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Abstract

It is shown that some of the orthotropic models reported in the literature for the
mechanical response of elastic arteries and which assume a separable dependence
on the I1, I4, I6 invariants predict curious and unexpected behaviour in simple
tension. Specifically it is shown that the out-of-plane stress response can be stiffer
than the in-plane over a moderate range of strain and that when the in-plane
response is much stiffer than the out-of-plane, as might be expected for a fibre-
reinforced material, it is accompanied by a large auxetic response in the out-of-
plane direction. This mechanical response for this class of orthotropic materials
seems counterintuitive and it is hypothesised that it could be due to their well-
known inability to fully recover the linear theory, on restriction to infinitesimal
deformations. A generalisation of these models that is fully compatible with the
linear theory is proposed. An alternative strategy of assuming that the fibres cannot
support compression is shown not to be a universal remedy.

1 Introduction

The phenomenological theory of non-linear, incompressible elasticity proposed by Rivlin
(1948) has been extensively employed in predicting the mechanical response of biological,
soft tissue. The degree of anisotropy used in the modelling process is typically motivated
by the morphology of the tissue under consideration. A balance has to be struck between
simplicity of form of the mathematical model so that predictions can be efficiently made
and the necessarily complex structure of the biological tissue. One influential illustration
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of this is the model of Holzapfel et al. (2000) who proposed that elastic arteries could be
modelled as a non-linear, isotropic matrix in which are embedded two helically wound
families of mechanically equivalent fibres. Unfortunately, even with this idealisation,
the corresponding mathematical model poses formidable technical challenges, prompting
further simplifying constitutive assumptions to be made by Holzapfel et al. (2000). It is
the effect of these assumptions on the predictive capability of the model that is of interest
here.

Simplifying assumptions in the theory of non-linear elasticity in order to reduce its
technical complexity have a long history, going back to Rivlin himself. While there has
always been the realisation that simplifying assumptions must necessarily compromise
the accuracy of model predictions, attention has been drawn recently to the shortcom-
ings of some of the reduced models for the mechanical response of arteries. If the reduced
models are assumed dependent solely on the I1, I4, I6 invariants, using the standard no-
tation for the strain invariants for orthotropic materials, Murphy (2014) has shown that
the corresponding linear theory cannot be fully recovered on restriction to infinitesimal
deformations, a necessary condition for non-linear models. Horgan and Murphy (2014)
have also shown that these anisotropic materials behave as if they were isotropic for two
important modes of inhomogeneous shearing for cylindrical vessels, indicating possible
deficiencies in shear stress predictions. Despite these drawbacks, these models have be-
come the de facto standard for modelling the mechanical response of elastic arteries and
are implemented in many commercial Finite Element codes.

Some further idiosyncrasies of these models are highlighted here. Simple tension
experiments are central to the identification of material parameters for many models of
the mechanical response of soft tissue and are considered here for orthotropic materials
with two families of straight, mechanically equivalent fibres parallel to two opposite faces
of a cuboid specimen. It is seems reasonable to expect that the mechanical response of
orthotropic materials in simple tension should be consistent with

1. the response of the composite in simple tension in the plane of the fibres is stiffer
than the out-of-plane;

2. the composite should contract in the plane perpendicular to the direction of the
applied force.

Although the first of these seems intuitively appealling, there is scant experimental evi-
dence to support it, especially for soft tissue. What little evidence there is comes from
the ultrasonic measurement of the stiffness matrices of orthotropic, angle-ply composites.
The data of Hosten (1992) for an orthonormal PEEK-carbon fibre composite can be used
to infer an in-plane Young’s modulus of 66.7 GPa and a Young’s modulus out of the plane
of the fibres of 11.6 GPa. Kelly et al. (2005) carried out ultrasonic measurements on a
series of composite laminates of glass fibres in a polypropylene matrix for a range of angle
ply laminates, with laminate angles of ±0, 10, 20, 30 and 40◦. For the ±20◦ laminate,
for example, the Young’s moduli in the plane of the fibres can be calculated to be 11.0
GPa and 31.3 GPa, while the out-of-plane Young’s modulus is 10.4 GPa. In support of
the second axiom, there have been no reports in the literature of arterial specimens ex-
panding in directions orthogonal to the applied force in simple tension (so-called auxetic
behaviour), particularly the large auxetic effects predicted here.
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Even though the assumption that orthotropic materials depend only on the reduced
I1, I4, I6 basis of invariants significantly reduces the complexity of the constitutive law,
it seems that a general analysis of their behaviour even for simple tension is not possible.
This is true even for strain energies that are separable functions of I1, I4, I6, i.e.,

W = f(I1) + g(I4) + g(I6), (1.1)

the strain-energy functions of interest here. Insight into their generic response can there-
fore only be gleaned from consideration of specific examples of such materials, with com-
mon features of the response then considered indicative of the general response. The
Standard Reinforced Model proposed by Goriely and Tabor (2013) for purposes such as
these is considered, as are specific instances of the influential HGO model for the me-
chanical response for the carotid arteries of rabbits proposed by Holzapfel et al. (2000,
2004). There are two notable surprising qualitative features of the mechanical response
in simple tension that are common to all the models considered here:

1. the out-of-plane response can be stiffer than the in-plane over a finite range of
strain;

2. even when the in-plane response is much stiffer than the out-of-plane, as might be
expected, it is accompanied by a severe contraction in-plane and an pronounced
expansion in the out-of-plane direction.

Unfortunately there seems to be no simple remedy. One approach might be to adopt
the idea that the fibres do not support compression and that their contribution to the over-
all mechanical response should be neglected when they are under compression (Holzapfel
and Ogden, 2015). This might be especially appropriate when modelling simple tension
in the out-of-plane direction. However, it is shown that the adoption of this tension-
compression switch can have only a marginal effect on the qualitative features of the
mechanical response for all three simple tension modes.

Another remedial approach considered here is that, since the reduced models involv-
ing only the I1, I4, I6 invariants don’t recover the linear theory for the infinitesimal strain
regime, the first necessary step towards models capable of predicting intuitive response
in simple tension is to generalise the models (1.1) as simply as possible so that they are
compatible with the linear theory. Immediate practical difficulties present themselves.
Since the linear theory is a six-constant theory (Spencer, 1984; Destrade et al., 2002), six
independent experiments would appear necessary to obtain reliable models, the three sim-
ple tension experiments considered here being obvious candidates. Such a comprehensive
suite of testing has not appeared in the literature, to the best of the authors’ knowledge.
Even with such an extensive database, the choosing of a strain energy that both fits
the data and predicts realistic response in all aspects of these tests is a formidable, yet
unavoidable, challenge. Another practical difficulty is that the generalisation proposed
here assumes a dependence on the classical Rivlin invariants in a natural way. However,
it is shown here that the material constants of the new model cannot always be easily
interpreted in terms of material constants measured independently via experiments.

This suggests that an alternative formulation of the theory of orthotropic materials in
terms of physically based invariants could be useful. For example, a set of invariants that
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has an immediate physical interpretation for orthotropic materials has been proposed by
Shariff (2011), with the material constants easily determined using triaxial tests. Due to
space constraints here, formulations of the theory using physically based invariants will
be considered elsewhere.

2 Preliminaries

The preliminaries are standard and those given by Horgan and Murphy (2016) are given
for completeness. Let F ,C = F TF ,B = FF T denote the deformation gradient, right
and left Cauchy-Green strain tensors respectively. Incompressible materials for which
detF = 1 are of interest here. The general stress-strain law for incompressible, hyper-
elastic materials with a strain-energy function per unit undeformed volume W has the
form

σ = −pI + 2F
∂ W

∂C
F T , (2.1)

where p is an arbitrary scalar field and σ is the Cauchy stress. Spencer (1984) has
proposed that the strain-energy function for a nonlinearly hyperelastic material with two
preferred directions M ,M ′ in the undeformed configuration is an arbitrary function of
(M.M ′)2 and

I1 = tr(C), I2 =
1

2

[
I21 − tr

(
C2
)]
, I4 = M.CM , I5 = M.C2M ,

I6 = M ′.CM ′, I7 = M ′.C2M ′, I8 = M.M ′M.CM ′. (2.2)

Since M.M ′ is constant, many authors use the alternative invariant M.CM ′ instead
of I8 as used here. However, since it seems sensible to emphasise that the invariants are
invariant under a change of sign in the preferred directions, I8 as defined above is preferred
here. When M.M ′ = 0, that is for initially orthogonal preferred directions, then I8 ≡ 0
and there is therefore no constitutive dependence on this invariant. Although doubt
has been cast on the completeness of this basis of invariants by Shariff and Bustamante
(2015), who have concluded that only five of these invariants are independent, the classical
formulation of the theory of orthotropic materials is considered here.

Noting that

∂I1
∂C

= I,
∂I2
∂C

= I1I −C,
∂I4
∂C

= M ⊗M ,
∂I5
∂C

= M ⊗CM +CM ⊗M ,

∂I6
∂C

= M ′ ⊗M ′,
∂I7
∂C

= M ′ ⊗CM ′ +CM ′ ⊗M ′,

∂I8
∂C

=
1

2
M.M ′ (M ⊗M ′ +M ′ ⊗M ) , (2.3)

the constitutive law for an incompressible, nonlinearly hyperelastic material with two
preferred directions is therefore given by

σ = −pI + 2W1B + 2W2

(
I1B −B2

)
+ 2W4 (FM ⊗ FM) +

2W5 (FM ⊗BFM +BFM ⊗ FM) + 2W6 (FM ′ ⊗ FM ′) +

2W7 (FM ′ ⊗BFM ′ +BFM ′ ⊗ FM ′) +M.M ′W8 (FM ⊗ FM ′ + FM ′ ⊗ FM) ,

(2.4)
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where subscripts attached to W denote partial differentiation with respect to the ap-
propriate invariant. It will be required that the strain energy and the stress vanish in
the undeformed configuration. Consequently the following conditions will be assumed to
hold:

W 0 = 0, 2W 0
1 + 4W 0

2 = p0, W 0
4 + 2W 0

5 = 0, W 0
6 + 2W 0

7 = 0, W 0
8 = 0, (2.5)

where the 0 superscript denotes evaluation in the undeformed configuration for which
I1 = I2 = 3, I4 = I5 = I6 = I7 = 1, I8 = (M.M ′)2.

3 Simple tension tests

An important material characterisation test is simple tension of cuboid specimens, in
which forces are only applied normal to two parallel faces of the specimens. It is assumed
that two families of mechanically equivalent, initially straight fibres are embedded in an
incompressible, nonlinearly elastic matrix. Choosing the origin of a Cartesian coordinate
system to be the centre of the cuboid specimen, let the fibres have the following directions
M ,M ′ in the reference configuration:

M = Cex + Sey, M ′ = −Cex + Sey, C ≡ cos Θ, S ≡ sin Θ,

with ez normal to the plane of the fibres. Choose the x-axis as the bisector of the smaller
of the angles between the two fibres, as illustrated in Figure 1. Then Θ ∈

(
0, π

4

]
. The two

limiting cases of Θ = 0 and Θ = π/4 correspond to the cases of transverse isotropy and
orthonormality respectively. This arrangement of the fibres and their assumed mechanical
equivalence means that no shearing stresses are generated in the simple tension test
considered here.

Let λx, λy, λz, with λxλyλz = 1 to ensure incompressibility, denote the principal
stretches for simple tension. The invariants (2.2) with the arrangement of fibres as illus-
trated in Figure 1 have the form

I1 = λ2x + λ2y + λ2z, I2 = λ2xλ
2
y + λ2yλ

2
z + λ2xλ

2
z, I4 = I6 = λ2xC

2 + λ2yS
2,

I5 = I7 = λ4xC
2 + λ4yS

2, I8 = (C2 − S2)(λ2xC
2 − λ2yS2). (3.1)

The corresponding normal Cartesian components of the constitutive law (2.4) are there-
fore given by

σxx = −p+ 2W1λ
2
x + 2W2λ

2
x

(
λ2y + λ2z

)
+ 2(W4 +W6)λ

2
xC

2 + 4(W5 +W7)λ
4
xC

2

+2(C2 − S2)W8λ
2
xC

2,

σyy = −p+ 2W1λ
2
y + 2W2λ

2
y

(
λ2x + λ2z

)
+ 2(W4 +W6)λ

2
yS

2 + 4(W5 +W7)λ
4
yS

2

+2(S2 − C2)W8λ
2
yS

2,

σzz = −p+ 2W1λ
2
z + 2W2λ

2
z

(
λ2x + λ2y

)
. (3.2)

Simple tension in each of the principal directions is now considered in turn.
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Figure 1: The fibre arrangement.
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3.1 Simple tension in the x-direction

For this test, σyy = σzz = 0 and (3.2) therefore yields

σxx = 2W1

(
λ2x − λ2z

)
+ 2W2

1

λ2xλ
2
z

(
λ2x − λ2z

)
+ 2(W4 +W6)λ

2
xC

2 + 4(W5 +W7)λ
4
xC

2

+2(C2 − S2)W8λ
2
xC

2,

0 = W1λ
2
xλ

2
z

(
1− λ2xλ4z

)
+W2λ

4
xλ

2
z

(
1− λ2xλ4z

)
+ (W4 +W6)λ

2
xλ

2
zS

2 + 2(W5 +W7)S
2

+(S2 − C2)W8λ
2
xλ

2
zS

2, (3.3)

noting that λy = 1
λxλz

. The second of these therefore can be used to determine λz in
terms of λx and the first to determine σxx as a function of λx.

3.2 Simple tension in the y-direction

Setting σxx = σzz = 0 in (3.2) yields

σyy = 2W1

(
λ2y − λ2z

)
+ 2W2λ

2
x

(
λ2y − λ2z

)
+ 2(W4 +W6)λ

2
yS

2 + 4(W5 +W7)λ
4
yS

2

+2(S2 − C2)W8λ
2
yS

2,

0 = W1λ
2
yλ

2
z

(
1− λ2yλ4z

)
+W2λ

4
yλ

2
z

(
1− λ2yλ4z

)
+ (W4 +W6)λ

2
yλ

2
zC

2 + 2(W5 +W7)C
2

+(C2 − S2)W8λ
2
yλ

2
zC

2. (3.4)

The second of these therefore can be used to determine λz in terms of λy and the first to
determine σyy as a function of λy.

3.3 Simple tension in the z-direction

Setting σxx = σyy = 0 in (3.2) yields

σzz = 2W1

(
λ2z − λ2x

)
+ 2W2λ

2
y

(
λ2z − λ2x

)
− 2(W4 +W6)λ

2
xC

2 − 4(W5 +W7)λ
4
xC

2

+2(S2 − C2)W8λ
2
xC

2,

0 = (W1 + λ2zW2)(λ
2
y − λ2x) + (W4 +W6)(λ

2
yS

2 − λ2xC2) + 2(W5 +W7)(λ
4
yS

2 − λ4xC2) +

(S2 − C2)W8(λ
2
yS

2 + λ2xC
2). (3.5)

The second of these and the incompressibility condition λxλyλz = 1 determine λx, λy in
terms of the out-of-plane principal stretch λz and hence σzz can be considered a function
only of λz.

The analysis of even simple tension experiments is self-evidently formidable for or-
thotropic materials and it doesn’t seem that much progress can be made in general. To
simplify the analysis, while at the same time hoping to capture the significant effects of
anisotropy on the mechanical response, assumptions are typically made on the form of
the strain-energy function. A popular reduced model for modelling soft tissue has the
form

W = f(I1) + g(I4) + g(I6), (3.6)

where, to satisfy the initial conditions (2.5),

f(3) + 2g(1) = 0, 2f ′(3) = p0, g′(1) = 0. (3.7)
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Although, as observed by Murphy (2014), the corresponding linear model is not fully
recovered on restriction to infinitesimal deformations, these reduced models simplify the
complexity of the stress-strain relation significantly with simple tension in the x-, y- and
z-directions now described respectively by

σxx = 2f ′(I1)
(
λ2x − λ2z

)
+ 4g′(I4)λ

2
xC

2, 0 = f ′(I1)
(
1− λ2xλ4z

)
+ 2g′(I4)S

2,

σyy = 2f ′(I1)
(
λ2y − λ2z

)
+ 4g′(I4)λ

2
yS

2, 0 = f ′(I1)
(
1− λ2yλ4z

)
+ 2g′(I4)C

2,

σzz = 2f ′(I1)
(
λ2z − λ2x

)
− 4g′(I4)λ

2
xC

2,

0 = f ′(I1)(1− λ4xλ2z) + 2g′(I4)(S
2 − λ4xλ2zC2), (3.8)

noting that g′(I4) = g′(I6) for simple tension. However, even with this simplification,
little progress can be made analytically to explore the relationship between the stress
and the corresponding principal stretches.

4 A simple model

It seems that the form of the strain energy must be specified before further progress
can be made. It makes sense initially to consider a prototype strain-energy function
that balances simplicity of form with an acceptable variety of mechanical response. The
Standard Material for orthotropic materials has the form

W = γ1 (I1 − 3) + γ2 (I4 − 1)2 + γ2 (I6 − 1)2 , γ1, γ2 > 0. (4.1)

Some interesting features of the mechanical response of this material are discussed in
Goriely and Tabor (2013). The Standard Material is the simplest polynomial form of the
reduced strain energy (3.6) that is consistent with the initial conditions (3.7) and is a
simple generalisation of the neo-Hookean isotropic strain energy for orthotropic materials.
Substitution into (3.8) yields, for simple tension in the x-, y- and z-directions respectively,

σ̂xx = λ2x − λ2z + λ2x cot2 Θ
(
λ2xλ

4
z − 1

)
,

0 =
1

λ2xλ
2
z

− λ2z + γ

(
λ2xC

2 +
S2

λ2xλ
2
z

− 1

)
S2

λ2xλ
2
z

,

σ̂yy = λ2y − λ2z + λ2y tan2 Θ
(
λ2yλ

4
z − 1

)
,

0 =
1

λ2yλ
2
z

− λ2z + γ

(
C2

λ2yλ
2
z

+ λ2yS
2 − 1

)
C2

λ2yλ
2
z

,

σ̂zz = λ2z − λ2x +
λ2x (1− λ4xλ2z)
tan2 Θ− λ4xλ2z

,

0 =
1

λ2xλ
2
z

− λ2x + γ

(
λ2xC

2 +
S2

λ2xλ
2
z

− 1

)(
S2

λ2xλ
2
z

− λ2xC2

)
, (4.2)
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assuming that tan Θ 6= λ2xλz. Here σ̂ ≡ σ
2γ1

and γ ≡ 4γ2
γ1

is a measure of the anisotropy
of the material, with increasing values of γ corresponding to a stiffening of the fibres, for
example.

Two specific forms for the Standard Reinforcing model will be used for illustrative
purposes: a moderately anisotropic model with γ = 1 and a stiffer version with γ = 10.
In both cases Θ = 40◦. For each of (4.2)2, (4.2)4 and (4.2)6, the non-axial strain was
determined from specified values of the axial strain (see the Appendix for details). The
stress-stretch plots for simple tension in each of the orthogonal principal directions are
given in Figure 2.
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Figure 2: Simple tension plots for the Standard Model (4.1) in the three orthogonal principal
directions for Θ = 40◦. In (a) γ = 1, with γ = 10 in (b). Although in both cases the infinitesimal
Young’s modulus is greater in the z-direction, the in-plane modes eventually become stiffer than
the out-of-plane. The out-of-plane mode can be stiffer, however, than the y mode for a moderate
range of strain for stiff fibres.

Although it can be shown that the infinitesimal Young’s modulus in the z-direction
is greater than those in the in-plane principal directions, the plots show that the planar
response eventually becomes stiffer, as might be intuitively expected. There are still some
noteworthy unexpected qualitative features, however. The first is that for moderately
anisotropic materials, with γ = 1, the stress in each of the principal directions is of
the same order of magnitude for strains of 100%. For strongly anisotropic materials,
here represented by choosing γ = 10, the weaker of the two in-plane responses is still
weaker than the out-of-plane response in the z-direction for strains up to 30% and the
response in the both the x- and z-directions are virtually identical for strains up to 15%.
In all the simulations reported here, and in what follows, strain controlled experiments
are envisaged, with 2 being the maximum axial stretch allowed. It is expected that
such a strain regime should include the strain experienced by soft tissue in physiological
conditions, even if one were to include residual strains. It is worth noting that strain-
energy functions are sometimes proposed for the mechanical response of arteries without
any explicit indication as to the range of stress or strain for which they are considered
apt.

Even when the stress-stretch response seems consistent with our expectations of
how a fibre-reinforced composite should behave, such as strains above 70% for strongly
anisotropic materials in Figure 2(b), other problems with the constitutive model for simple
tension in the x-direction are evident in Figure 3.
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Figure 3: Plots of the principal stretches as a function of the stretch in the x-direction for
simple tension in the x-direction for the Standard Model (4.1) with γ = 10 and Θ = 40◦. Note
the positive Poisson effect in the z-direction, i.e, the specimen is expected to expand in the
out-of-plane direction.

Instead of a contraction in each of the two directions orthogonal to the x-direction, as
might be expected, there is a pronounced expansion in the out-of-plane direction for pre-
cisely those stretches for which the stress-stretch responses seem acceptable, accompanied
by an extreme contraction in the y-direction. Thus at large axial stretches, thin plates
in the x-y plane are predicted to warp to form thin plates in the x-z plane. This seems
unphysical, with no reports of such behaviour in the literature, as far as the authors are
aware.

5 Models of arterial response

It was shown in the last section that the mechanical response in simple tension of the
Standard Model seems counterintuitive, with essentially two mutually exclusive qualita-
tive modes of response:

1. the in-plane mode of simple tension is stiffer than the out-of-plane but at the expense
of a significant negative Poisson’s effect;

2. the material contracts in directions orthogonal to the direction of the applied force
but now the out-of-plane direction is stiffer than the the in-plane response.

It will be shown that these modes also seem characteristic of the separable models (3.6)
that are often used to model the mechanical response of large, elastic arteries.

An influential separable model of the mechanical response of arteries was proposed
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by Holzapfel et al. (2000) and has the form

W =
c

2
(I1 − 3) +

k1
2k2

∑
i=4,6

{exp
[
k2 (Ii − 1)2

]
− 1}. (5.1)

where c, k1 > 0 are stress-like material parameters and k2 > 0 is a dimensionless parame-
ter. The Standard Model (4.1) considered previously is a special case, obtained by letting
k2 → 0. It follows therefore that for this material

W1 = c/2, W4 +W6 = 2k1 (I4 − 1) exp k2 (I4 − 1)2 , (5.2)

with I4 given in (3.1). Substituting these terms into (3.8) yields the following determining
equations for simple tension in the x-, y- and z-direction respectively:

σ̄xx = λ2x − λ2z + λ2x cot2 Θ
(
λ2xλ

4
z − 1

)
,

0 = c
(
1− λ2xλ4z

)
+ 4k1S

2
(
λ2xC

2 + λ2yS
2 − 1

)
exp k2

(
λ2xC

2 + λ2yS
2 − 1

)2
,

σ̄yy = λ2y − λ2z + λ2y tan2 Θ
(
λ2yλ

4
z − 1

)
,

0 = c
(
1− λ2yλ4z

)
+ 4k1C

2
(
λ2xC

2 + λ2yS
2 − 1

)
exp k2

(
λ2xC

2 + λ2yS
2 − 1

)2
,

σ̄zz = c
(
λ2z − λ2x

)
− 4k1λ

2
xC

2
(
λ2xC

2 + λ2yS
2 − 1

)
exp k2

(
λ2xC

2 + λ2yS
2 − 1

)2
,

0 = c(1− λ4xλ2z) + 4k1(S
2 − λ4xλ2zC2)

(
λ2xC

2 + λ2yS
2 − 1

)
exp k2

(
λ2xC

2 + λ2yS
2 − 1

)2
,

(5.3)

where σ̄ ≡ σ/c. Three random, specific instances of this model are now considered.

5.1 The HGO model

Holzapfel et al. (2000) fitted the HGO model (5.1) to experimental data of Fung et al.
(1979) for extension and internal inflation of tubular arterial segments on carotid arteries
of rabbits using the Levenberg-Marquardt algorithm to obtain the following parameters
for the media:

c = 3 kPa, k1 = 2.3632 kPa, k2 = 0.8393, Θ = 29◦. (5.4)

Solving each of the sub-systems of equations (5.3) for these parameter values yields the
simple tension-axial stretch relation in the appropriate direction. The results are sum-
marised in the plots of Figure 4, where the stress in each case has been non-dimensionalised
with respect to c.
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Figure 4: Plots of non-dimensional stress against axial stretch for each of the three principal
directions for the HGO model (5.1), (5.4). Although the differences between the in-plane x-
direction and the out-of-plane responses seem intuitively reasonable, the in-plane y response
is virtually identical to the out-of-plane. Thus the material behaves as if it were transversely
isotropic and not orthotropic as per design.

Based on the evidence from simple tension experiments alone, it would seem that the
material (5.1), (5.4) is essentially transversely isotropic in the x-direction, despite the
fact that the material was assumed orthotropic. Even if orthotropy were still claimed for
this model, it is seems unlikely that the out-of-plane response is stiffer than one of the
in-plane modes for much of the reported range of axial stretch. Figure 4 therefore displays
the same unexpected features of the stress-stretch plots encountered earlier. Although
the stress-stretch plot for the x-direction is much stiffer than those predicted for the other
two, as might be expected, this behaviour is accompanied by unexpected stretches in the
directions orthogonal to the direction of the applied force. These stretches are plotted
in Figure 5 as a function of the axial stretch for simple tension in the x-direction. The
most arresting feature of these plots is the changing nature of the out-of-plane stretch.
Following an expected contraction, the material expands in the out-of-plane direction
after an axial stretch of approximately 1.6. This is the stretch range for which the the
material is finally an order of magnitude stiffer in the x-direction than in the out-of-plane
direction. Thus, as for the Standard Material, it seems that the material (5.1) can only
achieve the necessary stiffness in the x-direction at the expense of auxetic out-of-plane
stretches of the same order of magnitude as the axial stretch. Also note that the auxetic
out-of-plane stretch, and the corresponding extreme contraction in the y-direction, are
more pronounced at the upper range of axial stretch considered here than for the Standard
Material. At large values of axial stretch for simple tension in the x-direction, therefore,
the HGO model with parameters (5.4) predicts a warping of cuboid specimens, with of
example, thin specimens in the x-y plane being transformed into thin sheets in the x-z
plane.
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Figure 5: The stretches in the y- and z-directions as a function of axial stretch for simple
tension in the x-direction. Note the dramatic increase in the auxetic effect in the out-of-plane
direction and the severe contraction in the y-direction after initially behaving in a physically
realistic manner.

5.2 An orthonormal example

The HGO model (5.1) was used by Holzapfel et al. (2004) to fit the subset of experimental
data of Chuong and Fung (1983) labelled ‘81:2’ on the adventitia of a carotid artery
harvested from a rabbit. They obtained the following parameters:

c = 1.1068 kPa, k1 = 5.3822 kPa, k2 = 0.6020, Θ = 45◦. (5.5)

There is a good fit of the model to the data, the fibre angle is in the middle of the range of
the angles obtained by Holzapfel et al. (2004) and the anisotropic parameter k1 is much
larger than the isotropic parameter c, in keeping with the intuitive expectation that the
fibres are much stiffer than the matrix in which they are embedded.

For orthonormal materials such as this, where the two families of fibres are at right
angles in the reference configuration, there is only one in-plane response in simple tension.
The simple tension responses in-plane and out-of-plane can be obtained by substituting
the parameter values (5.5) into (5.3) and are tabulated in the Appendix. A graphical
summary of these responses is given in the Figure 6. The same constitutive quirks of the
HGO model (5.1) noted for its previous implementation are evident here. This model
of the carotid artery is stronger out of the plane of the fibres for strains up to 35%.
The in-plane response isn’t an order of magnitude bigger than the in-plane, as might be
expected, until about 80% strain. However this order of magnitude difference in stiffness
is accompanied by a large auxetic effect, as can be seen from the plot of λy, λz against
the axial stretch for simple tension in the x-direction given in Figure 7.
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Figure 6: Although the in-plane response eventually becomes stiffer than the out-of-plane, it
is seen that the composite is stiffer out of the plane for strains up to 30%.
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Figure 7: Plots of the non-axial principal stretches as a function of the stretch in the x-direction
for simple tension in the x-direction. Note the positive Poisson effect in the z-direction, i..e,
the specimen is expected to expand in the out-of-plane direction, and that this auxetic effect is
significant with an expansion of approximately 50% for an axial strain of 100%.
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5.3 A recent implementation

To characterise the local anisotropic mechanical response of intact aortic tissue, Gültekin
et al. (2016) used the HGO model (5.1) with the following model parameters:

c = 16.95kPa, k1 = 243.57kPa, k2 = 2.57, Θ = 44.5◦. (5.6)

The predicted mechanical response in simple tension is given in tabular form in the
Appendix and is summarised graphically here. The tension-axial stretch relations for the
three directions are given in Figure 8. The same qualitative features identified previously
for the other implementations of the HGO model (5.1) are present here with the out-
of-plane stiffness larger than the in-plane for stretches up to approximately 30%, which
could be physiologically relevant. When the in-plane stiffness is an order of magnitude
larger than the out-of-plane, there is an auxetic out-of-plane stretch response as before,
with the effect here especially pronounced as can be seen in Figure 9.
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Figure 8: Simple tension plots for the HGO model (5.1) for the parameters of Gültekin et al.
(2016). Figure (a) details the mechanical response for small to moderate strains; in (b) the
usual stretch range is plotted. The greater out-of-plane stiffness for stretches up to 35% is
surprising.
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Figure 9: The stretches in the y- and z-directions as a function of axial stretch for simple tension
in the x-direction. The auxetic effect in the out-of-plane direction is especially pronounced.

6 Fibre stretch

A possible remedy for the unexpected and unusual behaviour identified in the previous
analysis while maintaining the I1, I4, I6 form for the strain energy is to adopt the concept
of a tension-compression switch, advocated by Holzapfel and Ogden (2015). The idea is
that the fibres do not support compression and that their contribution to the overall
mechanical response should be neglected when they are under compression. It might be
anticipated that this could have a significant impact on the out-of-plane simple tension
response, since an in-plane contraction of the matrix in response to the axial expansion
should also contract the fibres. The approach adopted here to extract this isotropy from
the underlying anisotropic assumption is to assume anisotropy ab inito and calculate I4,
the square of the fibre stretch, for the full range of the axial stretch used here. If I4 < 1
at any axial stretch, then isotropy is assumed instead and the corresponding stress and
remaining principal stretches are re-calculated. This procedure will now be implemented
for the influential HGO model (5.1), (5.4).

For this model the in-plane fibres contract for simple tension in the out-of-plane
direction and so, if the tension-compression switch were used, the out-of-plane mode of
simple tension would be isotropic. However, as can be seen from Figure 10, there is very
little difference between the two out-of-plane modes and the response in the y direction.
It seems that describing the material as transversely isotropic over the range of axial
strain employed would be a useful summary of the material response in simple tension,
independent of whether or not the tension-compression switch is used as a constitutive
assumption.

There is another constitutive oddity worth noting for the original HGO model (5.1),
(5.4). The fibres decrease fractionally in length by about 1% when the material is
stretched in the y-direction for axial stretches in the range [1, 1.4]. Beyond this range, the
fibres lengthen in response to increased axial stretch. If the tension-compression switch
were employed, there is only an infinitesimal change in the stress-stretch response in the
y-direction and the anisotropic response given in Figure 10. The large auxetic effect noted
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Figure 10: Out-of-plane simple tension when the material is assumed (1) anisotropic and (2)
isotropic, with the tension-compression switch employed. The corresponding y mode is also
shown for comparative purposes. The anisotropic out-of-plane response is slightly stiffer than
the isotropic. Either is well-approximated by the in-plane y mode.

earlier that is seemingly characteristic of simple tension in the x-direction for separable
materials of the form (3.6) will not be affected by the use of the tension-compression
switch as simple tension in the x-direction is always accompanied by an increase in fibre
length.

7 A compatible strain-energy function

It is hypothesised here that the undesirable behaviour illustrated in simple tension for
models that depend only on separable functions of the I1, I4, I6 invariants could be as a
result of the non-recovery of the linear theory on restriction to infinitesimal deformations.
For simple tension of orthotropic materials, there are nine obvious material constants that
could be measured experimentally: the three Young’s moduli and the six Poisson’s ratios,
two for each mode of simple tension. However, only three of these material constants are
independent, as demonstrated in Horgan and Murphy (2016), for example. It is easy
to show that the HGO model (5.1), and therefore its special case the Standard Model
(4.1), is only a two constant model, on restriction to small strains. Thus these models
cannot model the three modes of simple tension considered here, even for infinitesimal
deformations.

One remedy that could be considered is to generalise the HGO model so that recovery
of the full linear theory is possible for small strains. The linearised stress-strain relation
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can be rewritten in the form

σ = −pI +m1ε+ (m2εM +m3εM ′ + 2m4M.M ′εMM ′)M ⊗M
+ (m3εM +m2εM ′ + 2m4M.M ′εMM ′)M ′ ⊗M ′ +

+m5 (M ⊗ εM + εM ⊗M +M ′ ⊗ εM ′ + εM ′ ⊗M ′) ,

+M.M ′(m4 (εM + εM ′) +m6M.M ′εMM ′) (M ⊗M ′ +M ′ ⊗M) . (7.1)

where

m1 ≡ 4(W 0
1 +W 0

2 ),

m2 ≡ 4
(
W 0

44 + 4W 0
45 + 4W 0

55

)
= 4

(
W 0

66 + 4W 0
67 + 4W 0

77

)
,

m3 ≡ 4
(
W 0

46 + 2W 0
47 + 2W 0

56 + 4W 0
57

)
,

m4 ≡ 2
(
W 0

48 + 2W 0
58

)
= 2(W 0

68 + 2W 0
78),

m5 ≡ 4W 0
5 = 4W 0

7 ,

m6 ≡ 2W 0
88. (7.2)

The linearised theory is therefore a six constant theory (Spencer, 1984) and a compre-
hensive suite of experiments must be conducted to determine these material constants;
the most efficient and practical method of determining these constants remains to be
decided, especially for soft tissue. For the HGO model (5.1), it follows trivially that
m3 = m4 = m5 = m6 = 0 and, wanting to generalise this model so that it is consistent
with the linear theory while seeking as simple a form as possible, the following strain
energy seems a natural choice:

W = c1 (I1 − 3) +
c2

2k2
{exp

[
k2 (I4 − 1)2

]
+ exp

[
k2 (I6 − 1)2

]
− 2}

+ c3 (I4I6 − I4 − I6 + 1− 2) + 2c4
(
I8 − I08

)
(I4 + I6 − 2)

+ c5 (I5 + I7 − 2I4 − 2I6 + 2) + c6
(
I8 − I08

)2
. (7.3)

This form also ensures that the initial conditions (2.5) are identically satisfied. The
material constants of the linearised theory are therefore

m1 = 4c1, m2 = 4c2 m3 = 4c3, m4 = 4c4, m5 = 4c5, m6 = 4c6. (7.4)

It was shown in Horgan and Murphy (2016) that a strain-energy function is positive
semi-definite for infinitesimal strains of an orthotropic, incompressible material if, and
only if,

3m2
1 + 8m1m5 + 16C2S2m2

5 + 8C2S2m̂m5 + 16(M.M ′)2C4S4m̂m6 +

2(M.M ′)2(1 + C4 + S4)m1m6 + 8C2S2(M.M ′)2m5m6 + 4(C4 + S4 − C2S2)m1m̂+

16(M.M ′)2m1m4 + 32(M.M ′)2C2S2m4m5 − 64(M.M ′)2C4S4m2
4 > 0, (7.5)

where m̂ ≡ m2 +m3, and

2µxy =
σxy
εxy

= m1 + 4(m2 −m3)C
2S2 + 2m5 > 0,

2µxz =
σxz
εxz

= m1 + 2m5C
2 > 0, 2µyz =

σyz
εyz

= m1 + 2m5S
2 > 0, (7.6)
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using an obvious notation for the infinitesimal shear moduli. In view of (7.4), a straight-
forward replacement of the mi constants by the ci constants gives the corresponding
necessary positive semi-definite restrictions on the constants for the new proposed model.
It is anticipated that the determination of these constants from a full range of material
characterisation tests will result in values for the material constants that automatically
satisfy these restrictions.

It follows immediately from (7.4) and (7.6) that the material constants c1, c2 − c3, c5
have an immediate interpretation in terms of the infinitesimal shear moduli, i.e.,

2c1 =
µxzS

2 − µyzC2

S2 − C2
, 8(c2 − c3) =

µxy (S2 − C2) + µxzC
2 − µyzS2

C2S2 (S2 − C2)
, 4c5 =

µyz − µxz
S2 − C2

.

(7.7)

Interpretation of the other material constants in terms of other physical constants is much
more problematic. Simple tension experiments have been the focus here and therefore it
is pertinent to relate the material constants of (7.3) to the physical constants typically
measured in these experiments. One approach is to relate the remaining material con-
stants to appropriately defined Poisson’s ratios and this have proved simpler than using
the corresponding Young’s moduli. For simple tension in the x-direction, for example,
define the Young’s modulus in the x-direction to be Ex ≡ σxx

εxx
and the corresponding

Poisson’s ratios in the y- and z-directions to be νxy ≡ − εyy
εxx
, νxz ≡ − εzz

εxx
. The quanti-

ties Ey, Ez, νyx, νyz, νzx, νzy are defined similarly. Using the linear stress-strain relation
(7.1), Horgan and Murphy (2016) obtained the following relations between the constants
of the linear theory mi and the appropriate Poisson’s ratios:

νxy =
m1 + 2(m̂−m6(M.M ′)2)C2S2

2(m1 + 2m5S2 + (m̂+ 4m4M.M ′ +m6(M.M ′)2)S4)
,

νyx =
m1 + 2(m̂−m6(M.M ′)2)C2S2

2(m1 + 2m5C2 + (m̂− 4m4M.M ′ +m6(M.M ′)2)C4)
,

νzx =
m1 + 4m5S

2 + 2(m̂+ 4m4M.M ′ +m6(M.M ′)2)S4 − 2(m̂−m6(M.M ′)2)C2S2

2 (m1 + 2m5 + 4m4M.M ′(S4 − C4) +m6(M.M ′)2 + m̂(S2 − C2)2)
,

(7.8)

with the corresponding relations for the material constants ci obtained by again replacing
mi by ci. Although these relations can be inverted to obtain the material constants
c2 + c3, c4, c6 in terms of the Poisson’s ratios and shear moduli, the analysis is tedious
and not instructive. Indeed the relative difficulty in deriving correspondences between
the material constants of (7.3) and the physical constants associated with simple tension
suggests that the classical invariants (2.2) might not be the most convenient in modelling
these tests. A more radical approach would be to use physically-based invariants to
circumvent this problem. Proposals for such an approach have been been advocated by
Shariff (2011) and Shariff (2016), for example; however, this alternative approach is not
considered here.
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Appendix

7.1 Data for the Standard Model

For each case of simple tension, the stress-free boundary condition determines the rela-
tion between the axial stretch and one of the other principal stretches, with the third
stretch determined from the incompressibility condition. In each case, the axial stretch
was specified and the other stretch as given in (3.8)2, (3.8)4 and (3.8)6 was determined
using the FindRoot function in Mathematica 10 (version number 10.0.1.0), with the Ac-
curacyGoal option set equal to 3. The remaining principal stretch was determined from
the incompressibility condition. The Cauchy stresses were determined from (3.8)1, (3.8)3
and (3.8)5. The data used to construct the plot summaries of Section 4 are given below:
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λx λy λz σxx (kPa)
1 1 1 0

1.1 0.946 0.961 0.341
1.2 0.897 0.929 0.725
1.3 0.853 0.902 1.161
1.4 0.812 0.880 1.674
1.5 0.774 0.861 2.2644
1.6 0.741 0.844 2.935
1.7 0.709 0.830 3.726
1.8 0.679 0.818 4.645
1.9 0.652 0.807 5.682
2 0.627 0.798 6.897

λx λy λz σyy (kPa)
1 1 1 0

0.950 1.1 0.957 0.307
0.903 1.2 0.923 0.634
0.860 1.3 0.894 0.985
0.821 1.4 0.870 1.373
0.785 1.5 0.849 1.797
0.751 1.6 0.832 2.276
0.719 1.7 0.818 2.819
0.690 1.8 0.805 3.415
0.662 1.9 0.795 4.102
0.637 2 0.785 4.845

λx λy λz σzz (kPa)
1 1 1 0

0.957 0.950 1.1 0.338
0.92 0.906 1.2 0.675
0.887 0.867 1.3 1.009
0.857 0.833 1.4 1.345
0.831 0.802 1.5 1.696
0.806 0.775 1.6 2.049
0.784 0.750 1.7 2.421
0.764 0.727 1.8 2.808
0.745 0.706 1.9 3.207
0.728 0.687 2 3.626

Table 1: Simple tension data for the Standard Model (4.1) with γ = 1.

21



λx λy λz σxx (kPa)
1 1 1 0

1.1 0.909 1.000 0.571
1.2 0.823 1.013 1.470
1.3 0.745 1.032 2.826
1.4 0.678 1.053 4.776
1.5 0.621 1.073 7.434
1.6 0.572 1.092 10.967
1.7 0.531 1.108 15.436
1.8 0.495 1.122 21.008
1.9 0.464 1.135 27.911
2 0.436 1.146 36.201

λx λy λz σyy (kPa)
1 1 1 0

0.935 1.1 0.972 0.333
0.868 1.2 0.960 0.745
0.801 1.3 0.960 1.286
0.736 1.4 0.971 2.042
0.674 1.5 0.989 3.098
0.619 1.6 1.010 4.539
0.571 1.7 1.031 6.437
0.529 1.8 1.051 8.873
0.492 1.9 1.069 11.908
0.460 2 1.086 15.674

λx λy λz σzz (kPa)
1 1 1 0

1.001 0.908 1.1 0.629
1.022 0.815 1.2 1.083
1.048 0.7349 1.3 1.446
1.071 0.667 1.4 1.779
1.088 0.613 1.5 2.107
1.102 0.567 1.6 2.443
1.114 0.528 1.7 2.792
1.123 0.495 1.8 3.156
1.130 0.466 1.9 3.537
1.137 0.440 2 3.936

Table 2: Simple tension data for the Standard Model (4.1) with γ = 10.
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7.2 Data for the HGO model

For the HGO model (5.1), (5.4), the same procedure as described earlier was followed:
the axial stretch was assumed prescribed and one of the remaining principal stretches
determined from the stress-free boundary conditions. The remaining principal stretch
was determined from the incompressibility condition and the axial stress then determined
from the appropriate stress-stretch relation. The following data are summarized in the
plots of Section 5.1:

λx λy λz σxx (kPa)
1.000 1.000 1.000 0.000
1.100 0.931 0.976 0.643
1.200 0.869 0.959 1.542
1.300 0.808 0.952 2.919
1.400 0.746 0.958 5.194
1.500 0.679 0.982 9.285
1.600 0.604 1.034 17.541
1.700 0.521 1.129 36.374
1.800 0.432 1.287 84.774
1.900 0.341 1.543 229.903
2.000 0.256 1.952 743.198

λx λy λz σyy (kPa)
1.000 1.000 1.000 0.000
0.960 1.100 0.947 0.303
0.921 1.200 0.905 0.606
0.881 1.300 0.873 0.918
0.843 1.400 0.847 1.248
0.805 1.500 0.828 1.604
0.768 1.600 0.814 1.995
0.731 1.700 0.805 2.432
0.695 1.800 0.799 2.921
0.661 1.900 0.796 3.475
0.627 2.000 0.797 4.119

λx λy λz σzz (kPa)
1.000 1.000 1.000 0.000
0.981 0.927 1.100 0.390
0.966 0.863 1.200 0.757
0.955 0.805 1.300 1.115
0.946 0.755 1.400 1.469
0.939 0.710 1.500 1.826
0.933 0.670 1.600 2.191
0.929 0.633 1.700 2.566
0.925 0.601 1.800 2.953
0.922 0.571 1.900 3.354
0.920 0.543 2.000 3.771

Table 3: Simple tension data for the HGO model.

7.3 Data for Section 5.2

Exactly the same procedures as already described were applied in Section 5.2 for the
HGO model (5.1), (5.5). The data used for the simple tension plots are the following:
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λx λy λz σxx (kPa)
1 1.0000 1.0000 0.0000

1.1 0.9114 0.9975 0.4544
1.2 0.8193 1.0171 1.1848
1.3 0.7296 1.0543 2.4175
1.4 0.6482 1.1020 4.4502
1.5 0.5778 1.1538 7.6408
1.6 0.5172 1.2084 12.5152
1.7 0.4641 1.2675 19.9488
1.8 0.4162 1.3348 31.5449
1.9 0.3720 1.4148 50.2172
2 0.3302 1.5142 81.8256

λz σzz (kPa)
1.0 0.0000
1.1 1.1087
1.2 1.9802
1.3 2.7035
1.4 3.3305
1.5 3.8941
1.6 4.4158
1.7 4.9106
1.8 5.3891
1.9 5.8590
2.0 6.3263

Table 4: Simple tension data for the in-plane and out-of-plane modes of the HGO model (5.1),
(5.5).

7.4 Data for Section 5.3

The data used in Figures 8 and 9 are given below:

axial stretch σxx (kPa) σyy (kPa) σzz (kPa)
1 0 0 0

1.1 9.055 8.203 46.04
1.2 27.29 23.74 83.37
1.3 68.38 57.63 115.9
1.4 157.0 131.0 140.8
1.5 333.9 277.5 163.8
1.6 693.3 567.2 190.6
1.7 1502 1189 212.3
1.8 3602 2707 253.8
1.9 10070 7042 276.5
2 34380 21920 338.1

λx λy λz
1.0 1.0 1.0
1.1 0.9 1.0
1.2 0.8 1.1
1.3 0.7 1.2
1.4 0.6 1.3
1.5 0.5 1.4
1.6 0.4 1.6
1.7 0.3 1.8
1.8 0.3 2.1
1.9 0.2 2.6
2.0 0.2 3.3

Table 5: Simple tension data, to four significant digits where appropriate, for the HGO model
(5.1), (5.6), together with the stretch data for simple tension in the x-direction.

References

Rivlin, R.S., 1948. Large elastic deformations of isotropic materials. I. Fundamental con-
cepts. Philosophical Transactions of the Royal Society of London. Series A, Mathemat-
ical and Physical Sciences, 240, 459-490.

Holzapfel G.A., Gasser T.C., Ogden R.W., 2000. A new constitutive framework for ar-

24



terial wall mechanics and a comparative study of material models, J. Elasticity 61:
1-48

Murphy, J. G., 2014. Evolution of anisotropy in soft tissue. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Science, 470, 20130548.

Horgan, C.O., Murphy, J.G., 2014. Some unexpected behaviour in shear for elasticity
models of arterial tissue that only use the I1, I4, I6 invariants. IMA Journal of Applied
Mathematics, 79, 820-829.

Hosten, B., 1992. Stiffness matrix invariants to validate the characterization of composite
materials with ultrasonic methods. Ultrasonics, 30, 365-371.

Kelly, A., Hine, P.J., Landert, M., Ward, I.M., 2005. The effect of the measurement
frequency on the elastic anisotropy of fibre laminates. Journal of materials science, 40,
4461-4467.

Goriely, A. Tabor, M., 2013. Rotation, inversion and perversion in anisotropic elastic
cylindrical tubes and membranes. Proceedings of the Royal Society of London A, 469,
20130011.

Holzapfel, G.A., Gasser, T.C. Ogden, R.W., 2004. Comparison of a multi-layer structural
model for arterial walls with a Fung-type model, and issues of material stability. Journal
of biomechanical engineering, 126(2), pp.264-275.

Holzapfel, G.A., Ogden, R.W., 2015. On the tension-compression switch in soft fibrous
solids European Journal of Mechanics A/Solids 49 561-569.

Spencer, A.J.M ,1984. Constitutive theory for strongly anisotropic solids. In Continuum
Theory of the Mechanics of Fibre-reinforced Composites (Ed. A.J.M. Spencer). CISM
Courses and Lectures No. 282. Vienna: Springer Verlag.

Destrade, M., Martin, P.A. and Ting, T.C., 2002. The incompressible limit in linear
anisotropic elasticity, with applications to surface waves and elastostatics. Journal of
the Mechanics and Physics of Solids, 50, 1453-1468.

Shariff, M.H.B.M., 2011. Physical invariants for nonlinear orthotropic solids. International
Journal of Solids and Structures, 48 1906-1914.

Shariff, M.H.B.M. and Bustamante, R., 2015. On the independence of strain invariants
of two preferred direction nonlinear elasticity. Int. Jou. Engng. Science, 97, 18-25.

Fung, Y.C., Fronek, K. and Patitucci, P., 1979. Pseudoelasticity of arteries and the choice
of its mathematical expression. American Journal of Physiology-Heart and Circulatory
Physiology, 237(5), pp.H620-H631.

Chuong, C.J., Fung, Y.C., 1983. Three-dimensional stress distribution in arteries. Journal
of biomechanical engineering, 105(3), pp.268-274.

25



Gültekin, O., Dal, H. and Holzapfel, G.A., 2016. A phase-field approach to model fracture
of arterial walls: Theory and finite element analysis. Computer Methods in Applied
Mechanics and Engineering in press.

Horgan, C.O., Murphy, J.G., 2016. The counterintuitive out-of-plane strength of incom-
pressible orthotropic hyperelastic materials, submitted.

Shariff, M.H.B.M., 2016. Anisotropic separable free energy functions for elastic and non-
elastic solids. Acta Mechanica, pp.1-25.

26


