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1. Introduction

Granite rock masses are used for various geomechanical and engineering purposes such 

as the construction of caverns to store liquid natural gas or liquid petroleum gas, 

extraction of geothermal energy from hot dry rock, and underground repositories for 

radioactive waste. Investigating the fracturing in granite, especially time-dependent 

fracturing, is crucial to consider the long-term integrity of granite rock mass surrounding 

structures.

Subcritical crack growth is one of the main causes responsible for the time-dependent 

behaviors in rocks in the brittle regime [1, 2]. SCG was initially attributed to stress 

corrosion, which is the chemical reaction between siloxane at the crack tip under tension 

and water [3, 4]. However, SCG is also influenced by the surrounding environment. Nara 

and Kaneko [5, 6] reported that the crack velocity in igneous rock in air increases when 

the partial pressure of water vapor is high. Nara et al. [7, 8] reported that the crack velocity 

in igneous rocks and sandstones in air increases as the temperature and/or relative 

humidity increases. The influence of water on SCG in glass, silicate minerals and rocks 

has been studied by various researchers. It is well-known that the crack velocity in glass 

in water is higher than that in water [9-12]. According to the results in Atkinson [13], 

Waza et al. [14], Meredith and Atkinson [15], Sano and Kudo [16], and Nara et al. [17, 

18], the crack velocity in quartz and silicate rocks in water is much higher than that in air. 

Swanson [19, 20] reported that the addition of water on silicate rocks affected the 

deformation of rock and accelerated the crack velocity. The increases of the crack velocity 

in carbonate rocks in water have been reported by Henry et al. [21] for micrite and Nara 

et al. [22] for marble. Sano and Kudo [16] also showed that the pH influences the crack 

velocity of rock in water. Nara et al. [23] reported that the crack velocity in sandstone 



containing a large amount of clay minerals (illite and smectite) is influenced by the 

electrolyte concentration in water.

These previous studies of SCG in rock demonstrate SCG is influenced by the 

surrounding environmental conditions. In particular, the quality of water remarkably 

influences SCG of rock in water. Considering the construction of structures using a rock 

mass such as an underground repository of radioactive waste and underground power 

plant, numerous amounts of cementitious materials will be used. The calcium ion 

concentration in water in the surrounding rock mass should be high. Therefore, it is 

important to investigate the influence of calcium ions on SCG in rock to ensure the long-

term stability of the rock mass.

In this study, SCG in distilled water and a calcium hydroxide (Ca(OH)2) solution was 

investigated using granite as the rock sample to clarify the influence of calcium ions on 

SCG. Specifically, the difference of the crack velocity in distilled water and a calcium 

hydroxide solution was investigated using a fracture mechanics test.

2. Rock sample

The rock sample was Oshima granite from Ehime Prefecture, Japan. It is comprised of 

quartz (36%), plagioclase (37%), K-feldspar (22%), biotite (4%) and hornblende (less 

than 1%) [24]. The mean grain size was about 1 mm [25]. Any clay minerals were not 

included [24, 25].

Several granites possess a preferred orientation of pre-existing microcracks [26-28]. 

According to the microscopic observation by Sano et al. [27], Oshima granite has two 

sets of preferred orientations of pre-existing microcracks. Most of the microcracks are 

distributed within the rift plane, and the secondary orientation of microcrack is distributed 



almost perpendicular to the rift plane, which is known as the grain plane. Additionally, 

Sano et al. [27] and Nara and Kaneko [6] concluded that Oshima granite has an 

orthorhombic elasticity due to the preferred orientation of the microcracks. For the sample 

block used in this study, the P-wave velocities measured in the direction normal to the rift 

plane, grain plane, and hardway plane (the third plane with the smallest distribution of 

microcracks) are 4.91, 4.61 and 4.51 km/s, respectively. We call these directions as axes-1, 

-2, and -3 in the order of the P-wave velocity. Table 1 summarizes the orthorhombic 

elastic compliance of Oshima granite [6].

Sano and Kudo [16], Nara and Kaneko [6], and Nara et al. [29] reported that the crack 

velocity of Oshima granite has anisotropy. According to Nara and Kaneko [6], the crack 

velocity propagating parallel to the rift plane is 3 - 5 orders of magnitude higher than the 

velocity of a crack propagating parallel to the hardway plane. Nara [30] reported that the 

fracture toughness of Oshima granite is anisotropic and is the lowest when the crack 

propagated parallel to the rift plane. Therefore, it is necessary to consider the loading 

direction and specimen orientation which influence the crack propagation direction when 

preparing the specimens to measure SCG. We oriented our granite specimens so that the 

loading direction and the tensile direction are parallel to axis-3 and axis-1, respectively. 

This specimen is the same as “specimen 3・1” in Sano and Kudo [16], Nara and Kudo 

[6], and Nara et al. [29].

3. Methodology

3.1 Experimental method

In this study, the load relaxation method of the double-torsion (DT-RLX) test was used 

to measure SCG. Fig. 1 schematically illustrates the specimen and loading configuration 



for the DT-RLX test. As summarized by Evans [31], Williams and Evans [32], and Sano 

[33], the stress intensity factor is independent of the crack length in the DT test. For this 

reason, various researchers have used the DT test to investigate SCG in rock [34].

In the RLX method, the displacement of the loading points must be kept constant 

during the experiment while the temporal decrease (load relaxation) due to the crack 

growth is measured. Considering the orthorhombic elasticity of Oshima granite [6, 16], 

the directions of the principal axes, the orientation of the specimen, and the loading 

direction on the specimen, it is appropriate to use the equations introduced by Sano and 

Kudo [16] to evaluate the stress intensity factor and crack velocity for Oshima granite. In 

this study, the loading direction and tensile direction are parallel to axis-1 and axis-3, 

respectively. Therefore, following the methodology by Sano and Kudo [16] and Nara and 

Kaneko [6], the stress intensity factor and the crack velocity are evaluated from following 

equations:
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where KI is the stress intensity factor, a is the crack length, and da/dt is the crack velocity. 

P is the applied load, wm is the moment arm (18 mm in this study), and ν is Poisson’s 

ratio. W is the width, while d is the thickness of the specimen, and dn is the reduced 

thickness of the specimen. Pi is the initial value of the applied load, λi is the compliance 

of the specimen at the initial crack length ai, and dP/dt is the load relaxation rate. s11, s33, 

s31 and s55 are the elastic compliance of the sample.

Because these are approximate solutions based on a thin-plate assumption, the size of 



the specimen must satisfy the following condition [35-37]:

          (3)2/12 LWd 

where L is the specimen length. According to the previous studies by Ciccoti and co-

workers [38-41], thicker specimens (W : d = 8 : 1) can be used for DT-RLX test.

Trantina [42] reported that the stress intensity factor is independent of the crack length 

over the following range:

          (4).WLaW 65.055.0 

Considering these restrictions, the specimen size in this study was set to a width W = 

45 [mm], thickness d = 3 [mm], reduced thickness dn = 2 [mm], and length L =140 [mm].

It is necessary to make a guide groove in a DT specimen to control the crack path. It 

has been suggested that the shape of the guide groove should be rectangular for rock 

because the crack often propagates away from the guide groove in cases with semi-

circular or triangular guide grooves [5]. Nara [43] reported that a crack often propagates 

away from the guide groove when the width of the guide groove is smaller than the grain 

size in granite. Considering previous studies, the width of the guide groove was set to 1 

mm because the grain size of Oshima granite is around 1 mm. In addition, a 20 mm long 

notch was cut in the central part of the DT specimen from one end in order to help crack 

propagate in the central part of the specimen. This is called the “initial notch”. In the DT 

test, the load was applied near the initial notch.

3.2 Experimental apparatus

Fig. 2 shows the experimental apparatus for the DT-RLX test. In this apparatus, the 

load was applied to the specimen from the loading cylinder placed above the specimen. 

A stepping motor controlled the loading cylinder. All measurements were conducted at a 



constant temperature by placing the apparatus in a thermostat chamber, in which the 

change of the temperature was less than 0.1 K during a measurement of the DT-RLX test. 

Since the apparatus is constructed using a stainless steel, the rigidity is high enough to 

avoid the load-relaxation from the apparatus [37]. Therefore, we can obtain the load-

relaxation only due to the crack growth in rock using the apparatus in this study. 

In addition, all measurements were conducted in aqueous environments over several 

days. Distilled water or a calcium hydroxide solution was supplied to the apparatus slowly 

using a droplet bag placed beside the thermostat chamber to avoid evaporation.

3.3 Experimental procedure

At first, a short crack was introduced in the specimen by applying the load slowly using 

a “pre-cracking” procedure. Figs. 3a and 3b show photos of the specimen surface of 

around the initial notch for an intact specimen and pre-cracked specimen, respectively. 

Pre-cracking was done until the length of the crack (initial notch and induced crack) 

reached 25 mm, which is the lower limit of the condition shown in Eq. (4). Then the 

specimen was placed in distilled water or a calcium hydroxide solution with a calcium 

ion concentration of 1150 mg/l in a desiccator, and saturated using a vacuum pump. The 

specimen was submersed in water or a calcium hydroxide (Ca(OH)2) solution for 1 - 2 

weeks. The saturated specimen was then put on the apparatus for the DT test with water 

or Ca(OH)2 solution, and kept at a constant temperature for more than 20 hours. 

Afterwards the DT-RLX test was conducted.

For the results of DT-RLX method, the scatterings of the experimental results (the 

evaluations of the crack velocity, the stress intensity factor, and the subcritical crack 

growth index) have been reported when experiments were conducted several times on a 



single specimen of heterogeneous materials [20, 33, 44-46]. Sano [33] suggested that this 

scattering was caused by locking at the crack faces, because this kind of the scattering 

was not observed on the glass. Nara and Kaneko [5, 6] conducted the measurements of 

DT-RLX method with rocks with considering the loading condition ensuring that a wide 

crack opened in the DT specimen. In addition, an experimental run using the RLX method 

on a single specimen should be performed only once to avoid the repeated crack opening 

and closing. Following this procedure, Nara et al. [47] showed the environmental 

dependence of the subcritical crack growth index of igneous rocks (granite and andesite) 

using DT-RLX method. The procedure in this study follows those by Nara and Kaneko 

[5, 6] and Nara et al. [47], in which the loading points were rapidly moved 0.24 mm after 

the 14 - 15 N preload was applied for granite specimens.

4. Results

Fig. 4 shows the load relaxation curves obtained in water environments (distilled water 

and a Ca(OH)2 solution). For comparison, the load relaxation curve obtained in air is also 

shown. The applied load on the specimen in the Ca(OH)2 solution is higher than that on 

the specimen in distilled water, suggesting that a higher stress intensity factor is necessary 

for crack propagation in granite in water with a higher calcium ion concentration. In 

addition, the applied load on the specimens in water environments is higher than those in 

air. This tendency agrees well with previous studies, for example, by Waza et al. [14], 

Sano and Kudo [16], and Nara et al. [17]. 

The data in Fig. 4 and Eqs. (1) and (2) can be used to calculate the crack velocity and 

the stress intensity factor. Fig. 5 shows the relationships between the crack velocity and 

the stress intensity factor in granite in distilled water and Ca(OH)2 solution. For 



comparison, the relationship obtained in air is also shown. It is obvious that the crack 

velocities in aqueous environments (Ca(OH)2 solution and distilled water) are much 

higher than that in air. In the case for the measurement in air, the temperature is slightly 

higher (about 12 K). If the temperature decreases, it is known that the stress intensity 

factor increase and the crack velocity decreases for rocks [7, 47]. According to Nara et 

al. [47], 45 K temperature drop brought about the decrease of the crack velocity in Oshima 

granite by 2 - 3 orders of magnitude. It is thus considered that the decrease of the 

temperature by 12 K brings about slight decrease on the crack velocity in Oshima granite. 

Therefore, even if the temperature for the measurement in air decreases by 12 K, the crack 

velocity is still much lower than those in aqueous environments, which is the same 

tendency shown in Fig. 5.

It is obvious that the crack velocity in the Ca(OH)2 solution is higher than that in 

distilled water, indicating that the calcium ion concentration can affect the crack velocity 

for granite in water. Additionally, the crack velocity in water environments is much higher 

than that in air. This tendency agrees well with previous studies [14, 16, 17, 48-51].

For SCG, the crack velocity da/dt is empirically related to the stress intensity factor 

da/dt as [52, 53]:
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where E‡ is the stress-free activation energy, R is the gas constant, and T is the absolute 

temperature. The other variables are experimentally determined constants. n is the 

subcritical crack growth index. The relationships expressed by Eq. (5) and Eq. (6) are 

called the power law [52] and the exponential law [53], respectively. We used these 



equations to summarize the experimental results. In particular, we used the following 

equation of the exponential law:

                                     (6’).




















RT
E

KRT
b

t
a

‡

0

I

ln

d
dln







Tables 2 and 3 summarize the results of the SCG measurement for Oshima granite in 

distilled water and a Ca(OH)2 solution as well as the result in air. Tables 2 and 3 

indicate the results obtained using the power law and the exponential law, respectively. 

The stress intensity factor for da/dt = 10–6 [m/s], KI(10–6), is listed in this table to 

quantitatively compare its value because the range in the crack velocity is 10–2–10–10 

m/s. The values of the crack velocity at KI = 1.6 [MN/m3/2], da/dt(1.6), are listed in 

Table 1. The crack velocity is lower while the stress intensity factor is higher in a 

Ca(OH)2 solution than those in distilled water, suggesting that SCG is inhibited in water 

with a high calcium ion concentration. In addition, it is recognized that the values of n 

and b (slope for the relationship between the crack velocity and the stress intensity 

factor) are higher for the Ca(OH)2 solution than that in distilled water.

5. Discussion

The crack velocity for SCG in water with a high calcium ion concentration is lower 

than that in distilled water. Thus, it is essential to consider the influence of water quality 

on the crack velocity for SCG. It has been considered that high pH increase the crack 

velocity in silicate materials. Atkinson and Meredith [54] measured SCG in synthetic 

quartz in deionized water, hydrochloric acid (HCl) and sodium hydroxide (NaOH), and 

reported that the crack velocity in synthetic quartz increased when SCG occurred in 



NaOH solution. As mentioned before, Sano and Kudo [16] reported that the crack velocity 

in silicate rock in water increases when the pH of water is higher. Especially, they 

measured SCG in granite and basalt in sulfuric acid (H2SO4), deionized water, and NaOH 

solution, and reported that the crack velocity in NaOH solution was the highest. In 

contrast, we measured SCG in granite in water and Ca(OH)2 solution, and the crack 

velocity in this study decreases although the pH is higher (Tables 2 and 3). It is suggested 

that the influence of Ca(OH)2 on the crack velocity in silicate materials is different from 

NaOH even though they are alkali. Therefore, it is necessary to consider different reasons 

for the decrease in the crack velocity other than the pH.

If it is possible to observe actually propagating crack tip, the detailed mechanism of 

the decrease of the crack velocity in Ca(OH)2 can be revealed. Since it is impossible to 

observe the actually propagating crack tip in the apparatus in this study, we decided to 

observe the crack path, which was the crack tip in the past.

We tried to observe the crack path using the scanning electron microscope (SEM) with 

the energy dispersive X-ray spectroscopy (EDS) by preparing a polished thin section of 

the rock specimen used in the Ca(OH)2 solution measurements. When we prepared a 

polished thin section, cyanoacrylate resin was put in the rock specimen to protect the 

crack path [55, 56]. Fig. 6 shows the images obtained by SEM and the elemental mapping 

of calcium. The precipitation of calcium can be recognized in the crack path. Similar 

precipitations were not observed in the specimen in the distilled water measurements. 

These observations indicate that the precipitation of calcium compounds occurred around 

the crack tip in the past, which could yields a lower crack velocity in the Ca(OH)2 solution 

than that in distilled water. 

The values of n (subcritical crack growth index, see Eq. (4)) and b (see Eq. (5)) in 



Ca(OH)2 are higher than those in distilled water. According to Nara et al. [47], the 

subcritical crack growth index in rock tends to be higher in an environment where SCG 

is depressed. Since SCG in water with a higher calcium ion concentration seems to be 

depressed, the higher n and b in Ca(OH)2 are considered to be reasonable.

It is known that the values of n and b influence the long-term strength of materials. For 

the evaluation of the long-term strength, we considered a situation where an infinite plate 

containing a single crack with the length of 2a is subjected to a uniform tensile stress σ. 

In this case, the stress intensity factor is expressed as follows:

.          (7)2/1
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If we use the power law of SCG expressed with Eq. (5), the following equation can be 

obtained:
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Substituting Eq. (11) into Eq. (10), the following equation can be obtained:
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From this equation, the following equation can be obtained:
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Even though the crack propagates statically, the manner of the crack propagation will 

change from static to dynamic as time goes by. In addition, the crack length will diverge. 

Assuming that the time when the crack length diverges is called as “time-to-failure”, this 

can be expressed as follows:
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where tf is time-to-failure. Considering the situation that a material reaches failure in x 

years under a constant stress, this stress is defined as “long-term strength”, St(x). Because 

the time-to-failure is x years (3.15×107x seconds) under this stress, the following equation 

can be obtained from Eq. (14):
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Assuming that the tensile strength and the fracture toughness of a material are St and 

KIC, respectively, when the crack length is a0, the relationship between St and KIC can be 

expressed as follows:
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From Eqs. (15) and (16), we can obtain the following equation:
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By using this equation, we can estimate the long-term strength based on the power law of 

SCG [57].

Next, we explain how to estimate long-term strength and time-to-failure of a material 



using the exponential law of subcritical crack growth expressed with Eq. (6). If the KI-

da/dt relation is expressed with Eq. (6), substituting Eq. (7) into Eq. (6), the following 

equation can be obtained:
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From this equation, the following equation can be obtained:
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From Eqs. (19) and (20), we can obtain the following equation:
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In Eq. (21), the first term on the left hand side is a constant. The second term converges 

on 0 with increasing a. Therefore, the time t converges on a constant value with increasing 

crack length a. In this case, a increases with elapsed time, and then diverges at a given t. 

For convenience of calculation, a solution about t is desirable. Based on this consideration, 

the following equation is obtained from Eq. (21):
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The time-to-failure tf is obtained by the following equation assuming that a diverges in 



Eq. (22):
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This equation can be rewritten as follows:
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Assuming that the tensile strength and the fracture toughness of a material are St and 

KIC, respectively, when the crack length is a0, the relation between St and KIC can be 

expressed as follows:

               (16).2/1
0tIC )( aSK 

Since the time-to-failure is x years (3.15×107x seconds) under this stress, the following 

equation can be obtained from Eq. (24):
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By using this equation, we can estimate the long-term strength and time-to-failure of a 

material based on the exponential law of SCG [47].

Eqs. (17) and (25) indicate the estimation of the long-term strength based on the power 

law [52] and the exponential law [53], respectively. In Fig. 7, the relations between the 

time-to-failure and long-term strength of Oshima granite in distilled water and in Ca(OH)2 

solution are shown. Figs. 7a and 7b show the relation estimated based on the power law 

(Eq. (7)) and the exponential law (Eq. (8)), respectively. For the calculation of the long-

term strength, we set the value of KIC and St as 2.58 [MN/m3/2] and 7.85 [MPa], 

respectively, according to Nara [30]. It is recognized that the long-term strength is higher 

and the time-to-failure is longer for the rock in Ca(OH)2 solution. Therefore, an aqueous 

environment with a high calcium ion concentration is suitable for the long-term stability 



of a rock mass.

6. Conclusions

In this study, SCG in distilled water and a Ca(OH)2 solution was investigated to clarify 

the influence of calcium ions on SCG with an emphasis on the difference between the 

crack velocity in distilled water and that in a Ca(OH)2 solution. The crack velocity in the 

Ca(OH)2 solution is lower than that in distilled water. The precipitation of CaCO3 induces 

crack closures of the crack path of the granite in the Ca(OH)2 solution. The precipitation 

of calcium compound on the crack likely decreases the crack velocity for the rock sample 

in the Ca(OH)2 solution. Additionally, the value of the subcritical crack index of rock in 

Ca(OH)2 is higher than that in distilled water. It is concluded that the aqueous 

environment with a higher calcium ion concentration is suitable to ensure the long-term 

stability of a rock mass.
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Figure captions

Fig. 1. Schematic illustration of the specimen and loading configuration in the double-

torsion test.

Fig. 2. Schematic illustration of the apparatus in the double-torsion test.

Fig. 3. Photo of (a) the intact specimen and (b) pre-cracked specimen surface around 

initial notch. Width and height of images are 2.3 and 2.0 mm, respectively.

Fig. 4. Load relaxation curves for Oshima granite.

Fig. 5. Relationships between the crack velocity and the stress intensity factor for Oshima 

granite.

Fig. 6. Image of precipitation in the crack path in granite. (a): SEM photomicrograph, (b) 

Elemental mapping of calcium by EDS

Fig. 7. Relationships between long-term strength and time-to-failure for Oshima granite 

in distilled water and Ca(OH)2 solution estimated based on (a) power law and (b) 

exponential law.



Table captions

Table 1. Elastic compliance of the Oshima granite (after Nara and Kaneko [6]).

Table 2. Results of subcritical crack growth measurements summarized by the power law.

Table 3. Results of subcritical crack growth measurements summarized by the 

exponential law.



Table 1. Elastic compliance of the Oshima granite (after Nara and Kaneko [6]).

Elastic compliance sij [×10-12Pa-1]

j

1 2 3 4 5 6

1 16.7 −3.28 −3.28 0 0 0 

2 −3.28 18.9 −3.28 0 0 0 

3 −3.28 −3.28 19.7 0 0 0 

4 0 0 0 46.0 0 0 

5 0 0 0 0 43.4 0 

i

6 0 0 0 0 0 42.4

Table 2. Results of subcritical crack growth measurements summarized by the power law.

Condition n logA KI(10-6)
[MN/m3/2]

da/dt(1.6)
[m/s]

51.6 -16.4 1.59 1.35 × 10-6distilled water
(310 K, pH = 6) 29.6 -11.6 1.54 2.91 × 10-6

71.6 -23.6 1.76 1.04 × 10-9Ca(OH)2

(310 K, pH = 13) 68.1 -22.1 1.72 6.32 × 10-9

air (322 K, 50%) 76.7 -26.9 1.87 5.70 × 10-12



Table 3. Results of subcritical crack growth measurements summarized by the 
exponential law.

Condition b
[m5/2/mol] α KI(10-6)

[MN/m3/2]
da/dt(1.6)

[m/s]
0.056 -67.1 1.60 1.16 × 10-6distilled water

(310 K, pH = 6) 0.050 -43.6 1.54 2.63 × 10-6

0.108 -86.7 1.76 1.26 × 10-9Ca(OH)2

(310 K, pH = 13) 0.082 -82.5 1.73 6.71 × 10-9

air (322 K, 50%) 0.112 -92.4 1.88 1.01 × 10-11






















