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Systematic analysis of inelastic α scattering off self-conjugate A = 4n nuclei
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We systematically measured the differential cross sections of inelastic α scattering off self-conjugate A = 4n

nuclei at two incident energies Eα = 130 MeV and 386 MeV at Research Center for Nuclear Physics, Osaka
University. The measured cross sections were analyzed by the distorted-wave Born-approximation (DWBA)
calculation using the single-folding potentials, which are obtained by folding macroscopic transition densities
with the phenomenological αN interaction. The DWBA calculation with the density-dependent αN interaction
systematically overestimates the cross sections for the ΔL = 0 transitions. However, the DWBA calculation
using the density-independent αN interaction reasonably well describes all the transitions with ΔL = 0–4. We
examined uncertainties in the present DWBA calculation stemming from the macroscopic transition densities,
distorting potentials, phenomenological αN interaction, and coupled channel effects in 12C. It was found that
the DWBA calculation is not sensitive to details of the transition densities nor the distorting potentials, and the
phenomenological density-independent αN interaction gives reasonable results. The coupled-channel effects are
negligibly small for the 2+

1 and 3−
1 states in 12C, but not for the 0+

2 state. However, the DWBA calculation using
the density-independent interaction at Eα = 386 MeV is still reasonable even for the 0+

2 state. We concluded
that the macroscopic DWBA calculations using the density-independent interaction are reliably applicable to the
analysis of inelastic α scattering at Eα ∼ 100 MeV/u.
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I. INTRODUCTION

Inelastic α scattering is one of useful probes to examine
nuclear structure because its reaction mechanism is relatively
simple. Since both spin and isospin of the α particle are zero,
inelastic α scattering has selectivity to isoscalar natural-parity
transitions where transferred spin and isospin are ΔS = 0
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and ΔT = 0. The cross sections are reasonably reproduced
by means of a simple folding-model calculation, and are
approximately proportional to the square of the relevant tran-
sition matrix elements. Angular distributions of cross sections
are characterized by the transferred angular-momentum ΔL,
but are not sensitive to details of nuclear wave functions.
Therefore, the multipole decomposition analysis (MDA), in
which measured cross sections are fitted by calculated cross
sections for various multipole transitions, works well to obtain
strength distributions of isoscalar natural-parity excitations.

Isoscalar giant monopole resonances (ISGMRs) and
isoscalar giant dipole resonances (ISGDR) are extensively
examined by the MDA for the inelastic α scattering [1–10]. The
ISGMR and ISGDR strength distributions were successfully
extracted from continuous excitation-energy spectra by the
MDA. These analyses gave the nuclear incompressibility of
the symmetric nuclear matter [3,6,8]. Recently, inelastic α
scattering off unstable nuclei becomes feasible [11,12] because
ISGMRs in unstable nuclei are of special interest in nuclear
physics to examine the nuclear incompressibility of the asym-
metric nuclear matter.

Inelastic α scattering is also useful from the viewpoint of
nuclear cluster physics. For example, the missing 2+

2 state
in 12C was found by the MDA of the 12C(α,α′) reaction at
Eα = 386 MeV for the first time [13]. This 2+

2 state was
incontrovertibly predicted by the 3α cluster model as an
excited state of the 0+

2 state (the Hoyle state) [14–16], but
no experimental attempt to search for this state had been
successful for a long time [17–19].

It is pointed out that large isoscalar monopole transition
strengths are a signature of cluster excitation in atomic nuclei
[20]. This is theoretically explained by using the Bayman-Bohr
theorem [21] in Ref. [22]. The cluster degrees of freedom are
inherently conserved even in case simple shell-model wave
functions, and can be activated by the monopole excitation. As
an example, the Hoyle state, which has a spatially developed
3α cluster structure, is excited with a large isoscalar monopole
strength of B(E0; IS) = 121 ± 9 fm4 [20,23]. This strength
is about three times greater than the single-particle limit of the
isoscalar monopole strength in 12C [24]. For 24Mg, several 0+
states are strongly excited by isoscalar monopole transitions in
inelastic α scattering as reported in Ref. [25]. The theoretical
calculation suggests these 0+ states have spatially developed
cluster structures [26]. Inelastic α scattering is the best probe
to measure the isoscalar monopole transition strengths, and it
is, therefore, suitable to search for cluster states.

As described above, measurements of isoscalar natural-
parity transition strengths by means of inelastic α scattering
are widely performed [1–10,13,25,27–29], assuming the linear
proportional relation between the cross sections and the square
of the transition matrix elements. However, a contradictory
result to the linear proportional relation was reported in the
monopole excitation to the Hoyle state from the ground state
in 12C. The isoscalar monopole strength determined from
the inelastic electron scattering exhausts about 15% of the
energy-weighted sum-rule (EWSR) strength [24,30], but that
from the inelastic α scattering exhausts as small as 7.6% [27].
This discrepancy is called the missing monopole strength of
the Hoyle state.

In Ref. [31], the authors performed a full microscopic
folding-model analysis of the inelastic α + 12C scattering at
the intermediate energies using a complex density-dependent
interaction and the reliable wave functions of the ground and
Hoyle states in 12C from the 3α resonating group method
(RGM) calculation [16]. The monopole excitation strength
predicted by the 3α RGM calculation is very close to the
strength reported from the inelastic electron scattering.
Nevertheless, the calculated cross sections of the inelastic α
scattering for the Hoyle state using the 3α RGM wave function
were significantly larger than the measured cross sections.
This discrepancy was consistent with the previous results [27]
that the excitation strength for the Hoyle state determined by
inelastic α scattering was much smaller than that determined
by inelastic electron scattering.

The authors of Ref. [31] claimed that this problem is
due to the weakly bound structure of the Hoyle state, which
significantly enhances the absorption in the exit α + 12C∗(0+

2 )
channel, and the reaction mechanism of inelastic α scattering
might strongly couple to the nuclear structure. Therefore,
the approximate linear proportional relation between cross
sections and relevant transition strengths might not be used
in the analysis of inelastic alpha scattering. It leads us to a
serious situation in which we cannot reliably examine nuclear
structure by means of inelastic α scattering.

In the present work, we systematically measured the cross
sections of inelastic α scattering at Eα = 130 and 386 MeV,
exciting low-lying states in 12C, 16O, 20Ne, 24Mg, 28Si, and
40Ca. The measured cross sections were compared with
the distorted-wave Born-approximation (DWBA) calculations
using the known values of the electromagnetic transition
strengths in order to examine the applicability of these calcu-
lations for the experimental data. We also studied uncertainties
of the DWBA calculations from the distorting potentials, phe-
nomenological interaction, transition densities, and coupled-
channel effects.

II. EXPERIMENT

A. Experimental setups and measurements

A series of the measurements was performed at Research
Center of Nuclear Physics (RCNP), Osaka University. A
130-MeV 4He2+ beam provided by the AVF cyclotron was
achromatically transported to the target. On the other hand,
a 386-MeV 4He2+ beam was extracted from the ring cy-
clotron after the preacceleration by the AVF cyclotron. The
386-MeV 4He2+ beam was dispersively transported to the
target in order to improve the excitation-energy resolution in
the measurements with the solid targets except the 20Ne gas
target. The dispersive beam transport for the 20Ne gas target
could not be done because the energy spread of the 4He2+

beam
from the ring cyclotron (ΔE = 250 keV) was wider than the
usual (ΔE = 100 keV) when the 20Ne gas target was used.
The dispersive transport of such a beam with a wide energy
spread results in unacceptably large beam size on the target.

Table I summarizes the target nuclei, thicknesses, and
isotope enrichment. The SiO2 foil was used as the 16O target.
The contribution from natSi was subtracted using a natSi target.
For the 20Ne target, a cooling gas target system was used
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TABLE I. Thicknesses and isotope enrichment of the targets used
in the present measurements with the 4He2+ beams at Eα = 130 and
386 MeV. All the foil targets are self-supporting.

Nucleus State Thickness Enrichment 4He2+ energy
130 386

(mg/cm2) (%) (MeV)

12C foil 2.2 98.9a � �
SiO2

b foil 2.2 99.8c � �
20Ne gasd 2.4 99.95 �
24Mg foil 1.2 99.92 �
24Mg foil 2.5 >99.9 �
28Si foil 1.72 92.2a �
28Si foil 2.16 92.2a �
40Ca foil 1.63 >99.9 � �
aNatural abundance.
bThe SiO2 foil was used as the 16O target.
cNatural abundance of 16O.
dSee the text for more details

[32,33]. The isotopically enriched 20Ne gas with a purity
of 99.95% was filled into the gas cell and cooled by liquid
N2 in order to increase the target density. The entrance and
exit windows were sealed with aramid films with a thickness
of 4 μm. The pressure and temperature of the 20Ne gas
were monitored using the diaphragm pressure gauge and the
platinum resistance thermometer during the measurements.
The gas pressure and temperature were 78.0 ± 1.2 kPa and
86.5 ± 0.4 K, respectively. The effective thickness of the 20Ne
gas target along the beam axis was calibrated by filling the
gas cell with the CO2 gas at the pressure close to that of the
20Ne gas. We determined the thickness of the 20Ne gas as
11.2 ± 1.7 mm by comparing the measured cross section of

the elastic α scattering from 12C with the known value. This
thickness corresponds to 2.4 ± 0.4 mg/cm2.

Scattered α particles were analyzed using the magnetic
spectrometer Grand Raiden (GR) [34]. Figure 1(a) shows an
overview of GR and its related instruments. The two multiwire
drift chambers (MWDC1 and 2) and two plastic scintillation
counters (PS1 and 2) were installed at the focal plane of
GR. The MWDCs were used to determine the trajectories
of scattered particles at the focal plane. The data-acquisition
trigger was made when both the plastic scintillation counters
generated signals in coincidence.

Beam currents during the measurements were monitored
using the four different Faraday cups. The zero-degree Faraday
cup (0 deg. FC), which was located at the downstream of the
focal plane, was used for the measurements at θlab = 0◦, and
the primary beam was transported to the 0 deg. FC through GR.
When the 0 deg. FC was used, the low-lying excited states at
Ex < 2.5 MeV for Eα = 130 MeV and at Ex < 7.5 MeV for
Eα = 386 MeV cannot be measured due to the geometrical
limitation of the MWDCs. The lateral distances between
trajectories of the primary beam and scattered α particles
exciting such low-lying states at the focal plane were too short
for the MWDCs to detect the scattered α particles separately
from the primary beam. To measure the (α,α′) spectra for such
low-lying states at θlab = 0◦, an alternative Faraday cup called
the focal plane Faraday cup (FP-FC) was used. The FP-FC was
installed at the front of the MWDCs as shown in Fig. 1(b). Since
the FP-FC was placed very close to the sensitive area of the
MWDCs, the FP-FC enabled us to detect the scattered α par-
ticles exciting the low-lying states by the MWDCs. However,
huge background γ rays from the FP-FC hit both the MWDCs
and the trigger plastic scintillators, therefore the beam intensity
was limited lower than 1.0 nA when the FP-FC was used.

FIG. 1. (a) An overview of the Grand Raiden spectrometer and its related instruments. The experimental setup at θlab = 0◦ is shown [35].
The solid lines with arrow heads in the spectrometer show the trajectories of primary beam particles, and dashed and dotted lines show those
of scattered α particles. The primary beam is guided to the Faraday cup, which is located at the downstream of the spectrometer (0 deg. FC).
(b) A schematic view around the focal plane. In case of the spectrum measurements for low-lying excited states, the primary beam is stopped
at the focal plane Faraday cup (FP-FC), which is placed at the upstream of the focal plane.
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TABLE II. Angular ranges for the cross-section measurements of
elastic α scattering at Eα = 130 and 386 MeV.

Elastic scattering

Nucleus Eα = 130 MeV Eα = 386 MeV
θcm (deg) θcm (deg)

12C 4.97◦–70.3◦ 2.73◦–34.2◦
16O 4.65◦–58.1◦ 2.45◦–28.5◦a

20Ne Not measured 5.11◦–27.4◦
24Mg 5.39◦–70.4◦ 5.26◦–28.8◦b

28Si 8.03◦–48.8◦ Not measured
40Ca 4.08◦–59.3◦ Not measured

aRef. [29].
bRef. [25].

For the measurements at θlab = 2.5◦–5.0◦, the primary beam
was stopped at the Faraday cup behind the Q1 magnet of GR
(Q1-FC) as shown in Fig. 1(a). The Faraday cup installed in the
scattering chamber (SC-FC) was used in the measurements at
the backward angles θlab � 6.0◦. Charge collection efficiencies
of the four Faraday cups were calibrated within the 3%
uncertainties by using a beam monitor consisting of plastic
scintillators located on the beam line.

Table II summarizes the angular ranges for the cross-
section measurements of elastic α scattering at Eα = 130 and
386 MeV, respectively. The cross sections at Eα = 130 MeV
were measured for all the targets except 20Ne. The cross
sections at backward angles between θcm = 41.9◦ and 70.3◦
were measured using different experimental setups with the Si
and CsI(Tl) detectors. The cross sections at Eα = 386 MeV
were measured for 12C and 20Ne only, although the cross
sections for 24Mg and 16O were taken from Refs. [25] and
[29], respectively. Since the cross sections for 28Si and 40Ca
at Eα = 386 MeV were not measured in the present exper-
iment nor taken from previous works, a special treatment
was done in the analysis of 28Si and 40Ca as described
in Sec. III A.

B. Data reduction and cross sections

Scattered α particles were well separated from background
protons and deuterons using the time of flight from the target
to the focal plane of GR. Beam particles passing through the
target spread out due to multiple Coulomb scattering and hit
beam ducts. These particles caused continuous background in
excitation-energy spectra at forward angles. These background
events were removed using the vertical position information
of scattered particles at the focal plane because α particles
scattered from the target were vertically focused near the
focal plane whereas background particles scattered at different
positions were not focused [5]. Scattering angles within the
angular acceptance of the GR spectrometer were calibrated
using the sieve slit as reported in Ref. [35]. The excitation
energies were calibrated using the peak position for the known
excited states in the measured spectra.

An (α,α′) spectrum measured using the 20Ne gas target
is shown in Fig. 2(a). Several discrete peaks for the ground
and excited states in 12C, 14N, 16O, and 35Cl were observed.

FIG. 2. Excitation-energy spectra for the 20Ne(α,α′) reaction at
Eα = 386 MeV measured at θlab = 10.8◦. (a) The open histogram
represents the excitation-energy spectrum obtained using the gas cell
filled with 20Ne. The hatched histogram represents the normalized
spectrum obtained using the empty gas cell. (b) A background-free
20Ne(α,α′) spectrum obtained by subtracting the background events
originated from aramid films.

These nuclei are contained in the aramid films at the entrance
and exit windows of the gas cell. In order to subtract the
background events due to the aramid windows, the background
measurements with the empty gas cell was carried out. The
pressure of the empty gas cell was kept at the order of 10−2 Pa.
The measured background spectrum is shown by the hatched
histogram in Fig. 2(a). The background-free spectra were
successfully obtained by subtracting background spectra as
seen in Fig. 2(b). The normalization factor for the background
subtraction was calculated by taking into account the beam
intensities, target thicknesses, and detector efficiencies. Sim-
ilarly, the background-free excitation energy spectra for 16O
were obtained by subtracting the excitation energy spectra for
natSi from those for natSiO2.

The obtained excitation-energy spectra for the (α,α′) reac-
tions at Eα = 130 MeV at θlab = 0.0◦ are shown in Fig. 3.
The typical energy resolution of the (α,α′) spectrum at Eα =
130 MeV and 386 MeV was about 85 keV and 95 keV at the
full width at half maximum (FWHM) for the solid targets
except 20Ne, respectively. On the other hand, the energy
resolution of the 20Ne(α,α′) reaction at Eα = 386 MeV was
about 250 keV at FWHM.

Finally, the angular distributions of the (α,α′) cross sections
at Eα = 130 and 386 MeV were obtained. The measured
excited states are listed in Table III.

The measured cross sections of the elastic α scattering
relative to the Rutherford cross sections (Rutherford ratio) are
presented in Figs. 4 and 5. Similarly, the measured (α,α′) cross
sections for the ΔL = 0, ΔL = 2, and ΔL = 3 transitions at
Eα = 386 and 130 MeV are shown in Figs. 6 and 7, Figs. 8
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FIG. 3. Excitation-energy spectra for the (α,α′) reactions at Eα = 130 MeV measured at θlab = 0.0◦.

and 9, and Figs. 10 and 11, respectively. Figures 12 and 13 show
those for ΔL = 4 and ΔL = 1, respectively. In Figs. 7–13,
we show only the cross sections to the excited states whose
electromagnetic excitation strengths from the ground states
were reported in the previous studies [24,36–38].

III. DISTORTED-WAVE BORN-APPROXIMATION
CALCULATION

We performed the DWBA calculations using the computer
code ECIS-95 [39] in order to compare the measured cross
sections with the calculations. The optical-model potentials for

TABLE III. Listing of the excited states analyzed in the present work. Note that the 0+, 1−, 2+, 3−, and 4+ states are discussed in this paper.

Nucleus J π Ex Eα Nucleus J π Ex Eα Nucleus J π Ex Eα Nucleus J π Ex Eα

130 386 130 386 130 386 130 386
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

12C 0+
1 0.00 � � 16O 0+

3 12.05 � � 24Mg 2+
3 7.35 � �b 28Si 1−

1 8.90 �
12C 2+

1 4.44 � � 20Ne 0+
1 0.00 � 24Mg 3−

1 7.62 � �b 28Si 2+
4 9.48 �

12C 0+
2 7.65 � � 20Ne 2+

1 1.67 � 24Mg 3−
2 8.36 � �b 40Ca 0+

1 0.00 �
12C 3−

1 9.64 � � 20Ne 4+
1 4.25 � 24Mg 2+

5 9.00 � �b 40Ca 0+
2 3.35 �

16O 0+
1 0.00 � �a 20Ne 3−

1 5.62 � 24Mg 2+
7 10.36 � 40Ca 3−

1 3.74 � �
16O 0+

2 6.05 � 20Ne 0+
2 6.73 � 28Si 0+

1 0.00 � 40Ca 2+
1 3.90 � �

16O 3−
1 6.13 � � 24Mg 0+

1 0.00 � �b 28Si 2+
1 1.78 � � 40Ca 1−

1 5.90 �
16O 2+

1 6.92 � � 24Mg 2+
1 1.37 � �b 28Si 4+

1 4.62 � 40Ca 3−
2 6.29 �

16O 1−
1 7.12 � 24Mg 4+

1 4.12 � 28Si 0+
2 4.98 � � 40Ca 2+

2 8.09 �
16O 2+

2 9.84 � 24Mg 2+
2 4.24 � 28Si 3−

1 6.88 � 40Ca 2+
3 8.58 �

16O 4+
1 10.36 � 24Mg 4+

2 6.01 � 28Si 2+
2 7.93 �

16O 2+
3 11.52 � � 24Mg 0+

2 6.43 � �b 28Si 2+
3 8.26 �

aRef. [29].
bRef. [25].
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FIG. 4. Measured cross sections of elastic α scattering off 12C
and 20Ne at Eα = 386 MeV relative to the Rutherford cross sections
(Rutherford ratio) compared with the theoretical calculation. The
solid circles with error bars show the measured cross sections. The
solid and dashed lines represent the results of calculation with the
density-independent (DI) and density-dependent (DD) αN interac-
tions, respectively. For the detailed discussion on the theoretical
calculations, see Sec. III.

the elastic α scattering were used as the distorting potentials
in the DWBA calculation. The same distorting potential was
used in the entrance and exit channels for each nucleus. The
optical-model potentials and the transition potentials between
the ground and excited states were calculated using the single-
folding model.

A. Optical-model potential for the elastic α scattering and the
effective αN interaction

An optical-model potential U (r) for elastic α scattering is
obtained by folding the ground-state density distribution of the
target nucleus with αN interactions as follows:

U (r) =
∫

d r ′ρ0(r ′) u[|r − r ′|,ρ0(r ′)], (1)

where r ′ and r denote the position of a pointlike nucleon
in the target and an incident α particle, respectively. ρ0(r ′)
is the ground-state density distribution of a target nucleus.

u[|r − r ′|,ρ0(r ′)] is the phenomenological αN interaction
parameterized by five adjustable parameters [40] as

u[|r − r ′|,ρ0(r ′)] = −v
[
1 + βρ

2/3
0 (r ′)

]
e−|r−r ′|2/α2

v

− iw
[
1 + βρ

2/3
0 (r ′)

]
e−|r−r ′|2/α2

w , (2)

where v and w are the depth parameters, β is the density-
dependence parameter, and αv and αw are the range parameters
for real and imaginary parts of the αN interaction, respectively.

The density distributions of the ground states of the target
nuclei were taken from the results of the electron scattering
measurements. The charge distributions of 12C, 16O, 24Mg,
28Si, and 40Ca were parameterized in the form of the sum of
Gaussian functions [41], while that of 20Ne was in the form
of the two-parameter Fermi model [42]. We calculated the
point-proton distributions of the target nuclei by unfolding their
charge distributions with the proton charge form factor [43,44].
The point-neutron distributions were assumed to be same with
the point-proton distributions for these self-conjugate A = 4n
nuclei.

The parameters in Eq. (2) were determined to reproduce
the cross sections of elastic scattering. We assumed the same
range for real and imaginary parts of the interaction (αv = αw).
The density-dependence parameter β was fixed at −1.9 or 0.0.
The parameter value of β = −1.9 was proposed in Ref. [40],
and widely used for the analysis of inelastic alpha scattering
[2,4–10,13,20,25,28,29]. On the other hand, the parameter
value of β = 0.0 means that the interaction is independent
of the density of the target nucleus. For comparison between
density-dependent and density-independent interactions, we
determined two different sets of the interaction parameters
with β = −1.9 and 0.0 for each nucleus. In this paper, the
αN interactions with β = 0.0 are denoted by “DI” (density
independent), whereas those with β = −1.9 are denoted by
“DD” (density dependent).

FIG. 5. Same as Fig. 5, but for 12C, 16O, 24Mg, 28Si, and 40Ca at Eα = 130 MeV.
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FIG. 6. Measured cross sections of the (α,α′) reaction for the ΔL = 0 transitions at Eα = 386 MeV compared with the theoretical
calculations. The solid circles with error bars show the measured cross sections. The solid lines with error bands and dashed lines are the
theoretical calculations with the density-independent (DI) and density-dependent (DD) αN interactions, respectively. The error bands are
shown for the theoretical calculations with DI interactions only. For details about the theoretical calculations, see Sec. III.

The calculated cross sections with the best-fit parameter
values to the elastic scattering data at Eα = 386 and 130 MeV
are shown in Figs. 4 and 5, respectively. The cross sections
calculated with the DI and DD interactions are almost the
same.

As described in Sec. II, there are no available data of elastic
α scattering off 28Si and 40Ca at Eα = 386 MeV. Therefore, we
could not determine the parameters of the interactions for these
nuclei by fitting the cross sections of elastic α scattering. We
fit the elastic α scattering data of 58Ni, 90Zr, 116Sn, 144Sm, and

208Pb at Eα = 386 MeV taken from Refs. [6] and determined
the parameters for these nuclei as shown in Fig. 14. Although
the parameters scatter for the lighter nuclei than 24Mg, we could
see the approximate linear relation between the parameters and
A1/3 for the heavier nuclei. We interpolate the parameters for
the heavier nuclei as drawn by the solid lines in Fig. 14, and
determined the parameters for 28Si and 40Ca. Although Fig. 14
shows the depth and range parameters of the DI interaction at
Eα = 386 MeV only, the same analysis could be done for the
DD interaction.

FIG. 7. Same as Fig. 6, but the cross sections for the ΔL = 0 transitions at Eα = 130 MeV.
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FIG. 8. Same as Fig. 6, but the cross sections for the ΔL = 2 transitions at Eα = 386 MeV.

B. Macroscopic transition potentials

We used the macroscopic charge transition densities for
isoscalar transitions calculated from the standard macroscopic
models [45,46]. The charge transition density ρ̃

(λ)
Jf ,Ji

(r ′) for a
transferred angular momentum λ with the initial-state spin Ji

and the final-state spin Jf is given as follows:

ρ̃
(0)
Jf ,Ji

(r ′) = −α0

(
3 + r ′ d

dr ′

)
ρ̃0(r ′), (λ = 0) (3)

ρ̃
(1)
Jf ,Ji

(r ′) = − β1√
3R

[
3r ′2 d

dr ′ + 10r − 5

3
〈r ′2〉 d

dr ′

+ ε

(
r

d2

dr ′2 + 4
d

dr ′

)]
ρ̃0(r ′), (λ = 1)

(4)

ρ̃
(λ)
Jf ,Ji

(r ′) = −δλ

d

dr ′ ρ̃0(r ′), (λ � 2), (5)

where α0 is the deformation parameter and δλ is the deforma-
tion length. ρ̃0(r ′) is the ground-state charge density distribu-
tion. β1, R, and 〈r ′2〉 are the collective coupling parameter for
the isoscalar dipole resonance, the half-density radius of the
Fermi charge distribution, and the root-mean-square radius of
the ground-state charge distribution, respectively. The details
about Eq. (4) are described in Ref. [46]. The values of α0 and

δλ were determined to reproduce the known electromagnetic
transition strengths [24,36–38].

The E1 transition between isoscalar states is forbidden
to the first order. The observed E1 transitions between the
isoscalar states are competitive processes between isovector
transitions allowed by the isospin symmetry breaking and
higher-order isoscalar transitions as squeezing oscillation.
Since these two types of E1 transitions have different transition
densities, it is not easy to determine the value of β1 from the
known electromagnetic transition strengths B(E1). Therefore,
we determined β1 to fit the first diffraction maximum of
the cross sections by the DWBA calculation using the DI
interaction.

Considering the density dependence of the interaction
u[|r − r ′|,ρ0(r ′)] to the lowest order, the transition potential
δUλ(r) is obtained by folding the transition density ρ

(λ)
Jf ,Ji

(r ′)
with u[|r − r ′|,ρ0(r ′)] as follows:

δUλ(r) =
∫

dr ′ρ(λ)
Jf ,ji

(r ′)
[
u[|r − r ′|,ρ0(r ′)]

+ ρ0(r ′)
∂u[|r − r ′|,ρ0(r ′)]

∂ρ0(r ′)

]
. (6)

The transition density ρ
(λ)
Jf ,Ji

(r ′) is given by unfolding the

charge transition density ρ̃
(λ)
Jf ,Ji

(r ′) with the proton-charge form
factor.
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FIG. 9. Same as Fig. 6, but the cross sections for the ΔL = 2 transitions at Eα = 130 MeV.
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FIG. 10. Same as Fig. 6, but the cross sections for the ΔL = 3 transitions at Eα = 386 MeV.

It should be noted that there is no adjustable parameter in
the present DWBA calculation because the αN interaction and
transition densities are fixed by the elastic α scattering data and
the known B(Eλ) values.

IV. DISCUSSION

A. Comparison between experimental data and DWBA
calculations

Figures 6–13 show the comparison of the measured cross
sections with the calculation using the DI and DD interactions.

FIG. 11. Same as Fig. 6, but the cross sections for the ΔL = 3 transitions at Eα = 130 MeV.
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FIG. 12. Same as Fig. 6, but the cross sections for the ΔL = 4 transitions at Eα = 130 and 386 MeV.

Since the experimental cross sections were obtained for the
angular bins with a width of 0.4◦, the calculated cross sections
at each angle are averaged over the angular range of ±0.2◦.

As shown for the ΔL = 0 transitions in Figs. 6 and
7, the calculated cross sections with the DD interactions
are systematically larger than the measured cross sections.
This discrepancy is consistent with the previous results in
Refs. [27,31]. However, it should be noted that the DWBA
calculations using the DD interaction overestimate the cross
sections for not only the Hoyle state, but also most of the 0+
states in 16O, 20Ne, 24Mg, 28Si, and 40Ca. This result suggests
that the missing monopole strength is not a special problem
to the Hoyle state, but a universal problem for the ΔL = 0
transitions. On the other hand, the calculated cross sections
with the DI interactions are systematically smaller than those
with the DD interactions, and are close to the measured
cross sections. Especially, the calculation at Eα = 386 MeV
reasonably well reproduces the experimental data, and does
not exhibit the puzzling situation about the missing monopole
strength for the Hoyle state. The measured cross sections of the
0+

2 states in 16O and 40Ca are much smaller than the calculations
as seen in Fig. 7. The angular distributions of the measured

cross sections for the 0+
2 states are quite different from the

calculations, but the reason for the discrepancy is still unclear.
Both of these states are the first excited states in the double
closed nuclei.

For the ΔL = 2 transitions shown in Figs. 8 and 9, the
DWBA calculations using the DI and DD interactions give
almost the same results, and reasonably reproduce the angular
distributions of the cross sections except for the several states.
For the 2+

2 state in 16O and the 2+
3 state in 28Si, the calculated

angular distributions of the cross sections are considerably
different from the experimental data. The measured cross
sections for these 2+ states are smaller than 1 mb/sr. Since the
direct couplings between the ground states and these states are
weak, the multistep processes would be important to reproduce
the cross sections for these states. For the 2+

3 and 2+
5 states in

24Mg, the angular distributions of the measured cross sections
slightly shift to forward angles compared with the DWBA
calculations. This shift would be understandable if we assume
that the radii of these states are larger than those of the usual
states. In Refs. [47,48], it was theoretically shown that the
angular distribution of inelastic cross sections for the ΔL = 0
transition is not sensitive to the radial expansion of the excited

FIG. 13. Same as Fig. 6, but the cross sections for the ΔL = 1 transitions at Eα = 130 MeV. Note that the calculated cross sections are
normalized to exhaust 6%, 1%, and 7% of the EWSR strengths of the isoscalar dipole transitions in 16O, 28Si, and 40Ca, respectively.
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FIG. 14. Depth and range parameters of the phenomenological
density-independent (DI) αN interaction at Eα = 386 MeV as a
function ofA1/3. The solid circles show the range parametersαv = αw ,
whereas the upward and downward triangles show the real and
imaginary depth parameters v and w, respectively. The solid lines
are the results of the linear fitting to the parameters at A = 24–208.
The dotted lines connect each parameter points to guide the eyes.

states. However, the recent theoretical study suggests that the
situation in the ΔL = 2 transition is different from the ΔL = 0
transition [49]. The shift of the angular distribution due to
the radial expansion of the excited states is more visible in
the ΔL = 2 transition than in the ΔL = 0 transition, and is
more visible at lower reaction energies than at higher reaction
energies. This is consistent with the present results that the shift
in the angular distribution is more visible at Eα = 130 MeV
than at Eα = 386 MeV. For the ΔL = 3 and 4 transitions
shown in Figs. 10–12, the differences between the calculations
with the DI and DD interactions are small, although the DI
interaction gives slightly small cross sections.

For the ΔL = 1 transitions shown in Fig. 13, we can
not directly compare the absolute values of the calculated
cross sections with the experimental data since the known
electromagnetic transition strengths B(E1) can not be related
to the collective coupling parameter of the transition density in
Eq. (4). Therefore, the calculated cross sections are normalized
to exhaust 6%, 1%, and 7% of the EWSR strengths of the
isoscalar dipole transitions for 16O, 28Si, and 40Ca, respectively.
Although the diffraction pattern of the cross sections are
reproduced well by the DWBA calculations using both the DI
and DD interactions, the DI interactions give systematically
smaller cross sections than the DD interactions as in the other
multipole transitions.

The calculated cross sections for the (α,α′) reactions at
Eα = 386 MeV are fitted to the experimental data by applying
the normalization factor R. The isoscalar transition strengths
B(Eλ; IS) determined by inelastic α scattering are related to
the electromagnetic transition strength B(Eλ) as B(Eλ; IS) =
4B(Eλ)/e2 assuming that the neutron transition density is
same with the proton transition density. The normalization
factorR is shown in Fig. 15 for theΔL = 0, 2, and 3 transitions.
The R values for the DI interaction are systematically closer
to the unity than those for the DD interaction, although the R
values for the 0+

2 states in 16O, in 20Ne, and in 28Si significantly
deviate from the unity.

The cross section for the 0+
2 states in 20Ne calculated with

the DI interaction is consistent with the experimental data at 0◦
within the error due to the uncertainty from the electromagnetic
transition strength. However, the disagreement between the

FIG. 15. Normalization factors for the calculated cross sections
for the (α,α′) reactions at Eα = 386 MeV to fit the experimental data.
The solid squares and circles are the normalization factors for the
calculations with the DI and DD interactions. The errors come from
the known electromagnetic transition transitions [23,24,36–38].

calculation and the experiment around the diffraction mini-
mum causes the deviation of R from the unity.

The cross sections of the 0+
3 state in 16O and the 0+

2 state
in 28Si were not measured at 0◦. Since the cross sections near
0◦ are crucial for the reliable determination of the isoscalar
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FIG. 16. Transition densities given by Eqs. (3) and (5), and the
transition potentials with the phenomenological αN interaction. The
top panels show the transition densities, and the bottom show the
transition potentials for the 0+

1 –2+
1 and 0+

1 –0+
2 transitions in 12C

at Eα = 386 MeV. The solid and dashed lines show the real and
imaginary parts of the transition potentials with the DI interaction.
The dotted and dot-dashed lines show the real and imaginary parts of
the potentials with the DD interaction.

monopole transition strength, further measurements for these
states should be done.

As discussed above, the DWBA calculation with the DI
interaction gives a better description for inelastic α scattering
than those with the DD interaction. Furthermore, the DI
interaction at Eα = 386 MeV is more applicable to fit the
experimental data than that at Eα = 130 MeV. This situations
is naturally understood from the well-known fact that direct
processes are dominant and the reaction mechanism becomes
simple above E ∼ 100 MeV/u.

B. Characteristics of the macroscopic transition
densities and potentials

The transition densities and potentials in the present folding-
model analyses should be examined in order to clarify the
reason why the DI and DD interactions give the different results
for the ΔL = 0 transitions (see Figs. 6 and 7). Figure 16 shows
the transition densities and potentials calculated based on the
macroscopic model for the transitions between the ground
and excited states in 12C at Eα = 386 MeV. The DI and DD
interactions give similar potentials for the 2+

1 state, whereas
these two interactions give significantly different transition
potentials for the 0+

2 state. The transition density for the
ΔL = 0 transition has sizable values around the origin. Since
the DD interaction is much weaker than the DI interaction
around the origin due to the density effect, the DD transition
potential for the ΔL = 0 transition is much shallower than the
DI transition potential in the inner region. On the other hand,
the transition density for the ΔL = 2 transition is almost zero
at the origin. Therefore, the DI and DD transition potentials
are almost same for the ΔL = 2 transition.

Historically, the density dependence of the phenomenolog-
ical αN interaction was introduced to obtain better description

of elastic α scattering at backward angles [40]. Although the
depth and range parameters used for the DI and DD interactions
are determined to fit elastic α scattering, cross sections of
elastic α scattering are sensitive to the nuclear wave functions
at the surface only because of the strong absorption [50].
Since the interaction parameters are basically tuned at the
surface where the nuclear density is relatively low, the DD
interaction gives a good description for the ΔL = 2 transition
whose transition density enhances near the surface, but does
not for the ΔL = 0 transition in which the interior transition
density gives a sizable contribution to the transition potential.
The weak absorption by the DD transition potential for the
ΔL = 0 transitions causes the systematic overestimation of
the cross sections and missing monopole strengths. It should
be noted that the transition potential for the 0+

1 –0+
2 transition

from the recent full microscopic calculation using the realistic
NN interaction [51] is similar to the DI transition potential
for the ΔL = 0 transition. This fact supports the conclusion
given in Sec. IV A that the DI interaction is more suitable for
the single-folding model calculations to describe the ΔL = 0
transition than the DD interaction.

C. Uncertainty in the DWBA calculations

We introduced several approximations to the present
DWBA analyses. (i) The macroscopic transition densities are
used instead of the realistic microscopic transition densities.
(ii) The distorting potentials for the exit channels are assumed
to be the same with the entrance channels. (iii) The interactions
are approximated by the Gaussian-type phenomenological αN
interaction. (iv) The coupled-channel effects are ignored.

These approximations might cause errors in the present
analyses. Uncertainties from these approximations are dis-
cussed in the following. Only the calculations with the DI
interaction at Eα = 386 MeV are shown because the situation
does not essentially change even for the DD interaction or at
Eα = 130 MeV.

1. Transition densities

Reliable transition densities from the microscopic calcula-
tion are available for well-studied nuclei such as 12C. However,
such reliable transition densities are not available to analyze
experimental data in most cases, because the experimental
studies are generally done for lesser-examined states. Hence,
the macroscopic model is widely used to analyze inelastic α
scattering. The macroscopic transition densities for the 2+

1 ,
0+

2 , and 3−
1 states given by Eqs. (3) and (5) are shown by

the solid lines in the bottom panels of Fig. 17. In addition,
the dashed lines represent the microscopic transition densities
for the 0+

1 –2+
1 and 0+

1 –0+
2 transitions from the α-particle

condensate wave functions (so-called THSR wave functions)
[52,53] and the transition density for the 0+

1 –3−
1 transition from

3α RGM calculations [16]. The amplitudes of the microscopic
transition densities are normalized to reproduce the known
electromagnetic transition strengths [23,24,36,37]. The cross
sections for the 2+

1 , 0+
2 , and 3−

1 states at Eα = 386 MeV
obtained from the DWBA calculations using the microscopic
and macroscopic transition densities are compared in the top
panels of Fig. 17. The solid lines are the same calculations
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FIG. 17. Calculated cross sections and transition densities for the 2+
1 , 0+

2 , and 3−
1 states in 12C at Eα = 386 MeV. The solid circles with

error bars are the experimental data. The solid lines show the DWBA calculations using the DI interaction and macroscopic transition densities,
which are same with the solid lines in Figs. 6, 8, and 10. The dashed lines show the DWBA calculations using the DI interaction and the
microscopic transition densities from Refs. [16,52,53]. The dotted lines are the same DWBA calculations shown by the dashed lines except
that the distorting potentials for the exit channels are calculated by folding the density distributions of the excited states with the DI interaction.
The dashed and dotted lines are almost the same for the 2+

1 and 3−
1 states. In the bottom panels, the solid lines show the macroscopic transition

densities given by unfolding the macroscopic charge transition densities [Eqs. (3) and (5)] with the proton charge form factor, whereas the
dashed lines are the microscopic transition densities (see text).

as described in Sec. III using the DI interaction and the
macroscopic transition densities. The dashed lines are the
calculations using the DI interaction and the microscopic
transition densities.

The differences between the solid and dashed lines in the
top panels in Fig. 17 are very small for all of the 2+

1 , 0+
2 , and 3−

1
states, although the macroscopic transition densities shown by
the solid lines in the bottom panels are considerably different
from the microscopic transition densities. These results show
that the uncertainties due to differences in transition densities
are negligibly small in the present DWBA calculation.

2. Distorting potentials

In order to examine uncertainties from the distorting poten-
tials, we replace the distorting potentials for the exit channels
with the diagonal potentials for the excited states. The diagonal
optical-model potentials are calculated by folding the density
distributions of the excited states from Refs. [16,52,53] with the
DI interaction. The calculated cross sections are represented
by the dotted lines in the top panels of Fig. 17. The cross
sections for the 2+

1 and 3−
1 states do not change even if the

distorting potentials are replaced. For the 0+
2 state, on the other

hand, the cross sections slightly change when the distorting
potentials are replaced. This result is explained from the fact

that the radius of the 0+
2 state is much larger than that of the

ground state [16,52,53] and thus, the distorting potential for
the exit channel is very different from that for the entrance
channel. However, the variation of the cross sections due to
the distorting potential is acceptably small.

3. Phenomenological αN interaction

The present DWBA calculation using the single-folding
potentials assumes the α particle is a point particle, and the
phenomenological αN interaction is empirically determined
to reproduce elastic α scattering. This interaction is really
phenomenological, and hence it is not established on the
realistic NN interaction. The present DWBA calculation
should be compared with the calculation using the realistic NN
interaction. In the following calculations, we used the diagonal
potentials for the excited states as the distorting potential for
the exit channels as performed in Sec. IV C 2.

For comparison, we carried out the DWBA calculation using
the NN G-matrix interaction by the Melbourne group [54].
The transition potentials were calculated by doubly folding
the projectile and target transition density distributions with
the NN G-matrix interaction. The density distributions used
with the NN G-matrix interaction are taken from the 3α RGM
calculation [16], the same prescription as in Ref. [51]. The
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FIG. 18. Calculated cross sections of the inelastic α scattering at Eα = 386 MeV exciting the 2+
1 , 0+

2 , and 3−
1 states in 12C. The solid and

dashed lines show the DWBA calculations with the Melbourne [54] and DI interactions, respectively. The solid circles with error bars are the
experimental data.

calculated cross sections for the 2+
1 , 0+

2 , and 3−
1 states in 12C

with the Melbourne and DI interactions are shown by the solid
and dashed lines in Fig. 18, respectively. The dashed lines are
same as the dotted lines in the top panels of Fig. 17. Both
the calculations reasonably reproduce the diffraction pattern
of the measured cross sections. The cross sections with the
DI interaction are systematically smaller than those with the
Melbourne interaction, and are close to the experiment.

4. Coupled-channel effect

The coupled-channel (CC) effect is ignored in the present
DWBA calculation, but it might not be negligible. Especially,
it is pointed out that the coupling between the 0+

2 and 2+
2

states in 12C is very strong [16,55]. The CC calculation for
the inelastic α scattering exciting the 2+

1 , 0+
2 , and 3−

1 states in
12C using the DI interaction at Eα = 386 MeV was compared
with the DWBA calculation in the top panels of Fig. 19. The
distorting and transition potentials are calculated by using the
wave functions from the 3α RGM calculation [16] for the 3−

1
state and the THSR wave functions [52,53] for the 0+

1 , 2+
1 , 0+

2 ,
2+

2 , and 4+
1 states.

The dotted lines show the CC calculation taking into account
the coupled-channel effects between the six states (0+

1 , 2+
1 , 0+

2 ,
3−

1 , 2+
2 , and 4+

1 ), while the dashed lines show the CC calculation
taking into account the coupled-channel effects between the
five states except the 2+

2 state. The solid lines show the DWBA
calculation, which is the same as the dashed lines in Fig. 18.
The CC effects for the 2+

1 and 3−
1 states are negligibly small,

and the DWBA and CC calculations give similar results except
for the 0+

2 state. The DWBA and five-state CC calculations
give similar results even for the 0+

2 state, but the six-state CC
calculation gives a smaller cross section at forward angles than
the other calculations. In addition, the diffraction pattern of
the angular distribution in the six-state CC calculation slightly
shifts to forward angles. This result reflects the fact that the
coupling between the 0+

2 and 2+
2 states is strong.

The reduction of the cross section for the 0+
2 state is

essentially the same phenomenon as the enhanced absorption
in the α + 12C(0+

2 ) channel proposed in Ref. [31]. It should
be noted that the DWBA calculations are better to reproduce
the experimental data than the six-state CC calculation. One
possible explanation is that the coupling between the 0+

2 and
2+

2 states in the present CC calculation is too strong. The

transition strength between the 0+
2 and 2+

2 states have never
been measured, therefore the experimental study is strongly
desired.

Recently, a full microscopic calculation of the inelastic
α scattering from 12C using the Melbourne NN G-matrix
interaction was performed [51]. The CC calculations reported
in Ref. [51] are shown in the bottom panels of Fig. 19. The
dotted and dashed lines show the six-state and five-state CC
calculations, respectively. On the other hand, the solid lines
show the DWBA calculations, the same as the solid lines
in Fig. 18. The situation is quite similar to the calculation
with the DI interactions. The coupling to the 2+

2 state is
negligibly small for the 2+

1 and 3−
1 states but not for the 0+

2
state. The six-state CC calculation gives smaller cross sections
of the 0+

2 state than the five-state CC calculations at forward
angles, and the diffraction pattern of the angular distribution in
the six-state CC calculation slightly shifts to forward angles.
The full microscopic CC calculation slightly underestimates
the experimental cross sections for the 0+

2 state at forward
angles and overestimates at backward angles. The three-
nucleon force possibly decreases the cross section at back-
ward angles and improves the calculation as discussed in
Ref. [51].

As discussed above, the CC effects are negligibly small in
most cases of inelastic α scattering although the CC effects
sometimes give sizable modification to cross sections. The
DWBA calculation using the DI interaction at Eα = 386 MeV
reasonably reproduces the experimental results even for the 0+

2
state in 12C.

V. SUMMARY AND CONCLUSIONS

We systematically measured differential cross sections of
inelastic α scattering off self-conjugate A = 4n nuclei at two
different incident energies Eα = 130 and 386 MeV at RCNP,
Osaka University. The measured cross sections were analyzed
by the DWBA calculation with the single-folding potentials
obtained by folding the macroscopic transition densities with
the phenomenological αN interaction.

The DWBA calculation with the DI interaction reproduces
the experimental data better than that with the DD interaction.
The DWBA calculation with the DD interaction systematically
overestimates the cross sections for ΔL = 0 transitions. This
result is consistent with the previous results [27,31], suggesting
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FIG. 19. Calculated cross sections of inelastic α scattering at Eα = 386 MeV exciting the 2+
1 , 0+

2 , and 3−
1 states in 12C. The top panels

are the DWBA and CC calculations with the DI interaction, and the bottom panels are the calculations with the Melbourne interaction [51].
The solid lines show the DWBA calculation. The dotted and dashed lines respectively show the six-state and five-state CC calculations
(see text). The dotted and dashed lines are almost the same for the 2+

1 and 3−
1 states. The solid circles with error bars are the experimental

data.

a puzzle of the missing monopole strength for exciting the 0+
2

state in 12C. However, we found that this discrepancy is not
special to the 0+

2 state in 12C, but is universally observed in
all of ΔL = 0 transitions. The overestimation of the cross
section by the DD interaction is due to the strong density
dependence in the inner region of the target nucleus. The
inadequate density dependence in the effective interaction is
one reason for the puzzle of the missing monopole strength. On
the other hand, the DWBA calculation using the DI interaction
gives a reasonable description for the 0+

2 state, and does not
exhibit the problem of the missing monopole strength. The
transition potential calculated with the DI interaction is actu-
ally similar to the double-folding transition potential obtained
from the recent full microscopic calculation using the Mel-
bourne G-matrix interaction constructed from the realistic NN
interaction.

We also found that the DI interaction at Eα = 386 MeV
gives a better description than at Eα = 130 MeV. It is
naturally understood from the well-known fact that direct
processes are dominant and the reaction mechanism be-
comes simple above E ∼ 100 MeV/u. The DI interaction
at Eα = 386 MeV is the most suitable among the four in-
teractions (DI or DD, Eα = 130 or 386 MeV) to analyze

the inelastic α scattering. The DWBA calculation using this
interaction reasonably well describes all the transitions with
ΔL = 0–4.

Uncertainties in the present DWBA calculation were ex-
amined for 12C. We found that the DWBA calculation is
not sensitive to the details of the transition densities nor
the distorting potentials. We compared the single-folding
calculation using the DI interaction with the double-folding
calculation using the Melbourne NN G-matrix interaction,
and found the single-folding calculation gives reasonable
description.

The CC effects are negligibly small for the 2+
1 and 3−

1 states
but not for the 0+

2 state in 12C. The 0+
2 state is theoretically

predicted to strongly couple to the 2+
2 state. The cross section

for the 0+
2 state decreases at forward angles by taking into

account the coupling with the 2+
2 state. This reduction of

the cross section for the 0+
2 state is essentially the same

phenomenon as the enhanced absorption in the α + 12C(0+
2 )

channel proposed in Ref. [31], and might be another reason for
the puzzle of the missing monopole strength. However, the CC
calculation underestimates the cross section, suggesting that
the deduced monopole strength becomes larger than expected.
One possible explanation is that the coupling between the 0+

2
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and 2+
2 states in the present CC calculation is too strong. The

experimental determination of the coupling strength between
the 0+

2 and 2+
2 state is strongly desired.

Recently, a full microscopic CC calculation using the
Melbourne G-matrix interaction was found to give a good
description of the inelastic α scattering [51]. Although this
microscopic CC calculation is established on the realistic
NN interaction and is more sophisticated framework than the
macroscopic DWBA calculation, such a calculation can be only
carried out for the well-studied nuclei such as 12C only. Most of
experimental studies are done for unexplored states in various
nuclei. The microscopic CC calculation cannot be applied for
such states, but the macroscopic DWBA calculation is appli-
cable. Therefore, we conclude that the macroscopic DWBA
calculations using the DI interaction are reliably applicable to
analyze inelastic α scattering at Eα ∼ 100 MeV/u.

ACKNOWLEDGMENTS

The authors acknowledge the RCNP cyclotron crews for
providing a high-quality beam for background-free measure-
ments at forward angles including 0◦. The authors also thank
Professor M. Ito, Professor Y. Kanada-Eny’o, Professor M.
Kimura, and Professor M. Takashina for the valuable discus-
sions about inelastic α scattering and the puzzle of the missing
monopole strength.

This work was performed under the RCNP E253, E308,
E369, and E402 programs. A part of experimental data,
the cross sections of elastic α scattering at backward an-
gles at Eα = 130 MeV, was taken under the graduation re-
search program by undergraduate students at Kyoto Uni-
versity (KADAIKENKYU P4). This work was partly sup-
ported by JSPS KAKENHI Grants No. JP15H02091 and No.
JP23340068.

[1] D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Phys. Rev. C 55,
2811 (1997).

[2] D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Phys. Rev. C 60,
014304 (1999).

[3] D. H. Youngblood, H. L. Clark, and Y.-W. Lui, Phys. Rev. Lett.
82, 691 (1999).

[4] M. Itoh, H. Sakaguchi, M. Uchida, T. Ishikawa, T. Kawabata, T.
Murakami, H. Takeda, T. Taki, S. Terashima, N. Tsukahara, Y.
Yasuda, M. Yosoi, U. Garg, M. Hedden, B. Kharraja, M. Koss,
B. K. Nayak, S. Zhu, H. Fujimura, M. Fujiwara, K. Hara, H. P.
Yoshida, H. Akimune, M. N. Harakeh, and M. Volkerts, Phys.
Lett. B 549, 58 (2002).

[5] M. Itoh, H. Sakaguchi, M. Uchida, T. Ishikawa, T. Kawabata, T.
Murakami, H. Takeda, T. Taki, S. Terashima, N. Tsukahara, Y.
Yasuda, M. Yosoi, U. Garg, M. Hedden, B. Kharraja, M. Koss,
B. K. Nayak, S. Zhu, H. Fujimura, M. Fujiwara, K. Hara, H. P.
Yoshida, H. Akimune, M. N. Harakeh, and M. Volkerts, Phys.
Rev. C 68, 064602 (2003).

[6] M. Uchida, H. Sakaguchi, M. Itoh, M. Yosoi, T. Kawabata, Y.
Yasuda, H. Takeda, T. Murakami, S. Terashima, S. Kishi, U.
Garg, P. Boutachkov, M. Hedden, B. Kharraja, M. Koss, B. K.
Nayak, S. Zhu, M. Fujiwara, H. Fujimura, H. P. Yoshida, K.
Hara, H. Akimune, and M. N. Harakeh, Phys. Rev. C 69, 051301
(2004); M. Uchida, Ph.D. thesis, Kyoto University, 2003.

[7] M. Itoh, S. Kishi, H. Sakaguchi, H. Akimune, M. Fujiwara,
U. Garg, K. Hara, H. Hashimoto, J. Hoffman, T. Kawabata, K.
Kawase, T. Murakami, K. Nakanishi, B. K. Nayak, S. Terashima,
M. Uchida, Y. Yasuda, and M. Yosoi, Phys. Rev. C 88, 064313
(2013).

[8] T. Li, U. Garg, Y. Liu, R. Marks, B. K. Nayak, P. V. Madhusud-
hana Rao, M. Fujiwara, H. Hashimoto, K. Kawase, K. Nakanishi,
S. Okumura, M. Yosoi, M. Itoh, M. Ichikawa, R. Matsuo, T.
Terazono, M. Uchida, T. Kawabata, H. Akimune, Y. Iwao, T.
Murakami, H. Sakaguchi, S. Terashima, Y. Yasuda, J. Zenihiro,
and M. N. Harakeh, Phys. Rev. Lett. 99, 162503 (2007).

[9] Y. K. Gupta, U. Garg, J. Hoffman, J. Matta, P. V. Madhusudhana
Rao, D. Patel, T. Peach, K. Yoshida, M. Itoh, M. Fujiwara, K.
Hara, H. Hashimoto, K. Nakanishi, M. Yosoi, H. Sakaguchi, S.
Terashima, S. Kishi, T. Murakami, M. Uchida, Y. Yasuda, H.

Akimune, T. Kawabata, and M. N. Harakeh, Phys. Rev. C 93,
044324 (2016).

[10] T. Peach, U. Garg, Y. K. Gupta, J. Hoffman, J. T. Matta, D. Patel,
P. V. Madhusudhana Rao, K. Yoshida, M. Itoh, M. Fujiwara,
K. Hara, H. Hashimoto, K. Nakanishi, M. Yosoi, H. Sakaguchi,
S. Terashima, S. Kishi, T. Murakami, M. Uchida, Y. Yasuda, H.
Akimune, T. Kawabata, M. N. Harakeh, and G. Colò, Phys. Rev.
C 93, 064325 (2016).

[11] S. Bagchi, J. Gibelin, M. N. Harakeh, N. Kalantar-Nayestanaki,
N. L. Achouri, H. Akimune, B. Bastin, K. Boretzky, H.
Bouzomita, M. Caamaño, L. Càceres, S. Damoy, F. Delaunay,
B. Fernández-Domínguez, M. Fujiwara, U. Garg, G. F. Grinyer,
O. Kamalou, E. Khan, A. Krasznahorkay, G. Lhoutellier, J. F.
Libin, S. Lukyanov, K. Mazurek, M. A. Najafi, J. Pancin, Y.
Penionzhkevich, L. Perrot, R. Raabe, C. Rigollet, T. Roger, S.
Sambi, H. Savajols, M. Senoville, C. Stodel, L. Suen, J. C.
Thomas, M. Vandebrouck, and J. Van de Walle, Phys. Lett. B
751, 371 (2015).

[12] M. Vandebrouck, J. Gibelin, E. Khan, N. L. Achouri, H. Baba,
D. Beaumel, Y. Blumenfeld, M. Caamaño, L. Càceres, G. Colò,
F. Delaunay, B. Fernandez-Dominguez, U. Garg, G. F. Grinyer,
M. N. Harakeh, N. Kalantar-Nayestanaki, N. Keeley, W. Mittig,
J. Pancin, R. Raabe, T. Roger, P. Roussel-Chomaz, H. Savajols,
O. Sorlin, C. Stodel, D. Suzuki, and J. C. Thomas, Phys. Rev. C
92, 024316 (2015).

[13] M. Itoh, H. Akimune, M. Fujiwara, U. Garg, N. Hashimoto, T.
Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi,
Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H.
Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J.
Zenihiro, Phys. Rev. C 84, 054308 (2011).

[14] H. Morinaga, Phys. Rev. 101, 254 (1956).
[15] H. Morinaga, Phys. Lett. 21, 78 (1966).
[16] M. Kamimura, Nucl. Phys. A 351, 456 (1981).
[17] R. De Leo, G. D’Erasmo, A. Pantaleo, M. N. Harakeh, E.

Cereda, S. Micheletti, and M. Pignanelli, Phys. Rev. C 28, 1443
(1983).

[18] H. O. U. Fynbo, C. A. Diget, U. C. Bergmann, M. J. G. Borge,
J. Cederkäll, P. Dendooven, L. M. Fraile, S. Franchoo, V. N.
Fedosseev, B. R. Fulton, W. Huang, J. Huikari, H. B. Jeppesen,

014601-17

https://doi.org/10.1103/PhysRevC.55.2811
https://doi.org/10.1103/PhysRevC.55.2811
https://doi.org/10.1103/PhysRevC.55.2811
https://doi.org/10.1103/PhysRevC.55.2811
https://doi.org/10.1103/PhysRevC.60.014304
https://doi.org/10.1103/PhysRevC.60.014304
https://doi.org/10.1103/PhysRevC.60.014304
https://doi.org/10.1103/PhysRevC.60.014304
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1016/S0370-2693(02)02892-7
https://doi.org/10.1016/S0370-2693(02)02892-7
https://doi.org/10.1016/S0370-2693(02)02892-7
https://doi.org/10.1016/S0370-2693(02)02892-7
https://doi.org/10.1103/PhysRevC.68.064602
https://doi.org/10.1103/PhysRevC.68.064602
https://doi.org/10.1103/PhysRevC.68.064602
https://doi.org/10.1103/PhysRevC.68.064602
https://doi.org/10.1103/PhysRevC.69.051301
https://doi.org/10.1103/PhysRevC.69.051301
https://doi.org/10.1103/PhysRevC.69.051301
https://doi.org/10.1103/PhysRevC.69.051301
https://doi.org/10.1103/PhysRevC.88.064313
https://doi.org/10.1103/PhysRevC.88.064313
https://doi.org/10.1103/PhysRevC.88.064313
https://doi.org/10.1103/PhysRevC.88.064313
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1103/PhysRevLett.99.162503
https://doi.org/10.1103/PhysRevC.93.044324
https://doi.org/10.1103/PhysRevC.93.044324
https://doi.org/10.1103/PhysRevC.93.044324
https://doi.org/10.1103/PhysRevC.93.044324
https://doi.org/10.1103/PhysRevC.93.064325
https://doi.org/10.1103/PhysRevC.93.064325
https://doi.org/10.1103/PhysRevC.93.064325
https://doi.org/10.1103/PhysRevC.93.064325
https://doi.org/10.1016/j.physletb.2015.10.060
https://doi.org/10.1016/j.physletb.2015.10.060
https://doi.org/10.1016/j.physletb.2015.10.060
https://doi.org/10.1016/j.physletb.2015.10.060
https://doi.org/10.1103/PhysRevC.92.024316
https://doi.org/10.1103/PhysRevC.92.024316
https://doi.org/10.1103/PhysRevC.92.024316
https://doi.org/10.1103/PhysRevC.92.024316
https://doi.org/10.1103/PhysRevC.84.054308
https://doi.org/10.1103/PhysRevC.84.054308
https://doi.org/10.1103/PhysRevC.84.054308
https://doi.org/10.1103/PhysRevC.84.054308
https://doi.org/10.1103/PhysRev.101.254
https://doi.org/10.1103/PhysRev.101.254
https://doi.org/10.1103/PhysRev.101.254
https://doi.org/10.1103/PhysRev.101.254
https://doi.org/10.1016/0031-9163(66)91349-7
https://doi.org/10.1016/0031-9163(66)91349-7
https://doi.org/10.1016/0031-9163(66)91349-7
https://doi.org/10.1016/0031-9163(66)91349-7
https://doi.org/10.1016/0375-9474(81)90182-2
https://doi.org/10.1016/0375-9474(81)90182-2
https://doi.org/10.1016/0375-9474(81)90182-2
https://doi.org/10.1016/0375-9474(81)90182-2
https://doi.org/10.1103/PhysRevC.28.1443
https://doi.org/10.1103/PhysRevC.28.1443
https://doi.org/10.1103/PhysRevC.28.1443
https://doi.org/10.1103/PhysRevC.28.1443


S. ADACHI et al. PHYSICAL REVIEW C 97, 014601 (2018)

A. S. Jokinen, P. Jones, B. Jonson, U. Köster, K. Langanke,
M. Meister, T. Nilsson, G. Nyman, Y. Prezado, K. Riisager,
S. Rinta-Antila, O. Tengblad, M. Turrion, Y. Wang, L. Weiss-
man, K. Wilhelmsen, and J. Äystö, Nature (London) 433, 136
(2005).

[19] M. Freer, H. Fujita, Z. Buthelezi, J. Carter, R. W. Fearick, S. V.
Förtsch, R. Neveling, S. M. Perez, P. Papka, F. D. Smit, J. A.
Swartz, and I. Usman, Phys. Rev. C 80, 041303 (2009).

[20] T. Kawabata, H. Akimune, H. Fujita, Y. Fujita, M. Fujiwara,
K. Hara, K. Hatanaka, M. Itoh, Y. Kanada-En’yo, S. Kishi, K.
Nakanishi, H. Sakaguchi, Y. Shimbara, A. Tamii, S. Terashima,
M. Uchida, T. Wakasa, Y. Yasuda, H. Yoshida, and M. Yosoi,
Phys. Lett. B 646, 6 (2007).

[21] B. F. Bayman and A. Bohr, Nucl. Phys. 9, 596 (1958).
[22] T. Yamada, Y. Funaki, H. Horiuchi, K. Ikeda, and A. Tohsaki,

Prog. Theor. Phys. 120, 1139 (2008).
[23] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel,

and A. Richter, Phys. Rev. Lett. 105, 022501 (2010).
[24] P. M. Endt, At. Data Nucl. Data Tables 55, 171 (1993).
[25] T. Kawabata, T. Adachi, M. Fujiwara, K. Hatanaka, Y. Ishiguro,

M. Itoh, Y. Maeda, H. Matsubara, H. Miyasako, Y. Nozawa,
T. Saito, S. Sakaguchi, Y. Sasamoto, Y. Shimizu, T. Takahashi,
A. Tamii, S. Terashima, H. Tokieda, N. Tomida, T. Uesaka, M.
Uchida, Y. Yasuda, N. Yokota, H. P. Yoshida, and J. Zenihiro, J.
Phys. Conf. Ser. 321, 012012 (2011).

[26] Y. Chiba and M. Kimura, Phys. Rev. C 91, 061302 (2015).
[27] B. John, Y. Tokimoto, Y.-W. Lui, H. L. Clark, X. Chen, and D.

H. Youngblood, Phys. Rev. C 68, 014305 (2003).
[28] Y. Sasamoto, T. Kawabata, T. Uesaka, K. Suda, Y. Maeda, S. Sak-

aguchi, K. Itoh, K. Hatanaka, M. Fujiwara, A. Tamii, Y. Shimizu,
K. Nakanishi, K. Kawase, H. Hashimoto, Y. Tameshige, H.
Matsubara, M. Itoh, H. P. Yoshida, and M. Uchida, Mod. Phys.
Lett. A 21, 2393 (2006).

[29] T. Wakasa, E. Ihara, K. Fujita, Y. Funaki, K. Hatanaka, H.
Horiuchi, M. Itoh, J. Kamiya, G. Röpke, H. Sakaguchi, N.
Sakamoto, Y. Sakemi, P. Schuck, Y. Shimizu, M. Takashina, S.
Terashima, A. Tohsaki, M. Uchida, H. P. Yoshida, and M. Yosoi,
Phys. Lett. B 653, 173 (2007).

[30] P. Strehl, Z. Phys 234, 416 (1970).
[31] D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331

(2007).
[32] T. Kawabata, H. Akimune, H. Fujimura, H. Fujita, Y. Fujita,

M. Fujiwara, K. Hara, K. Hatanaka, K. Hosono, T. Ishikawa,
M. Itoh, J. Kamiya, M. Nakamura, T. Noro, E. Obayashi, H.
Sakaguchi, Y. Shimbara, H. Takeda, T. Taki, A. Tamii, H.
Toyokawa, N. Tsukahara, M. Uchida, H. Ueno, T. Wakasa,
K. Yamasaki, Y. Yasuda, H. P. Yoshida, and M. Yosoi, Nucl.
Instrum. Meth. A 459, 171 (2001).

[33] H. Matsubara, A. Tamii, Y. Shimizu, K. Suda, Y. Tameshige, and
J. Zenihiro, Nucl. Instrum. Meth. A 678, 122 (2012).

[34] M. Fujiwara, H. Akimune, I. Daito, H. Fujimura, Y. Fujita, K.
Hatanaka, H. Ikegami, I. Katayama, K. Nagayama, N. Matsuoka,
S. Morinobu, T. Noro, M. Yoshimura, H. Sakaguchi, Y. Sakemi,
A. Tamii, and M. Yosoi, Nucl. Instrum. Meth. A 422, 484 (1999).

[35] A. Tamii, Y. Fujita, H. Matsubara, T. Adachi, J. Carter, M.
Dozono, H. Fujita, K. Fujita, H. Hashimoto, K. Hatanaka, T.
Itahashi, M. Itoh, T. Kawabata, K. Nakanishi, S. Ninomiya, A.
B. Perez-Cerdan, L. Popescu, B. Rubio, T. Saito, H. Sakaguchi,
Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu, F. D. Smit,
Y. Tameshige, M. Yosoi, and J. Zenhiro, Nucl. Instrm. Methods
Phys. Res., Sect. A 605, 326 (2009).

[36] P. M. Endt, At. Data Nucl. Data Tables 23, 3 (1979).
[37] P. M. Endt, Nucl. Phys. A 521, 1 (1990).
[38] D. R. Tilley, C. M. Cheves, J. H. Kelley, S. Raman, and H. R.

Weller, Nucl. Phys. A 636, 249 (1998).
[39] J. Raynal, “Computer Program : ECIS-95” (1995), old version

of ECIS-12 NEA-0850/19.
[40] G. R. Satchler and D. T. Khoa, Phys. Rev. C 55, 285 (1997).
[41] H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl.

Data Tables 36, 495 (1987).
[42] E. A. Knight, R. P. Singhal, R. G. Arthur, and M. W. S. Macauley,

J. Phys. G : Nucl. Phys. 7, 1115 (1981).
[43] J. J. Kelly, Phys. Rev. C 70, 068202 (2004).
[44] S. Terashima, Ph.D. thesis, Kyoto University, 2008; S.

Terashima, H. Sakaguchi, H. Takeda, T. Ishikawa, M. Itoh,
T. Kawabata, T. Murakami, M. Uchida, Y. Yasuda, M. Yosoi,
J. Zenihiro, H. P. Yoshida, T. Noro, T. Ishida, S. Asaji, and T.
Yonemura, Phys. Rev. C 77, 024317 (2008)

[45] G. R. Satchler, Nucl. Phys. A 472, 215 (1987).
[46] M. N. Harakeh and A. E. L. Dieperink, Phys. Rev. C 23, 2329

(1981).
[47] M. Takashina and Y. Sakuragi, Phys. Rev. C 74, 054606 (2006).
[48] M. Takashina, Phys. Rev. C 78, 014602 (2008).
[49] M. Tomita, M. Iwasaki, R. Otani, and M. Ito, in Proceedings

of The 26th International Nuclear Physics Conference, PoS
(INPC2016), 210 (2016).

[50] B. Bonin, N. Alamanos, B. Berthier, G. Bruge, H. Faraggi, J.
C. Lugol, W. Mittig, L. Papineau, A. I. Yavin, J. Arvieux, L.
Farvacque, M. Buenerd, and W. Bauhoff, Nucl. Phys. A 445,
381 (1985).

[51] K. Minomo and K. Ogata, Phys. Rev. C 93, 051601 (2016).
[52] Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke,

Eur. Phys. J. A 24, 321 (2005).
[53] Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke,

Eur. Phys. J. A 28, 259 (2006).
[54] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis, and

J. Raynal, in Advanced Nucler Physics, edited by J. W. Negele
and E. Vogt, Vol. 25 (Plenum, New York, 2000). p. 275.

[55] E. Uegaki, S. Okabe, Y. Abe, and H. Tanaka, Prog. Theor. Phys.
57, 1262 (1977).

014601-18

https://doi.org/10.1038/nature03219
https://doi.org/10.1038/nature03219
https://doi.org/10.1038/nature03219
https://doi.org/10.1038/nature03219
https://doi.org/10.1103/PhysRevC.80.041303
https://doi.org/10.1103/PhysRevC.80.041303
https://doi.org/10.1103/PhysRevC.80.041303
https://doi.org/10.1103/PhysRevC.80.041303
https://doi.org/10.1016/j.physletb.2006.11.079
https://doi.org/10.1016/j.physletb.2006.11.079
https://doi.org/10.1016/j.physletb.2006.11.079
https://doi.org/10.1016/j.physletb.2006.11.079
https://doi.org/10.1016/0029-5582(58)90343-2
https://doi.org/10.1016/0029-5582(58)90343-2
https://doi.org/10.1016/0029-5582(58)90343-2
https://doi.org/10.1016/0029-5582(58)90343-2
https://doi.org/10.1143/PTP.120.1139
https://doi.org/10.1143/PTP.120.1139
https://doi.org/10.1143/PTP.120.1139
https://doi.org/10.1143/PTP.120.1139
https://doi.org/10.1103/PhysRevLett.105.022501
https://doi.org/10.1103/PhysRevLett.105.022501
https://doi.org/10.1103/PhysRevLett.105.022501
https://doi.org/10.1103/PhysRevLett.105.022501
https://doi.org/10.1006/adnd.1993.1020
https://doi.org/10.1006/adnd.1993.1020
https://doi.org/10.1006/adnd.1993.1020
https://doi.org/10.1006/adnd.1993.1020
https://doi.org/10.1088/1742-6596/321/1/012012
https://doi.org/10.1088/1742-6596/321/1/012012
https://doi.org/10.1088/1742-6596/321/1/012012
https://doi.org/10.1088/1742-6596/321/1/012012
https://doi.org/10.1103/PhysRevC.91.061302
https://doi.org/10.1103/PhysRevC.91.061302
https://doi.org/10.1103/PhysRevC.91.061302
https://doi.org/10.1103/PhysRevC.91.061302
https://doi.org/10.1103/PhysRevC.68.014305
https://doi.org/10.1103/PhysRevC.68.014305
https://doi.org/10.1103/PhysRevC.68.014305
https://doi.org/10.1103/PhysRevC.68.014305
https://doi.org/10.1142/S0217732306022031
https://doi.org/10.1142/S0217732306022031
https://doi.org/10.1142/S0217732306022031
https://doi.org/10.1142/S0217732306022031
https://doi.org/10.1016/j.physletb.2007.08.016
https://doi.org/10.1016/j.physletb.2007.08.016
https://doi.org/10.1016/j.physletb.2007.08.016
https://doi.org/10.1016/j.physletb.2007.08.016
https://doi.org/10.1007/BF01394366
https://doi.org/10.1007/BF01394366
https://doi.org/10.1007/BF01394366
https://doi.org/10.1007/BF01394366
https://doi.org/10.1016/j.physletb.2007.12.059
https://doi.org/10.1016/j.physletb.2007.12.059
https://doi.org/10.1016/j.physletb.2007.12.059
https://doi.org/10.1016/j.physletb.2007.12.059
https://doi.org/10.1016/S0168-9002(00)00992-X
https://doi.org/10.1016/S0168-9002(00)00992-X
https://doi.org/10.1016/S0168-9002(00)00992-X
https://doi.org/10.1016/S0168-9002(00)00992-X
https://doi.org/10.1016/j.nima.2012.03.005
https://doi.org/10.1016/j.nima.2012.03.005
https://doi.org/10.1016/j.nima.2012.03.005
https://doi.org/10.1016/j.nima.2012.03.005
https://doi.org/10.1016/S0168-9002(98)01009-2
https://doi.org/10.1016/S0168-9002(98)01009-2
https://doi.org/10.1016/S0168-9002(98)01009-2
https://doi.org/10.1016/S0168-9002(98)01009-2
https://doi.org/10.1016/j.nima.2009.03.248
https://doi.org/10.1016/j.nima.2009.03.248
https://doi.org/10.1016/j.nima.2009.03.248
https://doi.org/10.1016/j.nima.2009.03.248
https://doi.org/10.1016/0092-640X(79)90020-2
https://doi.org/10.1016/0092-640X(79)90020-2
https://doi.org/10.1016/0092-640X(79)90020-2
https://doi.org/10.1016/0092-640X(79)90020-2
https://doi.org/10.1016/0375-9474(90)90598-G
https://doi.org/10.1016/0375-9474(90)90598-G
https://doi.org/10.1016/0375-9474(90)90598-G
https://doi.org/10.1016/0375-9474(90)90598-G
https://doi.org/10.1016/S0375-9474(98)00129-8
https://doi.org/10.1016/S0375-9474(98)00129-8
https://doi.org/10.1016/S0375-9474(98)00129-8
https://doi.org/10.1016/S0375-9474(98)00129-8
https://doi.org/10.1103/PhysRevC.55.285
https://doi.org/10.1103/PhysRevC.55.285
https://doi.org/10.1103/PhysRevC.55.285
https://doi.org/10.1103/PhysRevC.55.285
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1088/0305-4616/7/8/017
https://doi.org/10.1088/0305-4616/7/8/017
https://doi.org/10.1088/0305-4616/7/8/017
https://doi.org/10.1088/0305-4616/7/8/017
https://doi.org/10.1103/PhysRevC.70.068202
https://doi.org/10.1103/PhysRevC.70.068202
https://doi.org/10.1103/PhysRevC.70.068202
https://doi.org/10.1103/PhysRevC.70.068202
https://doi.org/10.1103/PhysRevC.77.024317
https://doi.org/10.1103/PhysRevC.77.024317
https://doi.org/10.1103/PhysRevC.77.024317
https://doi.org/10.1103/PhysRevC.77.024317
https://doi.org/10.1016/0375-9474(87)90208-9
https://doi.org/10.1016/0375-9474(87)90208-9
https://doi.org/10.1016/0375-9474(87)90208-9
https://doi.org/10.1016/0375-9474(87)90208-9
https://doi.org/10.1103/PhysRevC.23.2329
https://doi.org/10.1103/PhysRevC.23.2329
https://doi.org/10.1103/PhysRevC.23.2329
https://doi.org/10.1103/PhysRevC.23.2329
https://doi.org/10.1103/PhysRevC.74.054606
https://doi.org/10.1103/PhysRevC.74.054606
https://doi.org/10.1103/PhysRevC.74.054606
https://doi.org/10.1103/PhysRevC.74.054606
https://doi.org/10.1103/PhysRevC.78.014602
https://doi.org/10.1103/PhysRevC.78.014602
https://doi.org/10.1103/PhysRevC.78.014602
https://doi.org/10.1103/PhysRevC.78.014602
https://doi.org/10.1016/0375-9474(85)90448-8
https://doi.org/10.1016/0375-9474(85)90448-8
https://doi.org/10.1016/0375-9474(85)90448-8
https://doi.org/10.1016/0375-9474(85)90448-8
https://doi.org/10.1103/PhysRevC.93.051601
https://doi.org/10.1103/PhysRevC.93.051601
https://doi.org/10.1103/PhysRevC.93.051601
https://doi.org/10.1103/PhysRevC.93.051601
https://doi.org/10.1140/epja/i2004-10238-x
https://doi.org/10.1140/epja/i2004-10238-x
https://doi.org/10.1140/epja/i2004-10238-x
https://doi.org/10.1140/epja/i2004-10238-x
https://doi.org/10.1140/epja/i2006-10061-5
https://doi.org/10.1140/epja/i2006-10061-5
https://doi.org/10.1140/epja/i2006-10061-5
https://doi.org/10.1140/epja/i2006-10061-5
https://doi.org/10.1143/PTP.57.1262
https://doi.org/10.1143/PTP.57.1262
https://doi.org/10.1143/PTP.57.1262
https://doi.org/10.1143/PTP.57.1262



