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Nucleosome assembly alters the accessibility of the antitumor
agent duocarmycin B, to duplex DNA

Tingting Zou?, Seiichiro Kizaki?, Ganesh N. Pandian®, Hiroshi Sugiyama®®’

but also linker DNA, and
As the essential
e a binding region
igenetic transcription!?.
rated that the preferred
on of the nucleosome!™.
ent from the Xenopus
some reconstitution. The
ibition of the DNA cleavage
5 fold) and neocarzinostatin (2.4 fold) in
osomal DNA. Also in melphalan, about
jon at adenine N-3 throughout the

/ \ encompass not only nucleoso
Abstract: To evaluate the reactivity of antitumor agents in a in most instances, a

composition of nucle
for linker histone
Cisplatin and anal
site of DNA bindin
Some researchers
Zaeuis 5 S
results exhibite

nucleosome architecture, we conducted in vitro studies to
assess the alkylation level of duocarmycin B, on
nucleosomes with core and linker DNA using sequencing
gel electrophoresis. Our results suggested that the
alkylating efficiencies of duocarmycin B, were significantly
decreased in core DNA and increased at the histone-free
linker DNA sites when compared with naked DNA condition.
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Linker DNA

5’ -TAATACGACTCACTATAGGGCGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGGGAGCCGGAACACTATCCGACTGGCACCGGCAAGGTCGCTGTTCAATACATGC
3’ -ATTATGCTGAGTGATATCCCGCTTAAGCTCGAGCCATGGGCCCCTAGGAGATCTCAGCCCTCGGCCTTGTGATAGGCTGACCGTGGCCGTTCCAGCGACAAGTTATGTACG

site-1

ACAGGATGTATATATCTGACACGTGCCTGGAACTAGGGAGTAATCCCCTTGGCGGTTAARACGCGGGGGACAGCGCGTACGTGCGTTT
TGTCCTACATATATAGACTGTGCACGGACCTTGATCCCTCATTAGGGGAACCGCCAATTTTGCGCCCCCTGTCGCGCATGCACGCAAATT!

site-5 |, |,
AATTGAGCGGCCTCGGCACCGGGATTCTCCAGGGCGGCCGCGTATAGGGTCCATCACATAAGGGATGAACTCGGTGGAAGAATCATGCTTT
TTAACTCGCCGGAGCCGTGGCCCTAAGAGGTCCCGCCGGCGCATATCCCAGGTAGTGTATTCCCTACTTGAGCCACCTTCTT,

site-3 |, site-4 |,

CTGCAGGCATGCAAGCTTGAGTATTCTATAGTGTCACCTAAAT-3'
GACGTCCGTACGTTCGAACTCATAAGATATCACAGTGGATTTA-5'

Figure 2. The sequence of 382 bp DNA and alkylating sites in core and linker DNA fragment.

and evaluation, to verify the influence of nucleosome assembly
with linker part on the accessibility of small molecular agents into
duplex DNA.

To construct the nucleosome structure, we used Texas red
labeled 382 bp DNA containing 146 bp nucleosome-positioning
601 sequence!'® flanked by two DNA arms of different lengths,
125 and 111 bp, respectively (Figure 1A, Figure 2).
Subsequently, we amplified DNA through PCR from pGEM3Z-
601 using the following primers: forward, 5-Texas Red
TAATACGACTCACTATAGG-3, and reverse, 5'-
ATTTAGGTGACACTATAGAATAC-31"". After the reaction, the
amplified DNA was purified using the GenElute PCR Clean-Up
Kit (Sigma-Aldrich, St. Louis, MO, USA), The purified DNA was
then used for nucleosome reconstitution with histone octamer
(Epicypher, NC, USA) by standard salt gradient metho

ql18l
The reconstitution efficiency was confirmed by gel mobilit)h

assay (6% Native PAGE, 100V, 1h).
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Figure 3. Thermally induced strand cleavage (10 min, 95°C) of 382 bp
DNA and nucleosome with different concentration of duocarmycin B,.
lanes 1-4, free DNA (20 nM) + duocarmycin B, (0.1 uM, 0.25 pM,0.5 uM,
respectively) ; lanes 5-8, nucleosome (20 nM) + duocarmycin B, (0.1 uM,
0.25 uM,0.5 uM, respectively).



30
(%)
H free-DNA Hnucleosome

25

N
=}
I

Alkylating efficiency
[
w

-
o

site 1 site 2 site 3 site 4 site 5 site 6

core linker

Figure 4. Alkylating efficacy of duocarmycin B, in 0.5 uM, with free
DNA or nucleosome in 20 nM. The data are mean = SD of repeated
experiments (n=3).

In contrast with the decreasing alkylating efficacy observed at
core sites, the efficiency of alkylating sites in the nucleosome
linker DNA region was significantly increased when compared
with that observed in the free DNA (Figure 3, Figure 4).
Alkylating sites 5 on linker DNA region, which possesses a
relatively higher reaction activity for two potential alkylating
adenines, showed the most obvious alkylating band and
efficiency increased from 9.7% to 15.0% in nucleosomal D
These results also suggest that, in the nucleosome structur
linker DNA region shows similar or higher reactivity than the

reactivity in DNA linker region could be observed.
We also attempted to confirm these results usj

packaged with histone proteins.

In conclusion, this present in vitro

nucleosome structure, duocar
decreased efficiency in acce

DNA region. This fi
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region showed decreased
retained, and even higher in
considered wh ianin

region.
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sequencing gel electrophoresis. Our
results suggested that in nucleosome
structure, the alkylating efficiencies of
duocarmycin B, were significantly
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Figure S1. Nucleosome reconstitution efficiency confirmation, native gel electrophoresis of Texas red
labeled 382 bp DNA and reconstituted nucleosomes (DNA: histone octamer in 2:3 molar ratio). Lane 1,
control free DNA; lane 2, reconstituted nucleosome; lane 3, reconstituted nucleosome with unlabeled 382
bp DNA.
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Figure S2. Nucleosome stability confirmation, non-denaturing gel electrophoresis of 5’ end-Texas red
labeled 601 DNA and reconstituted nucleosomes (DNA : histone octamer in 2:3). Lane 1, control free
DNA,; lane 2, reconstituted 601 nucleosome; lanes 3-8, room temperature, 18 h, DNA or nucleosome in
20 nM, 3: DNA with duocarmycin (0.1 pM), 4: nucleosome control, 5-6: nucleosome with duocarmycin (0.1
MM), 7-8: nucleosome with duocarmycin (0.5 pM); lanes 9-14, 4°C, 18 h, 9: DNA with duocarmycin (0.1
MM), 10: nucleosome control, 11-12: nucleosome with duocarmycin (0.1 yM), 13-14: nucleosome with
duocarmycin (0.5 yM).
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Figure S3. Thermally induced strand cleavage of 382 bp DNA and nucleosome with different heating
time. Lanes 1-3, free DNA (30 nM ) + duocarmycin B, (0.5 uM), heating in 95°C (10 min, 25 min, 50
min, respectively) ; lane 4-6, nucleosome (30 nM ) + duocarmycin B, (0.5 uM), heating in 95°C (10
min, 25 min, 50 min, respectively).
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Figure S4. Thermally induced strand cleavage (10 min, 95°C). lane 1, control free DNA; lanes
2-4, duocarmycin B, (0.5 uM) + free DNA (10 nM, 20 nM and 30 nM respectively); lane 5,
control nucleosome; lanes 6-8, duocarmycin B, (0.5 pM) + nucleosome (10 nM, 20 nM

and 30 nM, respectively).



