Reduction of lipid accumulation rescues Bietti’s crystalline dystrophy phenotypes

Masayuki Hata,a,b, Hanako O. Ikeda,a,b,c,1 Sachiko Iwai,a, Yuto Iida,a, Norimoto Gotoh,a, Isao Asaka,a, Kazutaka Ikeda,c,d, Yosuke Isobe,e, Aya Hori,d, Saori Nakagawa,c, Susumu Yamato,b, Makoto Arita,d,e,g, Nagahisa Yoshimura,b, and Akitaka Tsujikawaa

aDepartment of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan; bNeuroprotective Treatment Project for Ocular Diseases, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto 6068507, Japan; cDepartment of Fundamental Cell Technology, Center for IPS Cell Research and Application, Kyoto University, Kyoto 6068507, Japan; dLaboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa 2390004, Japan; eGraduate School of Medical Life Science, Yokohama City University, Kanagawa 2300045, Japan; fDepartment of Bioanalytical Chemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 9568603, Japan; and gDivision of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 1058512, Japan

Edited by Paul S. Bernstein, University of Utah School of Medicine, Salt Lake City, UT, and accepted by Editorial Board Member Jeremy Nathans March 9, 2018 (received for review October 4, 2017)

Bietti’s crystalline dystrophy (BCD) is an intractable and progressive chorioretinal degenerative disease caused by mutations in the CYP4V2 gene, resulting in blindness in most patients. Although we and others have shown that retinal pigment epithelium (RPE) cells are primarily impaired in patients with BCD, the underlying mechanisms of RPE cell damage are still unclear because we lack access to appropriate disease models and to lesion-affected cells from patients with BCD. Here, we generated human RPE cells from induced pluripotent stem cells (iPSCs) derived from patients with BCD carrying a CYP4V2 mutation and successfully established an in vitro model of BCD, i.e., BCD patient-specific iPSC-RPE cells. In this model, RPE cells showed degenerative changes of vacuolated cytoplasm similar to those in postmortem specimens from patients with BCD. BCD iPSC-RPE cells exhibited lysosomal dysfunction and impairment of autophagy flux, followed by cell death. Lipidomic analyses revealed the accumulation of glucosylceramide and free cholesterol in BCD-affected cells. Notably, we found that reducing free cholesterol by cyclohextrins or γ-tocopherol in RPE cells rescued BCD phenotypes, whereas glucosylceramide reduction did not affect the BCD phenotype. Our data provide evidence that reducing intracellular free cholesterol may have therapeutic efficacy in patients with BCD.

Bietti’s crystalline dystrophy | cholesterol | CYP4V2 gene | induced pluripotent stem cells | retinal pigment epithelium

predicted to be a member of the cytochrome P450 superfamily and may be involved in the metabolism of lipids (3, 4, 8–11). However, the mechanisms of RPE damage in BCD remain largely unknown because of several problems associated with the research into BCD. In particular, lesioned cells cannot be readily acquired from BCD patients, and this circumstance makes it difficult to elucidate BCD pathophysiology and to develop effective therapeutic strategy.

Recent progress in cell-reprogramming technologies prompted us to consider a disease model based on induced pluripotent stem cells (iPSCs). We previously established stepwise differentiation of iPSCs into RPE (iPSC-RPE), and this differentiation system enabled us to isolate iPSC-RPE cells with high efficiency and extremely high purity (almost 100%) (12, 13). Thus, patient-specific iPSC-RPE cells enable more detailed investigations of the mechanisms underlying the onset and progression of BCD as well as drug screening.

In the present study, we generated human RPE cells from iPSCs derived from BCD patients carrying a CYP4V2 mutation. We analyzed

Significance

Bietti’s crystalline dystrophy (BCD) is an autosomal recessive, progressive chorioretinal degenerative disease. Retinal pigment epithelium (RPE) cells are impaired in patients with BCD, but the underlying mechanisms of RPE cell damage have not yet been determined because cells from lesions cannot be readily acquired from patients with BCD. In the present study, we successfully generated a human in vitro model of BCD, BCD patient-specific iPSC-RPE cells, and demonstrated that the accumulation of free cholesterol caused RPE cell damage and subsequent cell death via the induction of lysosomal dysfunction and impairment of autophagy flux in BCD-affected cells. We believe these findings provide evidence of the possible therapeutic efficacy of reducing intracellular free cholesterol in BCD.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: hanakoik@kuhp.kyoto-u.ac.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717338115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1717338115
phenotypes and lipid profiles of BCD patient-specific iPSC-RPE cells to investigate the mechanisms underlying the onset and progression of BCD. In addition, we sought to identify compounds that could rescue BCD-associated phenotypes.

Results

Generation of BCD Patient-Specific iPSCs and iPSC-Derived RPE Cells.

We established iPSC lines from three BCD patients (BCD-1, BCD-2, and BCD-3) (Fig. S1) that carried the homozygous mutation indel c.802-8_810del17insGC (CYP4V2 mut1) (Fig. S1) (7) in the CYP4V2 gene and normal control (NOR) iPSC lines derived from three control individuals with normal fundus and without CYP4V2 gene mutations. There were no remarkable differences between BCD and NOR iPSC lines during the establishment of iPSC preparations.

Thereafter, we induced BCD and NOR iPSCs to differentiate toward RPE cells (14). Differentiated iPSC-RPE cells with a polygonal, cobblestone-like morphology were cultured for over 90 d until high pigmentation appeared that indicated full functional maturity (Fig. 1A). The mRNA and protein levels of key RPE biomarkers, CRALBP and RPE65, were significantly elevated in differentiated RPE cells from both NOR and BCD iPSC cells compared with undifferentiated iPSC cells (Fig. S2). Notably, light microscopic examination revealed disturbances of BCD iPSC-RPE cell arrangement (Fig. 1A), as confirmed with ZO-1 staining (Fig. 1B). Whereas the CYP4V2 protein was detected in NOR iPSC-RPE cells, it was not detected in BCD iPSC-RPE cells (Fig. 1C) despite similar CYP4V2 mRNA expression levels in NOR and BCD iPSC-RPE cells (Fig. S3). Furthermore, despite the redundancy in the activity of CYP4 family members (15), the mRNA expression levels of other genes from CYP4 family did not change in BCD iPSC-RPE cells compared with the levels seen in NOR iPSC-RPE cells (Fig. S3), indicating the absence of obvious compensatory changes in the expression of other CYP4 family members.

Morphological and Functional Analyses of BCD iPSC-RPE Cells. Remarkably, with time in culture, degenerative changes, such as vacuole formation, larger cell size, and pronounced pigmentation changes, were observed by phase-contrast microscopy in all lines of BCD iPSC-RPE cells (Fig. 1D). Compared with NOR iPSC-RPE cells, degenerative cells (which were defined as cells exhibiting all the following features: vacuole formation, larger cell size, and pronounced pigmentation changes) were seen significantly more frequently among BCD iPSC-RPE cells (Fig. 1E). Transmission electron microscopy (TEM) observations confirmed that NOR iPSC-RPE cells grew as a monolayer of highly polarized cells with abundant apical microvilli and melanosomes, whereas BCD iPSC-RPE cells exhibited accumulations of melanosomes and autophagosomes and intracellular pigment granules and vacuolated cytoplasm (Fig. 1F) that recapitulated RPE changes reported in BCD patients (16). To better characterize the phenotype of iPSC-RPE cells, we evaluated the growth rate and cell death rate of iPSC-RPE progenitor cells (Materials and Methods). Compared with NOR iPSC-RPE progenitor cells, BCD iPSC-RPE progenitor cells showed a significantly lower rate of cell growth (Fig. 1G). To evaluate the state of cell proliferation, the numbers of Ki67+ and DAPI+ cells were counted, and the percentage of Ki67+/DAPI+ cells was evaluated. BCD iPSC-RPE progenitor cells showed a lower percentage of Ki67+ cells in the DAPI+ population (Fig. 1H and I). Furthermore, we found a greater rate of cell death in BCD iPSC-RPE progenitor cells than in NOR iPSC-RPE progenitor cells (Fig. 1J).

To determine whether the cellular phenotypes observed in BCD iPSC-RPE cells were caused by the loss of function of the CYP4V2 gene, we transferred wild-type CYP4V2 (hereafter, CYP4V2 WT), BCD mutant CYP4V2 (hereafter, CYP4V2 mut1), or a mock sequence (control) into BCD iPSC-RPE cells by a recombinant adenovirus vector (Fig. S4A). As expected, the CYP4V2 WT protein level increased only in BCD iPSC-RPE cells infected with CYP4V2 WT, and the CYP4V2 mut1 protein level increased only in those infected with CYP4V2 mut1 (Fig. S4B). CYP4V2 WT of mutant mRNA levels were elevated in BCD iPSC-RPE cells infected with CYP4V2 WT and CYP4V2 mut1 but not in those infected with the mock sequence (Fig. S4C). Compared with BCD iPSC-RPE cells infected with the mock sequence (control) or CYP4V2 mut1, BCD iPSC-RPE cells infected with CYP4V2 WT showed a significantly lower rate of degenerative changes, which were defined as described above (Fig. S4A and D), and a higher rate of cell growth (Fig. S4E), indicating that the phenotypes observed in BCD iPSC-RPE cells were caused by the loss of function of the CYP4V2 gene. To investigate whether other types of CYP4V2 gene mutations may cause BCD phenotypes, we generated HEK293 cells with mutated CYP4V2 using the CRISPR/Cas9 system. The introduced mutation (hereafter, CYP4V2 mut2) caused a frame shift within exon 5 so that the mutated gene would encode only a very short protein (218 aa) (Fig. S4F and G). Importantly, these CYP4V2-mutated HEK293 cells showed vacuole formation and subsequently had a higher death rate, i.e., degenerative changes similar to those observed in BCD iPSC-RPE cells (Fig. S4H-K). Furthermore, transfection with CYP4V2 WT adenovirus vector rescued the cellular phenotypes observed in CYP4V2-mutated HEK293 cells (Fig. S4L and M).

Mechanisms of Cellular Damage in BCD iPSC-RPE Cells. Next, we investigated the mechanisms of degenerative changes found in BCD iPSC-RPE cells. From the findings of TEM examination, autophagy was suspected to be impaired in BCD. Therefore, we first evaluated the expression of the autophagy marker, microtubule-associated...
protein 1 light chain 3 (LC3). C-terminal processing of LC3 produces LC3-I, which is modified to LC3-II with the initiation of autophagosome formation. We also measured p62/SQSTM1 (hereafter, p62) expression to assess autophagic flux (17, 18). Our data showed that the expression levels of LC3-II and p62 proteins were higher in BCD iPSC-RPE cells than in NOR iPSC-RPE cells, suggesting that autophagy was up-regulated and autophagic flux was impaired in BCD iPSC-RPE cells (Fig. 2 A and B). Furthermore, absence of vacuolar H⁺-ATPase, increased LC3-II and p62 protein levels in NOR iPSC-RPE cells (Fig. 2 A and B) but not in BCD iPSC-RPE cells. These observations indicated that autophagosomes accumulated because of the inhibition of autophagic degradation, e.g., via blockage of autophagosome–lysosome fusion and attenuation of lysosome content digestion (19, 20). Because p62 binds to LC3 and degrades upon fusion with the lysosome, we evaluated the expression of lysosome marker proteins. Analysis of mRNA expression levels of lysosome-associated genes showed that LAMP2 was slightly up-regulated in BCD iPSC-RPE cells (Fig. 2F). Compared with NOR iPSC-RPE cells, the levels of the lysosomal proteins LAMP1 and LAMP2 were significantly increased in BCD iPSC-RPE cells (Fig. 2 C and D). In addition, immunocytochemistry revealed that BCD iPSC-RPE cells showed excessive LAMP2 accumulation, indicating enlarged lysosomes (Fig. 2E).

Optimal lysosome function requires the ability to maintain acidic pH, and LysoTracker Green is a lysosomotropic dye that permits monitoring of pH-sensitive indices of the lysosomal function (21). We found that BCD iPSC-RPE cells showed a loss of LysoTracker signal compared with similar observations in NOR iPSC-RPE cells (Fig. 2 F and G). Lysosomal pH measurements using LysoSensor showed that the F340/380 ratio of fluorescence excited at 340 nm and 380 nm was higher (indicating a more alkaline state) in BCD iPSC-RPE cells than in NOR iPSC-RPE cells, indicating lysosomal alkalization in BCD pathology (Fig. 2H). Further, the activity of cathepsin D, the primary aspartyl protease of the lysosome that has a particularly acidic pH optimum and pH-dependent maturation (22, 23), was impaired in BCD iPSC-RPE cells (Fig. 2I). Taken together, our findings indicate that the autophagic degradative system may be disturbed as a result of lysosomal dysfunction in BCD.

Lipidomic Analyses in BCD iPSC-RPE Cells

Because the CYP4V2 protein was predicted to be involved in lipid metabolism as a member of the cytochrome P450 superfamily, we performed comprehensive liquid chromatography (LC)-MS/MS-based lipidomic analyses. First, we evaluated the enzyme activity of CYP4V2 as a hydroxylase of polyunsaturated fatty acids (PUFAs) by using HEK293 cells overexpressing CYP4V2 WT, CYP4V2 mut1, and CYP4V2 mut2. LC-MS/MS-based lipidomics showed that CYP4V2 WT protein possessed ω-hydroxylase and ω-1-hydroxylase activities (Fig. S6A), consistent with the previous report (9). However, the levels of those PUFAs were not significantly different in NOR and BCD iPSC-RPE cells (Fig. S6B). Next, we performed untargeted lipidomics of NOR and BCD iPSC-RPE cells and found the accumulation of various glucosylceramides (GlCer) and the reduction of cholesteryl esters in BCD iPSC-RPE cells (Fig. 3 A and B). We also determined the accumulation of free cholesterol per cell number in BCD iPSC-RPE cells (Fig. 3C). Filipin staining confirmed free cholesterol enrichment in BCD iPSC-RPE cells compared with NOR iPSC-RPE cells (Fig. 3D). These lipid profiles were similar to those observed in several types of lysosomal storage diseases, e.g., Niemann–Pick type C (NPC) or Gaucher’s disease (24, 25). We also examined the mRNA expression levels of the causative genes of lysosomal storage diseases, genes involved in the metabolism/synthesis of glycolipids, and genes regulating intracellular cholesterol transport. NPC1 was slightly up-regulated in BCD iPSC-RPE cells, but the expression levels of other genes did not differ between NOR and BCD iPSC-RPE cells (Fig. 5).

Dysfunctional reverse cholesterol transport due to abnormal CYP27A1, CYP46A1, and CYP11A1 expression and LXR metabolism

Fig. 2. Autophagy and lysosome function in NOR and BCD iPSC-RPE cells. (A and B) Expression of LC3-II and p62 with or without bafilomycin-A1 (Baf A1; 20 nM) in NOR and BCD iPSC-RPE cells. NOR Tx− vs. NOR with Baf A1: *P = 0.0459 (LC3-II) and *P = 0.0496 (p62), paired t test, n = 3 in each group; NOR Tx− vs. BCD Tx−: ***P < 0.001 (LC3-II) and ***P = 0.0013 (p62), Student’s t test, n = 3 derived from each of three lines. (C) Expression of LAMP1 and LAMP2. *P < 0.05; Student’s t test; n = 3 derived from each of three lines. (E) Immunocytochemical staining for LAMP2 (green) and ZO1 (red). (Scale bars: 10 μm.) (F and G) FACS analysis of lysosome function using LysoTracker Green. ***P < 0.0001, BCD vs. NOR; Student’s t test; n = 3 derived from each of three lines. (H) Lysosomal pH measurement using LysoSensor. The F340/380 ratio was determined. *P = 0.0495, BCD vs. NOR; Student’s t test; n = 3 in each group. (I) The cathepsin D activity levels measured using a fluorometric cathepsin D activity assay. *P = 0.032, BCD vs. NOR; Student’s t test; n = 3 derived from each of three lines. Error bars indicate SD.

Fig. 3. Lipidomic analyses of NOR and BCD iPSC-RPE cells. (A and B) Untargeted lipidomics with LC-MS/MS in NOR and BCD iPSC-RPE cells. *P < 0.05, ***P < 0.01, ***P < 0.001, NOR vs. BCD; Student’s t test; n = 10 and n = 8, respectively. (C) Free cholesterol concentration per cell number. **P = 0.005, NOR vs. BCD; Student’s t test; n = 3 derived from each of three lines. Error bars indicate SD. (D) Filipin staining of iPSC-RPE cells. (Scale bar, 50 μm.)
CYP46A1 and Fig. S7 did not differ between =

Effect of CDs on lipids in BCD iPSC-RPE cells. (< 0.001 vs. no

and

B

< 0.0019 vs. no treatment [Tx(

and

0.05 vs. no treatment [Tx(

<

NOR

−

0.001, ***

0.05, **

<

<

3. (0.001 vs. no treatment [Tx(

3 in each group. (0.0007, **

and

3 in each group. (demo 0.033,

BCD phenotypes. We tested several compounds, including cy-

vestigated the effects of the reduction of lipid accumulation on

Because the accumulations of GlcCer and free

cytosol was substantially lower in BCD

iPSC-RPE cells treated with NBDNJ and CDs (HPBCD and HPGCD)

hallmark structures in the cytosol was substantially lower in BCD

iPSC-RPE cells treated with HPBCD (Fig. 5C). HPBCD and

HPGCD also improved the cell growth rate and attenuated the

cell death rate in BCD iPSC-RPE progenitor cells (Fig. 5D and

To suppress the expression levels of LC3-II and p62 proteins in

BCD iPSC-RPE cells, whereas NBDNJ was without effect (Fig. 5F and Fig. 5G). In addition, HPBCD and HPGCD improved the

LysoTracker signal in BCD iPSC-RPE cells, whereas NBDNJ did not (Fig. 5G and Fig. 5F). In fact, HPBCD treatment decreased lysosomal pH in BCD iPSC-RPE cells as detected using

LysoSensor; the improvement rates in the F340/380 ratio in BCD

iPSC-RPE cells, defined as [BCD, each line (Tx)] − [BCD, each line (HPBCD)]/[BCD, each line (Tx)] − [NOR, line averages], where Tx-

treatment represents no treatment, were 67.7%, 80.0%, and 159.4% in the

BCD-1, BCD-2, and BCD-3 cell lines, respectively. This indicated

that the lysosomal alkalization observed in the BCD iPSC-RPE

cells was improved by HPBCD treatment. Thus, in agreement with

the results of lipidomics, HPBCD and HPGCD reversed autophagic

plaque formation and lysosomal dysfunction, but NBDNJ did not.

These results imply that the cellular phenotypes observed in

BCD iPSC-RPE cells were caused not by the accumulation of

is a well-known cause for retinal and RPE cell pathology (26–29). However, oxysterol levels did not differ significantly between NOR

and BCD iPSC-RPE cells (Fig. S6C). Furthermore, mRNA levels of

CYP27A1, CYP46A1, CYP11A1, and LXR did not differ between

NOR and BCD iPSC-RPE cells (Fig. S5).

Therapeutic Effect of Lipid Accumulation Reduction on Phenotypes in

BCD iPSC-RPE Cells. Because the accumulations of GlcCer and free

cholesterol were observed in BCD iPSC-RPE cells, we investigated the effects of the reduction of lipid accumulation on

BCD phenotypes. We tested several compounds, including cy-

cyclodextrins (CDs) (30–34), statin (35), and 6-tocopherol (6-T)

(36), which are known to reduce free cholesterol levels. We also tested the effect of N-butyldexylenojirimycin (NBDNJ), which has been reported to reduce the GlcCer level (37). Our results showed that several CDs, namely 2-hydroxypropyl-β-CD (HPBCD),

2-hydroxypropyl-γ-CD (HPGCD), and methyl-β-CD (MBCD), as well as 6-T, reduced intracellular free cholesterol per cell number in

BCD iPSC-RPE cells (Fig. 4A). Among them, HPBCD, HPGCD, and MBCD led to increases of cholesteryl ester levels per cell number, whereas 6-T caused a decrease of cholesteryl ester levels (Fig. 4B and C). In contrast, NBDNJ, other CDs [γ-CD, 2-hydroxypropyl-α-CD (HPACD), and 2-hydroxyethyl-

β-CD (HEBDC)], and lovastatin did not affect free cholesterol accumulation. Regarding the GlcCer level, as expected, lipidomic analysis showed that NBDNJ reduced GlcCer accumulation in

BCD iPSC-RPE cells (Fig. 4D). Notably, the accumulation of

GlcCer was also reduced by HPBCD and HPGCD.

Next, we investigated the therapeutic effects of these compounds on cellular phenotypes of BCD iPSC-RPE cells. HPBCD and

HPGCD, which reduced free cholesterol per cell number, suppressed the development of degenerative changes in BCD

iPSC-RPE cells (Fig. 5A and B). This result was also supported by TEM examination, which showed a significant number of

enlarged lysosomes with osmophilic structures in a clear matrix in nontreated BCD iPSC-RPE cells, but the amount of these
GlCer but by the increase of free cholesterol level. On the contrary, HPBDC did not affect the percentages of degenerative cell and cell death or lysosome function in NOR iPSC-RPE cells (Fig. S6).

Discussion

In this study, we generated human iPSC-RPE cells derived from BCD patients carrying a CYP4V2 mutation and successfully established a human in vitro model of BCD. In this model, RPE cells showed degenerative changes of vacuolated cytoplasm, i.e., a typical cellular phenotype observed in BCD. Using BCD iPSC-RPE cells, we revealed that in BCD the accumulation of free cholesterol was associated with lysosomal dysfunction due to lysosomal alkalization and impairment of autophagy flux and thereby caused RPE cell damage followed by cell death. Based on this pathophysiology, we discovered that the reduction of free cholesterol in RPE cells rescued BCD phenotypes, which suggested that compounds that decrease the accumulation of free cholesterol could be therapeutic agents for BCD.

The difficulty in accessing human RPE and a lack of appropriate disease models have hampered efforts to investigate the pathology of BCD and to develop new drug candidates for this disease. The reported murine model for BCD (10) is not an entirely appropriate human BCD model for the following reasons. First, mice with the knockout of the Cyp4v3 gene (the murine ortholog of CYP4V2, not CYP4V2 itself) mainly exhibit impairment of photoreceptors but not of RPE, whereas clinical findings suggest that RPE is the primary lesion site in BCD (4, 6). Second, the chorioretinal impairment in these mutant mice is milder than that in human BCD. For understanding the underlying mechanism, HEK293 cells harboring the CYP4V2 knockout were expected to be useful because of the degenerative changes observed in the mutant. However, a sufficient number of these mutant cells could not be collected for analysis of lipid profiles, as the CYP4V2 knockout lowers the growth rate. In our experiments, BCD patient-derived NOR iPSC-RPE cells showed the same phenotypes as those in BCD patients. In contrast, our results show that elevated lysosomal pH is the likely cause of autophagic flux impairment because the predominant lysosomal enzymes of the RPE cells are regulated by tight pH dependence. In fact, the activity of cathepsin D, the primary aspartyl protease of the lysosome, was impaired in BCD iPSC-RPE cells. Disruption of autophagy in postmitotic cells such as RPE would result in the accumulation of undigested or partially digested cellular aggregates, leading to degenerative cell death of RPE cells and secondary degeneration of the overlying photoreceptors (40, 41). The accumulation of pigmented granules observed in BCD iPSC-RPE cells also may be caused by lysosomal dysfunction (42).

Untargeted lipidomics revealed the accumulation of GlCer and free cholesterol and the reduction of cholesterol esters, which were similar to the lipid profiles of NPC (24). NPC is a lipid storage disease caused by mutations in the NPC1 and NPC2 genes, which encode proteins involved in cholesterol transport. The reduced cholesterol esters and endoplasmic reticulum (43, 44). In addition to the similar lipid profiles, BCD and NPC have common phenotypes, such as lysosome storage impairment, lysosome dysfunction, and autophagy flux impairment (34). Given that the reduction of free cholesterol improved the accumulation of GlCer and lysosomal dysfunction in the present study, lysosomal alkalization may be a secondary phenomenon of cholesterol accumulation in the pathology of BCD. In contrast, reducing only the GlCer level by NBDNJ did not improve lysosomal dysfunction, indicating that GlCer accumulation may be a result rather than a cause of lysosomal dysfunction in lysosomal storage diseases (30–32, 34). In contrast, δ-T, a minor vitamin E species, appears to exert its effect in NPC models through the stimulation of lysosomal exocytosis (36). Importantly, although we observed that CDs and δ-T had positive therapeutic effects on the accumulation of free cholesterol, CDs, which are cyclic oligosaccharides composed of six to eight glucopyranosides, have a distinct barrel configuration with a hydrophilic exterior promoting water solubility and a hydrophobic interior that accommodates small lipophilic molecules. Some CDs have been reported to reduce the accumulation of free cholesterol and to increase life span in NPC models, possibly by working as a substrate facilitating the egress of the trapped free cholesterol from lysosomes and normal sterol processing (30–32, 34). In contrast, δ-T, a minor vitamin E species, appears to exert its effect in NPC models through the stimulation of lysosomal exocytosis (36). Importantly, although we observed that CDs and δ-T had opposite effects on cholesterol ester levels, these compounds improved cellular phenotypes of BCD, indicating that therapies lowering intracellular free cholesterol could provide therapeutic benefit for BCD patients. With relevance to this point, HPBDC and HPGCD are currently in clinical trials as NPC treatments (33, 34). Thus, these are potential drug candidates for future treatment of BCD.

The lack of a proven mechanism linking CYP4V2 function and free cholesterol accumulation was a limitation of our study. CYP proteins have multiple functions, one of which is involvement in the metabolism of steroids. Given that several steroids have inhibitory effects on lysosomal cholesterol transport, resulting in phenotypes similar to those of NPC (46, 47), the disturbances in CYP4V2 protein functions may affect lysosomal cholesterol transport via steroid metabolism impairments. The other limitation was the potential influence of cell size on intracellular cholesterol content. The free cholesterol content per cell number was higher in BCD iPSC-RPE cells than in NOR iPSC-RPE cells. In contrast, normalization to protein content (owing to the larger RPE cell size in BCD pathology) could not clearly demonstrate whether free cholesterol content was significantly higher in BCD iPSC-RPE cells (Fig. S9B). Nevertheless, we...
believe that higher content of free cholesterol per cell number is associated with BCD pathophysiology for the following reasons: (i) the accumulation of free cholesterol that is associated with lysosomal impairments and (ii) lysosomal dysfunction that impaired autophagy flux and led to histopathological manifestations of autophagy deficiency and cell death. Our data also provided evidence of the possible therapeutic efficacy of intracellular free cholesterol reduction for BCD patients.

Materials and Methods

This study followed the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of Kyoto University Graduate School of Medicine (G259 and R0991). After informed consent was obtained from three BCD patients with the homozygous mutation c.802-B, 810del17insGC in the CYP4V2 gene and from three control individuals with normal fundus and without CYP4V2 gene mutations, fibroblast cell lines were generated. The method used for human iPSC generation was described previously (48). We quantification of the number of cells with degenerative changes (vacuole formation and larger cells) and Ki67+ cells; Dr. Jiro Usukura (Nagoya University) and Keiko Okamoto-Furuta and Harayusu Kohda (Kyoto University) for helpful advice and technical support with electron microscopy; and Drs. Kenji Ishihara, Hiroomi Imamura, and Akira Kakizuka (Kyoto University) for helpful comments. This research was supported in part by research grants from Ono Medical Research Foundation, Novartis Pharma, Takeda Science Foundation, and the Japan National Society for the Prevention of Blindness; Grants-in-Aid for Young Scientists 15K02555 and 17K19697 (to M.H.); Japan Society for the Promotion of Science Grants in Aid for Scientific Research JP16H01359 and JP16K11285 (to H.O.I) and JP15H05898, 15H05898, and 15H04648 (to M.A.); a grant from the Translational Research Network Program of the Japan Agency for Medical Research and Development (AMED) (to M.H.); and Grant 15JS0270 from the AMED Program for Intractable Diseases Research Utilizing Disease-Specific iP cells (to I.A.).

ACKNOWLEDGMENTS. We thank Eri Kawaguchi and Kaori Misono (Kyoto University) for technical assistance; Akiko Hirata (Kyoto University) for the quantification of the number of cells with degenerative changes (vacuole formation and larger cells) and Ki67+ cells; Dr. Jiro Usukura (Nagoya University) and Keiko Okamoto-Furuta and Harayusu Kohda (Kyoto University) for helpful advice and technical support with electron microscopy; and Drs. Kenji Ishihara, Hiroomi Imamura, and Akira Kakizuka (Kyoto University) for helpful comments. This research was supported in part by research grants from Ono Medical Research Foundation, Novartis Pharma, Takeda Science Foundation, and the Japan National Society for the Prevention of Blindness; Grants-in-Aid for Young Scientists 15K02555 and 17K19697 (to M.H.); Japan Society for the Promotion of Science Grants in Aid for Scientific Research JP16H01359 and JP16K11285 (to H.O.I) and JP15H05898, 15H05898, and 15H04648 (to M.A.); a grant from the Translational Research Network Program of the Japan Agency for Medical Research and Development (AMED) (to M.H.); and Grant 15JS0270 from the AMED Program for Intractable Diseases Research Utilizing Disease-Specific iP cells (to I.A.).