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Abstract Isolated proton aurora (IPA) is a manifestation of the wave-particle interaction visible at
subauroral latitudes, with activity on many timescales. We herein present the first observational evidence
of rapid luminous modulation of IPA correlated with simultaneously observed Pc1 waves observed on the
ground, which are equivalent to the electromagnetic ion cyclotron (EMIC) waves in the magnetosphere.
The fastest luminous modulation of IPA was observed in the 1 Hz frequency range, which was twice the
frequency of the related Pc1 waves. The time lag between variations of Pc1 wave power and the IPA
luminosity suggests that the source regions of IPA are distributed near the magnetic equator, suggesting an
EMIC wave-energetic (a few tens of keV) proton or relativistic (MeV or sub-MeV) electron interaction. The
generation mechanism of this 1 Hz luminous modulation remains an open issue, but this study supports the
importance of nonlinear pitch angle scattering via wave-particle interactions.

Plain Language Summary This study presents the discovery of a direct link between isolated
proton aurora and natural electromagnetic waves known as electromagnetic ion cyclotron (EMIC) waves
detected as Pc1 geomagnetic pulsations on the ground. For the first time, the fastest expected variations are
detected through fast modulations of isolated proton aurora. The isolated proton aurora comes from the
Earth’s radiation belts, driven by plasma waves via wave-particle interaction. Theoretical studies have shown
that the isolated proton aurora is generated by resonant interaction with EMIC waves. Our finding gives a
clear observational evidence of this by using cutting edge observations, related to this essential physical
process for energy transport in plasmas.

1. Introduction

Isolated proton aurora (IPA) allows the diagnosis of localized wave-particle interaction in the inner magneto-
sphere. Recently, pulsating IPA was discovered at subauroral latitudes (Nomura et al., 2016; Ozaki et al., 2016).
The likely IPA generation mechanism is pitch angle scattering of protons by electromagnetic ion cyclotron
(EMIC) waves undergoing wave-particle interactions at the magnetic equator (e.g., Albert, 2003; Jordanova
et al., 2001; Kennel & Petschek, 1966; Shoji & Omura, 2014), which leads to proton precipitation in the energy
range from 30 to 800 keV (Hyun et al., 2014; Yahnin et al., 2007). Previous studies supported this idea through
simultaneous observations of IPA and related EMIC/Pc1 (0.2 to 5 s periods) waves (Miyoshi et al., 2008;
Sakaguchi et al., 2007, 2008, 2012). EMIC/Pc1 waves play an important role not only in the removal of protons
from the ring current but also in rapid removal of relativistic electrons from the radiation belts (Clilverd et al.,
2015; Hendry et al., 2017; Miyoshi et al., 2008; Rodger et al., 2008; Usanova et al., 2010, 2014). A coordinated
ground and Van Allen Probes observation showed that structured Pc1 waves in the magnetosphere can pro-
pagate to the ground without significant frequency dispersion (Paulson et al., 2014). The Pc1 waves on the
ground can be equivalent to the EMIC waves in the magnetosphere. To date, three temporal characteristics
of EMIC/Pc1 waves have been observed. First, the duration of a bundle of EMIC/Pc1 waves is several tens of
minutes to several hours. Second, EMIC/Pc1 waves show successive discrete elements, known as pearl struc-
tures, in the range of several tens of seconds to a fewminutes. Third, the discrete element of EMIC/Pc1 waves
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includes subpacket structures that appear as nonperiodic amplitude modulations on the timescale of a few
tens of seconds. In accordance with the temporal characteristics of EMIC/Pc1 waves, a statistical link between
the occurrence of IPA and Pc1 waves has been reported based on several ground-based and satellite
observations (Sakaguchi et al., 2008; Usanova et al., 2010; Yahnin et al., 2007). The duration of events (minutes
to several hours), luminous intervals (a few minutes), and luminous modulation (a few tens of seconds), have
all been found in IPA by using the most advanced (Electron Multiplying Charge Coupled Device (EMCCD))
cameras (Ozaki et al., 2016). Theoretical studies support the various timescales mentioned above (Kubota
et al., 2015; Shoji & Omura, 2014) and also suggest that faster variations at a frequency of approximately
1 Hz should exist. Since proton auroras are faint (Eather, 1967), direct detection of fast visible light
fluctuations is difficult, even with EMCCD cameras. Advanced analysis in the time-frequency domain must
be applied to images from the most sensitive EMCCD cameras to reveal this never-before-seen fast flickering
of IPA.

Here we report that a high-frequency (approximately 1 Hz) signal is present in IPA luminous variations, at
twice the associated Pc1 wave frequency, constituting the predicted rapid flickering of IPA. This is the first
observational evidence of the direct association of rapid luminous variations of IPA with individual cycles
of Pc1 waves.

2. Observations

Two events showing the fastest luminous modulations of IPA and associated Pc1 waves detected by the
ground-based induction magnetometer (Shiokawa et al., 2010) (see Text S1 in the supporting information)
were observed at Athabasca on the duskside (ATH, 54.7 N, 246.7°E, L = 4.5) (see Table S1). The IPA was
observed with no contamination from the more poleward electron auroras (see Figure S1 and Movies S1
and S2). The IPA were recorded by all-sky EMCCD cameras (see Text S2). A BG3 glass filter was used to sup-
press the long-lived green (555.7 nm) and red (630.0 nm) emissions for the high-speed EMCCD camera
(Samara et al., 2012; Semeter et al., 2008). Sounding rocket and satellite experiments have spatial and tem-
poral limitations and ambiguity in matching other data sets, as well as a limited data capacity. These are over-
come by ground-based observations, which allow continuous monitoring of IPA with a better spatial
coverage (approximately 1,000 km) and a high time resolution (1/8 s). This enables comparison between
high-speed IPA images and the generation frequencies of related Pc1 waves.

Figure 1 shows a selected event with simultaneous ground-based observations of pulsating IPA and related
Pc1 waves at ATH on 2 January 2016. A clear IPA was observed near the zenith of ATH during the geomag-
netic field disturbance in a late recovery phase of a geomagnetic storm (Dst index = �25 nT), as shown in
Figure 1a. The dynamic spectrum of the Pc1 waves (Figure 1d) was calculated from the short-time Fourier
transform (STFT). The related Pc1 waves exhibit rising and falling tone elements in the He+ band between
He+ and O+ equatorial cyclotron frequencies (1.5 Hz and 0.38 Hz, respectively) calculated using the
Tsyganenko model (Tsyganenko, 2002a, 2002b). Such rising and falling tone structures of EMIC waves are
important in nonlinear wave growth (Shoji & Omura, 2013, 2017). The spectral characteristics are somewhat
different from those expected from nonlinear-triggered emissions as modeled by Shoji and Omura (2013,
2017). We will carefully investigate the difference in the future. The center frequency of the Pc1 waves is
approximately 0.6 Hz. The BG3 images are wideband but are colocated with Hbeta (Hydrogen Balmer ®, wave-
length of 486.1 nm) emissions, which are a signature of energetic (several tens of keV) proton precipitation.
The other IPA event on 12 November 2015 is the same as that presented in Ozaki et al. (2016). Both pulsating
IPA events are highly correlated with the Pc1 intensity variations, which are calculated as the integration from
0.35 to 0.90 Hz in Figure 1d. The correlation value between the Pc1 and BG3 intensities exceeds 0.75.
Although the Pc1 waves can be trapped in the ionospheric duct and horizontally propagate over a long dis-
tance (1,000 km) (Kim et al., 2010), this high correlation above the observation site supports the hypothesis
that the observed Pc1 waves penetrate an ionospheric exit point and reach the ground station without the
horizontal propagation in the ionospheric duct. Furthermore, the association with Hbeta supports the basic
idea that the high-energy protons responsible for the generation of pulsating IPA originate from resonant
interaction with Pc1 waves. Since it is difficult to identify the fastest temporal variations of IPA in the time
domain alone, we used the Stockwell transform (Stockwell et al., 1996) to perform time-frequency analysis.
One of the advantages of the Stockwell transform is that it has a frequency-dependent resolution in the
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time-frequency analysis. On the other hand, the STFT has a fixed frequency resolution due to a constant time
window width. Therefore, the Stockwell transform allows a better detection of a higher-frequency burst and
yields a better signal clarity than the STFT.

Figures 2a and 2b show the frequency-time diagrams of the averaged BG3 intensity in the proton spot and
the squared amplitude of the magnetic field for the geomagnetic north component using the Stockwell
transform. The squared amplitude of the magnetic field is proportional to the Pc1 wave power. Figures 2c
and 2d show the other IPA event calculated in the same manner as for Figures 2a and 2b. The magnified dia-
grams in the frequency range from 0.5 Hz to 2.0 are shown in Figures S2 and S3. In addition, the luminous
intensity maps for each frequency (see Text S3) are shown in Figures S4 and S5. If the time variation is as
exp(jωt) for the electromagnetic fields of the Pc1 waves, where j is the imaginary unit, ω is the angular fre-
quency, and t is the time, then the wave power is proportional to exp(j2ωt). Thus, the 1 Hz range fluctuations
in Figures 2b and 2d reflect the fluctuations of wave power of the Pc1 waves at the center frequency of 0.6 Hz
shown in Figure 1d. Here we refer to fluctuations related to the Pc1 pearl structure, the subpacket structure,
and the wave power as the main, fast, and 1 Hz modulations, respectively. There is a strong association
between the Pc1 wave power and the 1 Hz IPA modulations seen in Figures 2a and 2c. The 1 Hz IPA

Figure 1. Selected IPA event on 2 January 2016. (a) Earth’s magnetic field data at ATH for the north component. The red
rectangle indicates the IPA event. (b and c) East-west ewograms for the BG3 and Hbeta all-sky images. (d) Dynamic
spectrum of the Pc1 waves. The black line indicates the O+ cyclotron frequency (0.38 Hz) at the magnetic equator. (e) Pc1
intensity (integration from 0.35 to 0.90 Hz) and BG3 intensity in the proton spot. (f and g) Averaged BG3 and Hbeta
images, with magnetic north (MN) at the top. The red outline denotes the proton spot that is highly correlated with the
Pc1 intensity (greater than 0.75).
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modulation occurred intermittently with frequency-time characteristics similar to those of the Pc1 wave
power. Furthermore, in the IPA event on 12 November 2015, as shown in Figure 2e, a cosmic noise
absorption (CNA) was simultaneously observed at Meanook (54.6 N, 246.7°E) (see Text S4), which is
approximately 20 km east from ATH. The CNA levels reached 0.4 dB with a pulse width of 20 s during the
pulsating IPA event. The CNA variations are a signature of intermittent relativistic (MeV or sub-MeV)
electron precipitation into the IPA from the radiation belts (Clilverd et al., 2015; Rodger et al., 2008).
Unfortunately, the CNA on 2 January 2016 (not shown herein) did not exhibit such spiky variations, due to
contamination by artificial noises.

3. Estimation of the Source Region

There are two possible explanations for the generation region of the observed 1 Hz luminosity modulations.
One is the auroral acceleration region near the Earth at altitudes of 1 to 2 times the Earth’s radius. The gen-
eration region of the 1 Hz modulation could be near the auroral acceleration regions in the ionospheric
Alfven resonator (Chaston et al., 2002; Fukuda et al., 2017; Lysak & Song, 2005). Although the spectrum har-
monics of the magnetic field usually associated with the ionospheric Alfven resonance (IAR) were observed
until 05 UT on 12 November 2015, clear IAR events were not observed during either IPA event. Another
source could be in the magnetosphere far from auroral acceleration regions, such as the magnetic equator.
Figures 3a and 3b show the cross-correlation values between the Pc1 wave power and the IPA luminosity for
each modulation. Here it is assumed that the main and fast modulations are in the frequency ranges of
0.005 Hz to 0.050 Hz and 0.050 Hz to 0.500 Hz, respectively, and that the frequency ranges of 1 Hz modulation
are 1.000 to 1.400 Hz for the event on 2 January 2016 and 0.500 Hz to 1.500 Hz for the event on 12 November
2015. The Pc1 wave power and IPA luminosity for each modulation are calculated from the convolution inte-
gral with the band-pass filter for each modulation, and the cross-correlation analysis was then performed
using the filtered Pc1 wave power and the filtered IPA luminosity for each modulation (see Text S5). Clear
peaks of time lag for the main (showing the pearl structure), fast (showing the subpacket structure), and
1 Hz (new finding in the present study) modulations were obtained. Since the correlation values depend
on the time segment and the signal-to-noise ratio (SNR), the most important point is that the correlation
value for the 1 Hz modulation showed a clear peak in a low-SNR situation in both events. A positive time
lag indicates that particles arrived above the ground station faster than waves. The clear time lag between
waves and particles indicates that the waves and particles should travel along a long field line with different
velocities, which supports the hypothesis that the source region is far from the auroral acceleration regions. In
the event on 2 January 2016, the time lags for the main and fast modulations were approximately +40 s and

Figure 2. Frequency-time diagrams of (a and c) the IPA luminosity and (b and d) the squared amplitude of magnetic field
for the geomagnetic north component. (e) CNA variations during the IPA event on 12 November 2015.
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the 1 Hz modulation had a peak at +54 s. These results indicate that the precipitating particles related to all
(main, fast, and 1 Hz ranges) of the modulations traveled to the ground faster than the Pc1 waves. In the
event on 12 November 2015, the time lags for the main and fast modulations were the same value of
�55 s and that for the 1 Hz modulation was +20 s. Note that the time lags for the fast modulation were
approximately the same as those for the main modulation in both events, which suggests that the source
regions for the main and fast modulations of IPA are the same in the magnetosphere. Furthermore, the
time lag for the 1 Hz modulation took a positive value in both events. The particle energy related to the
1 Hz IPA modulation can be very high in comparison with that for the main and fast modulations, because
the precipitation particles related to the 1 Hz IPA modulation reached the ground faster than the waves,
regardless of the time lags for the main and fast modulations.

In order to identify the source regions of the IPA, the interaction regions between EMIC/Pc1 waves and ener-
getic particles are estimated from the difference in their travel times. In the present study, we estimate the
source regions of the IPA based on Mende et al. (1980). The time difference between the EMIC waves and
the energetic particles is calculated theoretically. In the theoretical calculation, the EMIC waves and energetic
particles are assumed to travel along the same magnetic field line. In order to simplify the estimation, the
effects of the oblique propagation and ion composition ratio on the EMIC waves are not considered in the
present study. The group velocity vg(s) of parallel propagation of the EMIC wave along a field line is written
as (Kennel & Petschek, 1966)

vg sð Þ ¼ VA sð Þ 1� ω
ωci sð Þ

� �3
2

1� ω
2ωci sð Þ

� ��1

; (1)

whereωci is the cyclotron angular frequency of proton, s is location along the field line, and VA = B/(μ0NmH)
1/2

is the Alfven velocity defined by the magnetic field B, the permeability in vacuum μ0, the number density N,
and the proton mass mH. The parallel velocity of energetic protons is

v‖ sð Þ ¼ 2EL
mH

� �
1� sin2α

B sð Þ
B sið Þ

� �� �1
2

; (2)

where EL is the kinetic energy and α is the loss cone at a possible source location si. The parallel velocity of a
relativistic electron within the loss cone is

v‖ sð Þ ¼ pe
meγe

cosα; (3)

where pe, me, and γe are the momentum, electron mass, and relativistic Lorentz gamma, respectively (Saito
et al., 2012). The number density N along the field line is computed from the plasmaspheric model under
the hydrostatic assumption (Miyoshi et al., 2006; Rasmussen et al., 1993). The values of the number density
at the equator were 52.7 particles/cm3 for the event on 2 January 2016 and 111 particles/cm3 for the

Figure 3. Correlation analysis results between the Pc1 wave power and the IPA luminosity for the events on (a) 2 January
2016 and (b) 12 November 2015 as a function of time lag. The blue, green, and red curves indicate the correlation values for
the main, fast, and 1 Hz modulations, respectively.
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event on 12 November 2015. The magnetic field B is calculated from the Tsyganenko model (Tsyganenko,
2002a, 2002b). As shown in Figure 4a, four possible wave-particle interaction cases that could yield the
observed time lag are considered. Cases 1 to 3 involve possible cyclotron resonance conditions between
EMIC waves and protons. The parallel energy of protons in cases 1 to 3 is given by the cyclotron resonance
condition at wave-particle interaction location si as (Kennel & Petschek, 1966)

EL ¼ B2 sið Þ
2μ0N sið Þ

ωci sið Þ
ω

� �2

1� ω
ωci sið Þ

� �3

: (4)

The resonant energy of protons increases with latitude, and their maximum resonant energy is probably
approximately 100 keV (Miyoshi et al., 2008). Since the trapped protons with energy on the order of
10 keV dominate between L = 4 and 9 (Milillo et al., 2001), the EMIC waves most likely resonate with the
trapped protons. Thus, the maximum proton energy in the estimated source region is assumed to be up
to 100 keV. Case 4 is a possible resonance condition between EMIC waves and relativistic (MeV or sub-
MeV) electrons at possible source location si. Relativistic electrons over 1 MeV can interact with EMIC waves
(Kubota et al., 2015; Miyoshi et al., 2008; Omura & Zhao, 2013), but such higher energy electrons cannot con-
tribute to auroral emissions. The electron resonance energy in the estimation of the source region is assumed
to be from 500 keV to 1 MeV. The theoretical time difference between EMIC waves and energetic particles is
calculated for each case. Then, the wave-particle interaction region is determined as the location at which the
theoretical time difference corresponds to the observed time lag (Figure 3).

Figures 4b and 4c show the estimated source regions in solar magnetic coordinates. The black (solid for ATH
and dotted for reference) curves show the magnetic field lines calculated from the Tsyganenko model. The
estimated source regions for both IPA events are mostly concentrated around the magnetic equator,

(b) 2 January 2016 (c) 12 November 2015

Upper ionosphere at the northern hemisphere

Upper ionosphere at the southern hemisphere

Possible source region (si) giving the observed time lag

Waves

Waves 
and

Protons

Waves 
and

Electrons

Protons

Case1
(a)

Case2 Case3

Waves

Protons

Case4

Figure 4. (a) Four possible wave-particle interaction cases that could yield the observed time lag. (b and c) Estimated
source regions for the main (blue), fast (green), and 1 Hz (red) modulations.
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except for the source region of the fast modulation for the event on 2 January 2016 given by case 4. Since the
time lags for the main and fast modulations were approximately the same in both events, their estimated
source regions were located in the same regions near the equator as a result of case 2 for the event on 2
January 2016 and as a result of case 1 for the event on 12 November 2015. The source regions of all modula-
tions on 2 January 2016 were given by case 2, which indicates the situation in which scattered protons reach
the ground station, followed by waves reflected at the opposite hemisphere. The resonant energy ranges of
protons in the estimated source regions for the main, fast, and 1 Hz modulations are 17 to 48 keV, 14 to
28 keV, and 47 to 83 keV, respectively, which interact with EMIC waves in the frequency range of 0.5 to
0.8 Hz. Moreover, the source region of the fast modulation was given as resulting from case 4. The EMIC
wave-relativistic electron interaction region given by case 4 was located at higher latitudes in comparison
with the EMIC wave-energetic proton interaction regions given by case 2. Next, the source regions of all mod-
ulations on 12 November 2015 were given as resulting from case 1, indicating that EMIC waves reach the
ground, followed by energetic protons reflected at the opposite hemisphere. The resonant energy range
of protons in the source regions for the main, fast, and 1 Hz modulations are 6 to 11 keV, 6 to 11 keV, and
48 to 96 keV, respectively, which interact with EMIC waves in the frequency range of 0.4 to 0.8 Hz. The other
source regions for the 1 Hzmodulation were given by cases 3 and 4. The energy range of the 1 Hz modulation
given by case 3 was 10 to 34 keV. The possible source regions of the 1 Hz modulation were distributed near
the equator within the magnetic latitude from �14 to +11° in both events, as a result of the EMIC wave-
energetic proton interaction for the event on 2 January 2016 and as a result of the EMIC wave-relativistic elec-
tron interaction for the event on 12 November 2015. The source regions of the 1 Hz modulation exhibited
mostly higher latitudes and higher resonant proton energies than for the main and fast modulations.

The calculation examples of the theoretical time difference are plotted in Figures S6 and S7. The estimation
results include the ambiguities of plasma density and geomagnetic field caused by their model accuracies,
but these parameters affect both the wave and particle velocities, as expressed by equations (1) to (4). The
ambiguities of plasma density and geomagnetic field do not have a major effect on the estimation of the
source region, even if the plasma density includes errors of�10% to +50%. Moreover, even if there is a reflec-
tion boundary up to the altitude of 10,000 km by the effect of bi-ion frequency (Thorne & Horne, 1993), the
estimated source regions are still concentrated in the equatorial regions. This is because the travel time of
waves and the particle velocity around the equator are dominant, as shown in Figures S6 and S7.
However, future studies are needed in order to estimate the source regions using more realistic models. In
future studies, we will take into account the effects of the oblique propagation and the ion composition ratio
on the EMIC waves.

4. Discussion

The Combined Release and Radiation Effects Satellite (CRRES) observations in the inner magnetosphere
showed that the source regions of EMIC waves were distributed within 11° of the magnetic equator
(Loto’aniu et al., 2005), but the Earth’s magnetic field was approximated as a simple dipole field. Shoji and
Omura (2013) suggested that the subpacket structures of EMIC waves are formed by a superposition of
EMIC waves repeatedly and nonlinearly triggered near the equator. Kubota et al. (2015) showed that the
EMIC waves having subpacket structures more effectively interact with relativistic electrons. Our estimation
results showed that the source regions for the main and fast modulations were distributed near the equator,
resulting in EMIC wave-energetic proton/relativistic electron interactions. The estimation results support the
above mentioned observation and simulation studies. The results of a recent computer simulation study sug-
gest a modulation of a few seconds of precipitating particles scattered at the magnetic equator due to a non-
linear effect (Shoji & Omura, 2014). Moreover, our estimation results showed the existence of the source
regions of 1 Hz luminous modulation resulting from EMIC wave-energetic proton interactions (cases 1 to 3).
On the other hand, Kataoka et al. (2016) showed that 5 to 20 s modulations of relativistic electron
precipitation (REP) around the boundary of the plasmapause regularly exist based on measurements by a
charge detector on board the international space station (ISS). The observed 1 Hz modulation is 5 to 20 times
faster than such modulations during REP events observed at the ISS. The travel time of MeV or sub-MeV elec-
trons is incomparably faster than that for the EMIC waves and the 1–100 keV protons. The time-of-flight (TOF)
effect for a wide energy range of REP would be negligible in comparison with the TOF effect for precipitating
protons, because the velocity approaches the speed of light. In order to support the REP during the IPA event,
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the spiky CNA was simultaneously observed at Meanook near ATH, as shown in Figure 2e. The estimated
source region of 1 Hz luminousmodulation for the event on 12 November 2015 is distributed near the equator
as a result of EMIC wave-relativistic electron interactions (case 4). Based on these observations and estimations
of the source regions, MeV and sub-MeV electrons can cause an electron aurora simultaneously with the IPA.
Marshall et al. (2014) simulated optical emissions generated by relativistic electron beam using a Monte Carlo
model. The dominant emissions are the first and second positive systems of N2 and the first negative systems
of Nþ

2 in their simulations. Therefore, we consider that the fast-oscillating auroral emissions observed by the
BG3 filter (transmission wavelengths at 300–500 nm and above 700 nm) are caused at the N2 first (~700–
900 nm) and second (300–400 nm) positive bands and the Nþ

2 first negative band (320–500 nm).

5. Conclusions

Ground-based observations of luminous variations of IPA provide clear experimental evidence that the origin
of the IPA is the resonant interaction with Pc1/EMIC waves on various timescales (1 s to a few tens of minutes).
Never-before-seen temporal characteristics of the IPA were observed based on high-speed EMCCD images
with the Stockwell transform. Although the detailed generation mechanism of the 1 Hz IPA modulation
remains an open issue, the nonlinear pitch angle scattering process by EMIC waves is a major candidate.
The key findings of the present study are as follows:

1. The 1 Hz IPA modulation has a remarkable correlation with the Pc1 wave power (cf. Figure 2).
2. The frequency of the 1 Hz IPA modulation is twice that of the Pc1 wave (cf. Figure 2).
3. The CNA burst, which is indirect evidence of REP, was simultaneously observed during the pulsating IPA

event on 12 November 2015.
4. The precipitating particles related to the 1 Hz IPA modulation reached the ground faster than the waves.

Thus, the particle energy should be very high (cf. Figure 3).
5. The source regions of the main and fast modulations were concentrated around the equator (cf. Figure 4).
6. The source regions of the 1 Hz IPA modulation were also given near the equator as resulting from the

EMIC wave-energetic proton or relativistic (MeV or sub-MeV) electron interaction (cf. Figure 4).

These findings provide a new framework for understanding the complicated dynamics of coupling of waves
and particles in the radiation belts. In the future, comparison between ground (wave and aurora) and satellite
(wave and particle) observations will be important for estimating the detailed resonance energy in the 1 Hz
IPA event.
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