was absorbed directly from the soils by the trees and other plants or was 23 
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irreversibly adsorbed by such clay minerals as vermiculite. Thus K is excludable from 1 

the following discussion on the mode of NIF. 2 

NIF-Na, -Mg, and -Ca in natural water can be classified into five chemical forms, 3 

which are listed in Table 2. Representative candidate free polyatomic ions in the 4 

aquatic environment are MgF+, NaSO4
–, and MgPO4

–, but these ions are mainly found 5 

in seawater (Howard, 1998); these free polyatomic ions mainly dissociate in fresh 6 

water or are absent in soils so that the Na and Mg occur as free ions in fresh water 7 

streams. 8 

Except for calcium phosphate which is insoluble in fresh water (Guardado et al., 9 

2007), the lowest fresh water solubility among inorganic compounds (hydrate, sulfate, 10 

carbonate, nitrate, and phosphate) of Na, Mg, and Ca, at 20 °C and pH 7.0, is that of 11 

NaHCO3 (1.04 mol L–1), Mg(OH)2 (1.65 × 10–4 mol L–1), and CaCO3 (1.50 × 10–4 mol 12 

L–1). Therefore, in fresh water, the lowest saturated concentrations of Na+, Mg2+, and 13 

Ca2+ derived from the dissolution of NaHCO3, Mg(OH)2, and CaCO3 are calculated as 14 

about 23.9 g L–1, 4.0 mg L–1, and 6.0 mg L–1, respectively. These calculated values, 15 

except for Ca2+ in the coniferous catchment from April to June 2007 (7.5 mg L-1 at 16 

most in Fig. 5), were enough higher (i.e., unsaturated in free ions) than the maximum 17 

concentrations measured in the stream water. Moreover, the actual concentrations of 18 

Na+, Mg2+, and Ca2+ in the stream water at pH 6.0 to 8.0 could be lower than those 19 

measured by ion-analyzer using an eluant with pH 3.0. Thus, the stream water were 20 

hardly saturated by Na+, Mg2+, and Ca2+, and Na, Mg, and Ca derived from the 21 

compounds (hydrate, sulfate, carbonate, nitrate, and phosphate) ought to occur mostly 22 

as free ions in stream water with pH from 6.0 to 8.0. In addition, cations do not adsorb 23 
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onto Al- or Fe-hydroxides in freshwater environments with pH < 8.0, such as the pH of 1 

the stream water in these headwater catchments, because they are electropositive 2 

(AlOH2
+ or FeOH2

+). 3 

Thus, in our study, except for calcium phosphate, the occurrence of NIF-Na, -Mg, 4 

and -Ca in hydration and inorganic compounds scarcely needs consideration. Most 5 

NIF-Na, -Mg, and -Ca, therefore, were probably bonded to organic materials or 6 

nano-scale phyllosilicates such as clay minerals (e.g., Takahashi et al., 1999). That is, 7 

exploring the bonding of these materials is likely to be key to elucidate the transport of 8 

Na, Mg, and Ca in the stream water of these headwater catchments. 9 

 10 

5.2. NIF dynamics in stream water 11 

5.2.1. Relationship between stream discharge, Si, and NIF during no rainfall periods 12 

In contrast to the inverse relationship observed between stream discharge and the 13 

Si concentration during Storm 2 (i.e., dilution of Si by quick-flow component with a 14 

low concentration of Si; Fig. 7), the Si concentration during no rainfall periods (Fig. 5) 15 

increased as the stream discharge (i.e., baseflow in this case) increased. This result 16 

suggests that changes in the Si production are strongly controlled by the baseflow 17 

component of stream water. 18 

The correlation coefficients (r) and slopes of the relationships between stream 19 

discharge and the Si flux and between the fluxes of Si and NIF during no rainfall 20 

periods are shown in Table 3. In the correlation equations, the y-intercept was set to 21 

zero, because discharge of Si does not occur without stream discharge, and no NIF 22 

production occurs without stream discharge (i.e., without discharge of Si). Against the 23 
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wash load flux as mentioned in Section 3.5. (i.e., not always necessarily represent good 1 

correlations), the relationships are expressed as follows under the good correlation (r = 2 

0.99, p < 0.0001, n = 54) and the different coefficient “a”: 3 

Si (baseflow) = a Q (baseflow),                          (3) 4 

where Si (baseflow) is the Si flux in the stream water during the no rainfall periods, the 5 

coefficient a represents the average Si concentration, and Q (baseflow) is the stream 6 

discharge during no rainfall periods (i.e. baseflow). When the stream water was 7 

collected (and thus the Si concentration was measured), the maximum stream 8 

discharge was 3.19 L s–1 ha–1 and 5.06 L s–1 ha–1 in the coniferous and deciduous 9 

catchments, respectively. Thus, in the strict sense, when we calculate the baseflow 10 

component of the stream water during the rainstorms (Q (baseflow in rainstorm) in Eqs. 1, 5, 11 

and 6, Eq 3 is available to the baseflow component below 3.19 L s–1 ha–1 and 5.06 L s–1 12 

ha–1 in the coniferous and deciduous catchments, respectively. 13 

In contrast, the correlations between the fluxes of Si and NIF in the stream water 14 

during the no rainfall periods were also high (r > 0.92, p < 0.0001, n = 30) in both 15 

catchments (Table 3). The NIF flux during no rainfall periods (NIF (baseflow)) can 16 

therefore be expressed by Si (baseflow) and Eq. 3 as follows: 17 

NIF (baseflow) = b Si (baseflow) = ab Q (baseflow).                   (4) 18 

Eq 4 indicates that the ratio of the NIF discharge to the Si discharge in stream water 19 

was approximately constant during the no rainfall periods. The values of the coefficient 20 

b are shown in Table 3. Even though Si is naturally included in nano-scale 21 

phyllosilicates, the relationship between Si and NIF expressed by Eq. 4 does not 22 

necessarily explain the transport form of the major metals bonded to nano-scale 23 
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phyllosilicates (e.g., substitution in lattices, invasion into the interlayer spaces, or ion 1 

adsorption on the surfaces) because of occurring simple silicic acid ions. However, the 2 

high correlation between Si and NIF during the no rainfall periods may have some 3 

implications regarding the transport of Si and NIF, because during the rainstorms the Si 4 

flux (Table 4) did not usually correlate strongly (i.e., r < 0.80) with NIF fluxes. In 5 

particular, during Storm 1 (Table 4a), the correlations tended to be weak except for 6 

NIF-Mg in the coniferous catchment, even when the baseflow component accounted 7 

for most of the stream water (94% and 97% in the coniferous catchment and deciduous 8 

catchment, respectively; Hirano et al., 2009). 9 

 10 

5.2.2. Relationship between stream discharge, Si, and NIF during rainstorms 11 

The correlation coefficients (r) and slopes of the relationships between stream 12 

discharge and the Si flux and between the fluxes of Si and NIF during rainstorms are 13 

shown in Table 4. 14 

The concentrations of Si in both catchments during the rainstorm decreased slightly 15 

(a few mg L-1) with an increase in stream discharge, indicating that the Si, originated in 16 

the baseflow component in stream water, could have been diluted with the quick-flow 17 

component containing the low Si concentration. This finding was consistent with those 18 

from no rainfall periods, that is, more baseflow equates to higher Si concentration.  19 

In both rainstorms, as well as the cases during the no rainfalls, the Si flux 20 

correlated strongly (r ≥ 0.80, p < 0.0001, n = 24 and 29 for the coniferous catchment 21 

and deciduous catchment, respectively) with the stream discharge in both catchments. 22 

The values of the coefficient a, however, were smaller in both catchments than its 23 
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value during the no rainfall periods (i.e., a(baseflow) > a(Storm 1) > a(Storm 2)). Therefore, 1 

compared with the no rainfall periods, the rate of increase in the Si flux relative to that 2 

in the stream water was lower during rainstorms, probably because the low Si 3 

concentration of the quick-flow component of the stream water caused the Si 4 

concentration in the total stream water to be relatively low. This finding suggests that, 5 

as indicated in Section 5.2.1, the Si production during rainstorms is also strongly 6 

controlled by Si in the baseflow component of the stream water. 7 

The weak correlations (r < 0.60) between the fluxes of Si and NIF in some cases in 8 

Table 4 suggest that, in contrast to no rainfall periods (Table 3), NIF was not 9 

necessarily increased according to the increase in Si during rainstorms. Though the 10 

ratio of NIF to Si reflects in part the different values of the b coefficient (Tables 3 and 11 

4), the low correlations (r < 0.60, Table 4) may reflect either an increased or reduced 12 

transport of NIF by the quick-flow component of the stream water in those cases. Thus, 13 

in analyses of NIF transport during rainstorms, NIF should be classified according to 14 

whether it derives from the baseflow or the quick-flow component of the stream water. 15 

In contrast, as shown in the deciduous catchment in Table 4b, strong correlations (r ≥ 16 

0.80) may reveal that the flow components of the stream water did not implicate the 17 

result in an increase in transport of Si and NIF. 18 

 19 

5.3. Bonding possibility of Na, Mg, and Ca to FAM 20 

5.3.1. Origin of FAM and NIF during rainstorms 21 

Water extractable FAM tended to be stored in the shallower part of soil in the 22 

coniferous catchment than in the deciduous catchment (Fig. 4 and Section 4.1.). In 23 
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contrast, soil porosity and saturation hydraulic conductivity are similar in both 1 

catchments (Section 2.2.). These findings may imply that the hydrological process, 2 

such as near-surface flow represented by biomatflow caused dominantly in the 3 

coniferous catchment, may have controlled the downward movement of FAM. 4 

In Storm 1, the apparent fluxes of FAM were mostly ≤ 2.0 QSU L s–1 ha–1 in both 5 

catchments, and the maximum fluxes were 4.9 QSU L s–1 ha–1 and 6.4 QSU L s–1 ha–1 6 

in the coniferous and deciduous catchments, respectively. In contrast, in Storm 2, the 7 

apparent fluxes were ≥ 2.0 QSU L s–1 ha–1 in both catchments, and the maximum 8 

fluxes were 53.3 QSU L s–1 ha–1 and 113.6 QSU L s–1 ha–1 in the coniferous and 9 

deciduous catchments, respectively. Thus, the production of FAM was relatively small 10 

during Storm 1, which was a small rainstorm that contributed only a small quick-flow 11 

component to the total stream water (6% and 3% in the coniferous and deciduous 12 

catchments, respectively; Hirano et al., 2009) and consequently produced smaller 13 

changes in the stream hydrograph than Storm 2. Thus, during rainstorms, most FAM 14 

likely originated at relatively shallow depth in the soil as shown in Fig. 4a. 15 

During the heavy rainstorm, both surface or near-surface water (i.e., quick-flow 16 

component) and deep soil water was dominant in the coniferous catchment, whereas 17 

both shallow and deep soil water was dominant in the deciduous catchment (Fig. 8). 18 

Thus NIF and FAM production could be strongly controlled by the main flow 19 

component of stream water, which was different between the coniferous and deciduous 20 

catchment. Accordingly, when we analyze the relationship between FAM and NIF 21 

during rainstorms, we should take into account whether the NIF in the stream water 22 

derived primarily from the baseflow (deep soil) or quick-flow (near-surface or shallow 23 
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soil). 1 

As indicated in Section 5.2.2, the Si production in the stream water during the 2 

rainstorms seems to have been controlled mainly by Si included in the baseflow 3 

component of the stream water (e.g., a(baseflow) > a(Storm 1) > a(Storm 2) in Tables 3 and 4). 4 

In addition, the maximum stream discharge during the no rainfall periods (i.e., 5 

maximum baseflow) were 3.19 L s–1 ha–1 and 5.06 L s–1 ha–1 in the coniferous and 6 

deciduous catchments, respectively; corresponding to 0.6 and 1.3 times the maximum 7 

baseflow component calculated for Storm 2 using Eq. 1. In other words, specifically in 8 

the coniferous catchment, the maximum baseflow component during Storm 2 was more 9 

than the baseflow during the no rainfall periods. 10 

Accordingly, if we could extrapolate Eq. 4 for calculating the baseflow component 11 

in the coniferous catchment during Storm 2, we can modify Eq. 4 for the two 12 

catchments to express NIF originating from the baseflow component during the 13 

rainstorms as follows: 14 

NIF (baseflow in rainstorm) = b Si (baseflow in rainstorm) =ab Q (baseflow in rainstorm),        (5) 15 

where Si (baseflow in rainstorm) is the Si flux originating from the baseflow component of the 16 

stream water during rainstorms. By combining Eqs. 1, 2, and 5, we obtain: 17 

NIF = NIF (rainstorm) – ab Q (baseflow in rainstorm) 18 

= NIF (rainstorm) – ab Q (rainstorm) (1 – Q (quick-flow) / Q (rainstorm)).      (6) 19 

Eq. 6 can thus be used to examine the relationship between NIF and FAM transported 20 

in the stream water during rainstorms, which is mainly contained in the quick-flow 21 

component passed through relatively shallow soil with a high FAM content (Fig. 4a). 22 

 23 
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5.3.2. Relationship between FAM, NIF, andNIF during the rainstorms 1 

The relationships between the fluxes of FAM, Si, NIF, and NIF in the stream 2 

water during rainstorms are shown in Table 5. In these correlations, the y-intercept (d) 3 

is a non-zero value because NIF can be transported in the stream water during the no 4 

rainfall periods, when the FAM flux is very small. In the case of Storm 1, we could not 5 

determine whether the samples were collected on the rising or falling limb of the 6 

hydrograph because the small rainfall amount produced only small changes in the 7 

hydrograph, but in the case of Storm 2, we classified the samples according to when 8 

they were collected. Thus, for the relatively weak correlations during Storm 2 (r < 9 

0.70), we also calculated correlations for samples collected during the rising and 10 

falling limbs of the hydrograph separately, and we show respectively those correlation 11 

coefficients in parentheses in Table 5. 12 

For Storm 1 (Table 5a), when the quick-flow component accounted for ≤ 6% of 13 

the stream water (Hirano et al., 2009), we were unable to calculate correlation 14 

coefficients for the FAM–NIF-Ca relationship in the deciduous catchment, because 15 

NIF-Ca, calculated with Eq. 6, was generally 0 mg s–1. Except for FAM versus 16 

NIF-Na in the deciduous catchment (r = 0.86, p = 0.0009, n = 16), the correlations 17 

between FAM and Si, NIF, and NIF were low (r ≤ 0.60, n = 22 for the coniferous 18 

catchment and n = 16 for the deciduous catchment). Thus, these low correlations likely 19 

reflect the effect of the high proportion of baseflow component (≥ 94% of the stream 20 

discharge; Hirano et al., 2009) on the variation of FAM, derived mostly from the 21 

shallow soil by the quick-flow component. These findings indicate that the transport of 22 

NIF (or NIF), that is, the bonding of Na, Mg, and Ca to FAM, hardly differed during 23 
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the small rainstorm from that during the no rainfall periods because of the relatively 1 

small change in the quick-flow component of the stream water. 2 

Takahashi et al. (1999) mentioned that the inorganic particles coated by humic 3 

material (organic-inorganic complex) should have been regarded as important 4 

particulate matter which shows different affinities to various ions from inorganic 5 

particulates without the organic coating. In addition, they indicated that the colloidal 6 

inorganic particles coated with humic substances were expected to be significantly 7 

important in the environment. Thus, as well as the case during the no rainfalls, Na, Mg, 8 

and Ca may have been bonded not only to FAM (Choppin and Shanbhag, 1981; Livens, 9 

1991) but also to nano-scale phyllosilicates, organic acids of which the concentration 10 

was implicitly indicated by our measurement in the ion-analyzer and the 3d-EEM, 11 

other unknown materials such as citric, tartaric, lactic, and malic acids (Stevenson, 12 

1994), or to else which is soluble in freshwater (Guardado et al., 2007). 13 

In Storm 2 (Table 5b), when the quick-flow component accounted for ≥ 30% of the 14 

stream discharge (Hirano et al., 2009), the correlations between FAM and NIF were 15 

strong (r ≥ 0.81, p < 0.0001, n = 22) in the coniferous catchment. This result supports 16 

the interpretation that the quick-flow component during the large rainstorm in the 17 

coniferous catchment, as shown at the edge of Type I in Fig. 8, may have transported 18 

FAM and NIF together from the relatively shallow soil layer. In contrast, in the 19 

deciduous catchment, the strong correlations (r ≥ 0.83, p < 0.0001, n = 26) of FAM 20 

with both NIF and NIF may have resulted from their derivation from soil water and 21 

shallow groundwater (Fig. 8) that passed through the shallow to deep part of soil 22 

containing higher FAM concentrations than those in the coniferous catchment (Fig. 23 
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4a). 1 

Furthermore, FAM was also correlated more strongly with Si in the deciduous 2 

catchment (r = 0.87, p < 0.0001, n = 26) than in the coniferous catchment (r = 0.73, p < 3 

0.0001, n = 26). Together with the strong correlations between Si and NIF in the 4 

deciduous catchment during Storm 2 (Table 4b), these findings may indicate the 5 

interpretation that during heavy storms, Na, Mg, and Ca bond more likely to FAM and 6 

also possibly to nano-scale phyllosilicates (organic–inorganic interactions as indicated 7 

by Takahashi et al., 1999) in the headwater stream of the deciduous catchment, 8 

compared with the coniferous catchment. This thing may result from the interaction 9 

between rainwater pathways in relatively deep part of soil compared to the 10 

near-surface and FAM percolated into the deeper part of soil in the deciduous 11 

catchment than in the coniferous catchment. 12 

 13 

5.4. Effect of environmental factors on NIF production 14 

Using a chemical model, Mantoura et al. (1978) showed that, in freshwater lakes, 15 

compounds of Mg and Ca with sulfate (-SO4) and carbonate (-CO3) accounted for ≤ 16 

1% of their total concentrations, and it has since been assumed that most Na, Mg, and 17 

Ca occurs as free ions in natural freshwater bodies. However, in our study (Figs. 5, 7, 18 

and Table 1), NIF-Na, -Mg, and -Ca in stream water sometimes accounted for half or 19 

more of the total concentrations of these elements. This was predominant in the 20 

deciduous catchment, suggesting that NIF are not a negligible feature in freshwater 21 

streams when the species of Na, Mg, and Ca are considered. Although the baseflow pH 22 

was about 1.0 pH unit higher in the coniferous catchment than in the deciduous 23 
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catchment, the concentrations of free ions in the coniferous catchment were 1 to 4 mg 1 

L-1 higher than those in the deciduous catchment. In other words, increased production 2 

of free ions due to the lower stream water pH never provides the lower concentrations 3 

of free ions in the deciduous catchment (i.e., the higher proportion of NIF).  In addition, 4 

the flux of Na+, Mg2+, and Ca2+ to the forests were approximately the same in both 5 

catchments (Section 3.2.). Therefore, the proportion of NIF must indicate that the 6 

bonding of Na, Mg, and Ca between the soils and streams may account for the high 7 

percentage of NIF in the stream water. 8 

No human activities, such as thinning to reduce tree density or fertilizing, took 9 

place in either catchment during the observation period. Furthermore, geographical, 10 

topographical, geological, and climatic conditions were almost the same in both 11 

catchments. Consequently, the differences in chemistry of Na, Mg, and Ca in the 12 

stream water between the two catchments; specifically both in the higher free ion 13 

concentration in the coniferous catchment than in the deciduous catchment (Fig. 6) and 14 

in the proportion of NIF which was from 10% to 26% lower on average in the 15 

coniferous catchment than in the deciduous catchment (Table 1); may primarily reflect 16 

the effects of the different vegetation on the bonding of Na, Mg, and Ca.  17 

In particular, Fig. 8 also emphasizes that the main flow pathways contributing to 18 

stream water during Storm 2 could have been different in the coniferous and deciduous 19 

catchments. The stream water (and thus FAM) in the coniferous catchment during 20 

Storm 2 was likely originated in near-surface water and shallow groundwater, whereas 21 

it was likely originated in soil water to shallow groundwater in the deciduous 22 

catchment. The unique flow generation (biomatflow) from near-surface at the slope 23 
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during rainstorms in the coniferous catchment could be one of the causes to transport 1 

much FAM to stream water and consequently to store little FAM in the deep part of 2 

soil (Fig. 4a). 3 

 4 

6. Conclusions 5 

We investigated the transport of major metals by measuring the concentrations of Na, 6 

Mg, Ca, Si, and fulvic acid-like materials in two mountainous headwater streams in 7 

Japan, one surrounded by coniferous and the other by deciduous forest. The 8 

conclusions are not necessarily being generalized because only data sets for two 9 

rainstorms and two headwater catchments were prepared in the presented study. 10 

However, together with the data during no rainstorms, the following outlines can be 11 

mentioned for the transport and bonding possibility of major metals caused in the 12 

headwater streams by differing vegetation: 13 

(1) The proportion of non-free ionic fractions to total metal elements ranged from 0% 14 

up to 70% in two streams during both no rainfall period sand rainstorms and was 15 

lower in the coniferous catchment than in the deciduous catchment, though most Na, 16 

Mg, and Ca has previously been assumed as free ions in natural freshwater 17 

environments. 18 

(2) In the stream water during no rainfall periods, as well as during small rainstorms, 19 

some non-free ionic fractions in two streams were probably transported in bonding to 20 

unknown materials including nano-scale phyllosilicates (clay minerals), organic acids, 21 

or else. 22 

(3) During heavy rainstorms, non-free ionic fractions in two streams could have mostly 23 
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been in bonding to humic substances and possibly to nano-scale phyllosilicates; 1 

which was dominantly enhanced in the deciduous catchment. This finding could have 2 

been due to the difference in flow pathways contributing to stream water: both surface 3 

or near-surface water (i.e., overland flow or biomatflow,) and shallow groundwater 4 

was dominant in the coniferous catchment, whereas both soil water (i.e., subsurface 5 

flow) and shallow groundwater was dominant in the deciduous catchment. 6 

(4) Above findings imply that the environmental controls, such as implication among 7 

the differences in rainstorm size (i.e., weather condition), the distribution and content 8 

of humic substances in soils (i.e., vegetational condition), and the resultant rainwater 9 

flow pathways contributing to stream water (i.e., hydrological condition), provided 10 

the variable organic-inorganic interactions in the headwater streams where 11 

geographical, topographic, geological, and climatic conditions are similar. 12 

Headwaters are the most elementary topographic unit to examine catchment 13 

hydrology. Consequently, the data on bonding of major metals, linked with the effect 14 

of environmental controls in headwater streams, should be fundamental and useful to 15 

understand the chemical species of major metals in the complicated and confusing 16 

nature as stream catchments. It is hoped that the accumulation of data sets based on 17 

field observations will improve the understanding of chemical species of major metals 18 

which was believed to occur mostly as free ions in freshwater environments.  19 
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Figure 1. Location and topographic maps of the Nariki catchment and headwater catchments.

(a) Nariki catchment, (b) Coniferous catchment, (c) Deciduous catchment. Contour intervals of

the Nariki catchment (a) and headwater catchments (b and c) are 10 and 5 m, respectively.
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Figure 2.  Tree canopies and understory vegetation in the headwater catchments 

in the summer of 2006.
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Figure 3 Typical EEM spectra for the different stream flow regimes. The arrows show the

visible peaks in fluorescence intensity (FI) at around Ex/Em: 340/440 during the

rainstorms. Contour intervals of FI are 1.0.
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Figure 4. Distribution of water extractable fulvic acid-like materials (FAM)

and dissolved organic carbon (DOC) in soils.

: Coniferous catchment      

: Deciduous catchment
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Figure 5. Concentrations of major metals (Na, Mg, and Ca) and silicon (Si), and the

proportion of non-free ionic fractions (NIF) relative to total elements in stream water during

no rainfall periods from 2006 to 2007. N.D. in the hyetograph shows no data

(a) Coniferous catchment (b) Deciduous catchment
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Figure 6. Seasonal changes in major ions in stream water during no rainfall periods, which were

derived from the arithmetic mean of the concentration data during two months
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Figure 7. Concentrations of major metals (Na, Mg, and Ca) and silicon (Si), peak fluorescence

intensity (F-FAM), and the proportion of non-free ionic fractions (NIF) relative to total elements

in stream water during a typhoon storm in 2007 (Storm 2).

(a) Coniferous catchment (b) Deciduous catchment

C
o

n
c
e

n
tr

a
ti
o
n

R
a

ti
o

0

1

2

P
re

c
ip

it
a
ti
o
n

(m
m

 5
m

in
-1

)

Jul.15
0 12 0 12 0 1212

Jul.14Jul.13 Jul.16 Jul.15
0 12 0 12 0 1212

Jul.14Jul.13 Jul.16

0

2

4

6

8

10

Stream flow
Sampling

S
p
e

c
if
ic

 d
is

c
h

a
rg

e

(L
 s

-1
h

a
-1

)

0

5

10
Total Na Ionic Na NIF-Na

N
a

( 
m

g
 L

-1
 )

: Na+

0

5

10
Total Mg Ionic Mg NIF-Mg

M
g

( 
m

g
 L

-1
 )

: Mg2+

0

5

10
Total Ca Ionic Ca NIF-Ca

C
a

( 
m

g
 L

-1
 )

: Ca2+

0

5

10

S
i

( 
m

g
 L

-1
 )

0

5

10

15

20

F
 -

 F
A

M
(Q

S
U

)

0

20

40

60

80

100

N
IF

-N
a

 (
%

)

0

20

40

60

80

100

N
IF

-M
g

 (
%

)

0

20

40

60

80

100

Jul.14
0 0 0

Jul.15
1212 12

Jul.16Jul.13
12

N
IF

-C
a

 (
%

)

Jul.14
0 0 0

Jul.15
1212 12

Jul.16Jul.13
12



Figure 8. Piper-trilinear diagrams of stream water chemistry (compositional changes in major

ions) during the rainstorms.

Ⅰ：CaSO4-CaCl2 type (non-carbonate hardness) originated from surface flow to soil water.

Ⅱ：Ca(HCO3)2 type (carbonate hardness) originated from soil water to shallow groundwater.

Ⅲ：NaHCO3 type (carbonate alkali) originated from stagnated deep groundwater.

Ⅳ：NaSO4-NaCl type (non-carbonate alkali) originated from sea water or hot spring.
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Table 1. Proportion of non-free ionic fractions (NIF)

relevant to total elements in the stream water (unit : %)

(a)  No rainfall 

periods
Coniferous
catchment

Deciduous
catchment

NIF-Na
Range 4.4～25.6 7.3～50.3

Average 13.0 26.6

NIF-Mg
Range 0.6～35.6 10.7～46.3

Average 17.7 29.0

NIF-Ca
Range 6.2～40.0 32.5～58.0

Average 19.6 45.0

(c)  Storm 2
Coniferous
catchment

Deciduous
catchment

NIF-Na
Range 3.3～38.2 24.5～51.3

Average 16.4 33.9

NIF-Mg
Range 24.5～72.4 32.6～59.8

Average 34.6 46.8

NIF-Ca
Range 1.9～72.1 34.3～60.5

Average 28.0 47.1

(b)  Storm 1
Coniferous
catchment

Deciduous
catchments

NIF-Na
Range 16.5～33.5 25.1～43.5

Average 24.8 35.0

NIF-Mg
Range 25.0～41.8 33.9～48.5

Average 31.8 42.0

NIF-Ca
Range 5.9～29.1 23.4～49.6

Average 14.2 40.5



Table 2. Non-free ionic forms of sodium (Na), magnesium (Mg), and calcium (Ca),

and the possible bonding partner or ligand group in aquatic environment.

Non-free ionic forms of

Na, Mg, and Ca
Possible bonding partner or

ligand group 

Hydration

Adsorption / Substitution
in phyllosilicates

Inorganic compounds 

Si, Al

F-, SO4
2-, CO3

2-, NO3
-
, PO4

3-

Al- or Fe- hydroxide,  etc

Complex of 

organic acids

Oxalate : C2O4
2-

Formic acid : HCOO-

Pyrrole (Chlorophyl) : C4H5N-

etc: -NH2, -NH

Carboxyl group : COO-

Phenolic group : Ph-OH

Amino group : -NH2

Imino group : -NH

Adsorption on

humic substances

H2O, OH
-

◆ Organic materials

◆ Inorganic materials



Table 3. Linear correlation coefficients (r) of the relationship

between stream discharge (Q), the flux of Si, and non-free ionic

fractions (NIF) during no rainfall periods. The y-intercept of the

correlation line was on the origin because Si does not occur without

stream discharge, also implying no NIF production without

baseflow discharge. Thus, the coefficient a and b are relatively

expressed as y=ax where y is Si and x is Q and y=bx where y is NIF

and x is Si.

x                  y

Coniferous catchment Deciduous catchment 

r a  or b r a  or b

Q  vs. Si 0.99 6.84 0.99 4.93

Si  vs.

NIF-Na 0.93 0.10 0.93 0.21

NIF-Mg 0.93 0.05 0.92 0.08

NIF-Ca 0.96 0.34 0.96 0.50



Table 4. Linear correlation coefficients (r) of the relationship

between stream discharge (Q) and the flux of Si, and non-free ionic

fractions (NIF) during the rainfalls. The coefficient a and b are same

as those in Table 3. The r-values which exceeded 0.80 (strong

correlation) are expressed by the bold style.

(a) Storm 1 Coniferous catchment Deciduous catchment 

x                     y r a  or b r a  or b

Q   vs. Si 0.90 6.01 0.80 3.89

Si  vs.

NIF-Na 0.79 0.20 0.22 0.25

NIF-Mg 0.89 0.08 0.69 0.10

NIF-Ca 0.54 0.15 0.58 0.30

(b) Storm 2 Coniferous catchment Deciduous catchment 

x                     y r a  or b r a  or b

Q   vs. Si 0.99 5.82 0.99 2.96

Si  vs.

NIF-Na 0.40 0.06 0.97 0.25

NIF-Mg 0.71 0.08 0.92 0.28

NIF-Ca 0.59 0.30 0.87 1.32



Table 5. Linear correlation coefficients (r) of the relationship between the fluxes of fulvic acid like

materials (FAM), Si, non-free ionic fractions (NIF), and non-free ionic fractions originated in the

baseflow component of stream water (DNIF) during the rainstorms; the coefficient c and constant d

which are expressed as y=cx+d, where y is the Si or NIF and x is FAM. The r-values in the

parentheses under r < 0.70 in Storm 2 show the linear correlation coefficients during the rising (left)

and falling limb (right) of the hydrograph, respectively, and they which exceeded 0.80 (strong

correlation) are expressed by the bold style. We were impossible to obtain the r-values between

FAM and DNIF-Ca in the deciduous catchment in Storm 1, because DNIF-Ca, calculated from

Equation 6, was mostly 0 mg s-1.

(a) Storm 1 Coniferous catchment Deciduous catchment 

x                   y r c d r c d

FAM  vs.

Si 0.26 0.11 3.35 0.51 0.09 2.38

NIF-Na 0.31 0.04 0.60 0.44 0.04 0.56

NIF-Mg 0.26 0.01 0.27 0.54 0.02 0.21

NIF-Ca 0.14 0.02 0.48 0.60 0.11 0.52

D NIF-Na 0.31 0.03 0.23 0.86 0.04 -0.03

D NIF-Mg 0.26 0.01 0.25 0.57 0.01 0.01

D NIF-Ca 0.13 0.02 0.35 － － －

(b) Storm 2 Coniferous catchment Deciduous catchment 

x                   y r c d r c d

FAM  vs. 

Si 0.73 0.89 6.69 0.87 0.26 2.69

NIF-Na 
0.20

(0.28, -0.52)
0.02 1.42 0.83 0.06 1.05

NIF-Mg 
0.65

(0.68, 0.62)
0.06 0.97 0.97 0.09 0.25

NIF-Ca 
0.50

(0.50, 0.52)
0.17 4.38 0.98 0.42 0.97

D NIF-Na 0.88 0.15 -0.32
0.53

(0.92, -0.31)
0.01 0.45

D NIF-Mg 0.81 0.06 0.59 0.98 0.07 0.01

D NIF-Ca 0.87 0.15 0.52 0.99 0.29 -0.44


