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A class of matrix models that arises as a partition function in U(N ) Chern–Simons matter theories
on the three-sphere is investigated. Employing the standard technique of 1/N expansion we solve
the system beyond the planar limit. In particular, we study a case where the matrix model potential
has 1/N correction and give a general solution thereof up to the order of 1/N 2. We confirm that
the general solution correctly reproduces the past exact result of the free energy up to the order
in the case of pure Chern–Simons theory. We also apply to the matrix model of N = 2 Chern–
Simons theory with arbitrary numbers of fundamental chiral multiplets and anti-fundamental
ones, which does not admit Fermi gas analysis in general.
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1. Introduction

Recent progress in supersymmetric Chern–Simons matter theories has been made on the basis of
the exact result by means of supersymmetric localization. This technique allows one to compute
the partition function of supersymmetric theories exactly by the steepest descent method, which
reduces the path integral calculation to that of a certain matrix model [1]. This calculation was done
generically on S3 [2–4] (see also Refs. [5,6]) and on S2 × S1—called the superconformal index
[7,8] (see also Refs. [9–11]). These exact results were in precise agreement with the prediction from
AdS4/CFT3 duality [12,13] (see also Refs. [14,15]). See Ref. [16] for a review and further references.

On the other hand, progress in non-supersymmetric Chern–Simons matter theories has also been
made not relying on the localization technique but on the 1/N expansion technique by restricting
the class of matter fields to vector fields. It was conjectured that such a system is exactly soluble in
the ’t Hooft large-N limit [17,18]. The thermal partition function in Chern–Simons vector models
on S2 × S1 was determined exactly in the leading order of the 1/N expansion near the critical high
temperature [19] (see also Refs. [20,21]), which was used to show the three-dimensional bosonization
duality [22–24].

In contrast, the exact large-N analysis of the three-sphere partition function for any non-
supersymmetric Chern–Simons matter theory has not been performed due to its technical difficulty.
So far, analysis of the three-sphere partition function has been done perturbatively near the weak
coupling limit of the Chern–Simons coupling constant [25] to confirm that the system obeys the
F-theorem [3]. Perturbative analysis is, however, not enough to provide evidence for duality, and
exact large-N analysis is keenly awaited.
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In this situation we change gears to study a class of matrix models that is to be obtained as the
three-sphere partition function of Chern–Simons matter theories in order to capture a generic feature
of such a class of matrix models toward the bigger goal of showing bosonization duality on the three-
sphere. We are also interested in analyzing such a class of matrix models beyond the planar limit
because the bosonization duality is expected to hold at the subleading order in the 1/N expansion
[21]. (See Refs. [26–28] for recent arguments.)

To illustrate the kind of matrix models that are to be studied, let us consider the partition function
of generic U(N )k Chern–Simons matter theories on the three-sphere with unit radius:

Z =
∫

DAD� exp
{
− ik

4π

∫
S3

(A ∧ dA − 2i

3
A ∧ A ∧ A) − S[�, A]

}
, (1)

where � denotes all the matter fields collectively and S[�, A] is the action for the matter fields. This
may be computed perturbatively as follows (see Ref. [29] for details). We first expand the gauge
field by the vector spherical harmonics

Aμ(x) =
∑

s∈ 1
2 N

⎛⎜⎝ ∑
|l|≤s

|r|≤s+1

as
l
s+1
r Y s

l
s+1
r μ(x) +

∑
|l|≤s+1
|r|≤s

as+1
l

s
rY s+1

l
s
rμ(x) +

∑
|l|,|r|≤s

as,s
l,rY s

l
s
rμ(x)

⎞⎟⎠. (2)

We take the Lorenz gauge ∇μAμ = 0, which kills the modes as,s
l,r with s > 0. The residual gauge

can kill the mode a0,0
0,0 except for its Cartan part, which we denote by σ . We expand the matter

fields in a similar manner. Taking into account the Faddeev–Popov determinant, we integrate out all
the massive modes such as as,s+1

l,r , as+1,s
l,r and all the modes coming from the matter fields, which are

massive on the three-sphere. Then the partition function reduces to the finite-dimensional integration
of the effective action over σ :

Z =
∫

dNσ exp

{
−i

k

4π

N∑
s=1

σ 2
s + · · ·

}
, (3)

where the ellipsis is some function of σs generated by integrating out the massive modes. When the
matter fields vanish, the effective action can be exactly computed by, for example, supersymmetric
localization or cohomological localization [30] by adding the auxiliary fields to complete the gauge
field in the N = 2 vector multiplet. The result is [31]

Z ∼
∫

RN
dNσ exp

⎧⎨⎩−i
k

4π

N∑
s=1

σ 2
s +

N∑
t �=s

log 2 sinh
(

σs − σt

2

)⎫⎬⎭. (4)

Then, by denoting the correction of the matter fields to the effective action by V [σ ], the partition
function is such that

Z ∼
∫

RN
dNσ

N∏
t �=s

2 sinh
(

σs − σt

2

)
e−V [σ ]. (5)

In this note we analyze this class of matrix models by restricting the form of the potential to consist
of single trace operators: V [σ ] = N

∑N
s=1 Wσ (σs).1 The goal of this paper is to solve this class

1 This restriction corresponds to the representation of the matter fields excluding higher-dimensional
representations such as the adjoint one.
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of matrix models incorporating the standard technique of 1/N expansion developed in the study
of ordinary Hermitian matrix models [32] beyond the spherical limit [33,34]. See Refs. [35,36] for
reviews and further references.

The rest of this paper is written as follows. In Sect. 2 we perform some preliminary analysis of
the matrix models. In Sect. 3 we derive the loop equation for this class of matrix models. In Sect. 4
we solve the loop equation by using the 1/N expansion. We give a general solution for the planar
limit (Sect. 4.1) and for the genus one (Sect. 4.3). Then we apply this solution to a few examples in
Sect. 5. We first apply it to pure Chern–Simons theory and compare with the known exact result to
test the validity of the presented framework (Sect. 5.1). We then apply it to N = 2 Chern–Simons
theory with arbitrary numbers of fundamental and anti-fundamental chiral multiplets (Sect. 5.2).
Sect. 6 is devoted to discussion and future direction. In the appendix we give a brief review of the
partition function of pure Chern–Simons theory on the three-sphere in order for this paper to be
self-contained.

2. Matrix model of Chern–Simons matter theories

Throughout this paper we investigate a class of matrix models such that

Z = N

∫
RN

dNσ

N∏
t �=s

2 sinh
(

σs − σt

2

)
exp

{
−N

N∑
s=1

Wσ (σs)

}
, (6)

where N is a normalized constant and Wσ (σ ) is a non-singular function of σ , which can be deter-
mined at least perturbatively by integrating out the massive modes for the original Chern–Simons
matter theory. When the original theory has N = 2 supersymmetry, the matrix model potential
can be determined exactly by using the localization method [2]. For example, for N = 2 U(N )k

Chern–Simons theory with NF fundamental chiral multiplets with the canonical R-charge, the
partition function is of the form [2,3]

ZN=2
� = N

∫
RN

dNσ

N∏
t �=s

2 sinh
(

σs − σt

2

)
exp

{
N∑

s=1

−
(

ik

4π
σ 2

s + 1

2
iζσs

)
+ NF�

(−iσs

2π
+ 1

2

)}
,

(7)

where �(x) = −x log(1 − e2π ix) + i
2(πx2 + 1

π
Li2(e2π ix)) − iπ

12 , and ζ is the FI parameter, which is
equivalent to the real mass parameter. Adding the same number of anti-fundamental chiral multiplets
to this system, the partition function becomes

ZN=2
�,�̄ = N

∫
RN

dNσ

N∏
t �=s

2 sinh
(

σs − σt

2

)
exp

{
N∑

s=1

−
(

ik

4π
σ 2

s + 1

2
iζσs + NF log cosh

σs

2

)}
. (8)

See Refs. [37,38] for detailed analysis of this type of matrix model.
For explicit computation we write the form of the potential in Eq. (6) as

Wσ (σ ) = 1

2̃λ
σ 2 +

∞∑
p=0

tpeσp + δWσ (σ ), (9)
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where λ̃, tp are parameters. In this parametrization the partition function of pure Chern–Simons
theory on S3, which we briefly review in the appendix, is given by

λ̃ = −2π i
N

k
, N =

(−)
N (N−1)

2 exp
{−π(N−1)N (N+1)

6ik

}
i

N2
2

(2π)N N ! , tp = 0, δWσ = i
ζ

2N
. (10)

See Eq. (A4) for the normalization. The first example in Eq. (7) is formally given by

1

λ̃
= ik

2πN
+ iNF

4πN
, t0 = −NF

N

iπ

24
, tp = iNF

2N

(−)p−1

p2 ,

δWσ (σ ) =
∞∑

p=0

upσeσp, u0 = i
ζ

2N
− NF

4N
, up = iNF

2πN

(−)p

p
, (11)

where p ≥ 1.2 The second example in Eq. (8) is

λ̃ = −2π i
N

k
, t0 = NF

N
log 2, tp = NF

N

(−)p

p
(p ≥ 1), δWσ = i

2N
ζ + NF

2N
. (12)

The matrix model of Eq. (6) can be recast in the same form as Hermitian matrix models with
positive eigenvalues. By changing the integration variables so that φs = eσs , the partition function
becomes

Z = N

∫
RN+

dNφ

N∏
t �=s

(φs − φt) exp

{
−N

N∑
s=1

W (φs)

}
, (13)

where R+ represents the positive real axis and

W (φs) = 1

2̃λ
(log φs)

2 + log φs +
∞∑

p=0

tpφ
p
s + δW (φs), (14)

where δW (φs) is analytic on the positive real axis. Note that the matrix model potential has the
logarithmic cut on the negative real axis.

As a result, the partition function can be written by using a positive definite Hermitian matrix
� as

Z ∝
∫

D�e−NTrW (�), (15)

with W (�) = 1
2̃λ

(log �)2 + log � + ∑∞
p=0 tp�p + δW (�). This suggests that this class of matrix

model can be analyzed by using the standard technique employed in ordinary Hermitian matrix
models. In what follows we show that the free energy and correlators of some sector can be determined
in order in the 1/N expansion.

3. Loop equation

There is a well-known method to determine the free energy in matrix models by using the so-called
resolvent, which is in the current situation defined by the vacuum expectation value of the generating

2 This expansion may not be useful for practical computation, though.
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function of regular single trace operators:

ω(z) := 1

N

N∑
s=1

〈
1

z − φs

〉
= 1

N
Tr

〈
1

z − �

〉
= 1

N

∑
p≥0

〈Tr�p〉
zp+1 . (16)

We remark that the resolvent is well defined around infinity and formally behaves as ω(z) ∼ 1
z in

the vicinity of infinity, though this asymptotic behavior is not guaranteed due to the fact that the
potential in Eq. (14) has the logarithmic cut, which ends at infinity. This suggests that the behavior of
the resolvent around infinity generally gets a logarithmic correction. Still, we can expect that there
exists a limit approaching infinity such that the resolvent behaves as ω(z) ∼ 1

z on a certain patch.
This will be important in determining the resolvent later.

Once the resolvent is determined, the coupling dependence on {tp} of the free energy given by
F = − log Z is determined by

d

dTz
F = N 2

(
1

z
− ω(z)

)
, (17)

where d
dTz

= ∑
p≥1

−1
zp+1

∂
∂tp

. This can be seen from the fact that ∂F
∂tp

= N 〈Tr�p〉.
In order to determine the resolvent systematically, we first derive the Schwinger–Dyson equation

for a generic operator O[φ]. The vacuum expectation value of O[φ] is defined by

〈O[φ]〉 = N

Z

∫
RN+

dNφO[φ]
⎛⎝ N∏

t �=s

(φs − φt) exp

{
−N

N∑
s=1

W (φs)

}⎞⎠. (18)

Consider a one-to-one transformation on R+ denoted by φs → φ′
s. Then we obtain the identity such

that

N

Z

∫
RN+

dNφO[φ]
⎛⎝ N∏

t �=s

(φs − φt) exp

{
−N

N∑
s=1

W (φs)

}⎞⎠
= N

Z

∫
RN+

dNφ′O[φ′]
⎛⎝ N∏

t �=s

(φ′
s − φ′

t) exp

{
−N

N∑
s=1

W (φ′
s)

}⎞⎠.

Suppose the (infinitesimal) transformation φ′
s = φs + aδφs. Expanding the right-hand side in terms

of a, we find that the zeroth-order term cancels the left-hand side and the equation at the linear order
gives the Schwinger–Dyson equation〈

N∑
s=1

(
O[φ]∂δφs

∂φs
+ ∂O[φ]

∂φs
δφs

)
+ 2

∑
s>t

O[φ]
φs − φt

(δφs − δφt) −
N∑

s=1

NO[φ]∂W (φs)

∂φs
δφs

〉
= 0.

(19)

To derive the loop equation from the Schwinger–Dyson equation let us choose O = 1, δφs =
φs

z−φs
. Then the transformation φs → φ′

s becomes one-to-one on R+, because δφs|φs=0 = 0, and

a ∂δφs
∂φs

= az
(z−φs)2 > 0 for az > 0. Then the left-hand side in the Schwinger–Dyson equation in
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Eq. (19) is computed as

z

〈
N∑

s=1

1

(z − φs)2 + 2
∑
s>t

1

(z − φs)(z − φt)
−

N∑
s=1

N
∂W (φs)

∂φs

1

z − φs

〉
+
〈

N∑
s=1

N
∂W (φs)

∂φs

〉
.

The first two terms are computed as〈
N∑

s=1

1

(z − φs)2 + 2
∑
s>t

1

(z − φs)(z − φt)

〉
=

N∑
s,t=1

〈
1

(z − φs)(z − φt)

〉
= d

dTz
ω(z) + N 2ω(z)2.

The third term is〈
−N

N∑
s=1

W ′(φs)

z − φs

〉
=

〈
−N

N∑
s=1

∫
R+

dxδ(x − φs)
W ′(x)
z − x

〉
= −N 2

∫
R+

dxρ(x)
W ′(x)
z − x

, (20)

where we define the density function

ρ(x) := 1

N
Tr 〈δ(x − �)〉 = 1

N

N∑
s=1

〈δ(x − φs)〉. (21)

Hereafter we assume that z is outside the support of the density function in order to exclude the case
where Eq. (20) is divergent. The density function satisfies

∫
R+dxρ(x) = 1, and can be computed by

evaluating the discontinuity of the resolvent across the real axis. Indeed, by using the formula

1

x ∓ iε
= P 1

x
± π iδ(x), (22)

where x is a real number, ε is an infinitely small positive number, and P denotes the principal value,
the discontinuity of the resolvent between x ± iε is computed as

ω(x − iε) − ω(x + iε) = 2π iρ(x). (23)

By using this relation, Eq. (20) can be rewritten as〈
−N

N∑
s=1

W ′(φs)

z − φs

〉
= −N 2

∮
CR+

dw

2π i

W ′(w)

z − w
ω(w), (24)

where CR+ denotes a circle encircling R+ counterclockwise. The fourth term vanishes because〈∑
n

NW ′(φn)

〉
= N

Z

∫
RN+

dNφ
∑

n

NW ′(φn)
∏
s �=t

(φs − φt) exp

{
−

N∑
s=1

NW (φs)

}

= N

Z

∑
n

∫
RN+

dNφ
∏
s �=t

(φs − φt)

(
− ∂

∂φn
exp

{
−

N∑
s=1

NW (φs)

})

= N

Z

∑
n

∫
RN+

dNφ

⎛⎝ ∂

∂φn

∏
s �=t

(φs − φt) exp

{
−

N∑
s=1

NW (φs)

}⎞⎠
=

∑
n

〈∑
t �=n

2

φn − φt

〉
= 0. (25)
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Collecting these, we obtain the loop equation

ω(z)2 −
∮

CR+

dw

2π i

W ′(w)

z − w
ω(w) + 1

N 2

d

dTz
ω(z) = 0. (26)

Note that this is of the same form as that of the ordinary matrix models except for the integration
region.

Once the resolvent is determined by the loop equation, so are the density function by Eq. (23) and
the coupling dependence on {tp} of the free energy by Eq. (17), and similarly for the other coupling
dependence. For example, when δW (�) = ∑

p≥0 up�
p log �, the other coupling dependence on

{up} of the free energy is determined by

d

dUz
F = −N 2υ(z), (27)

where d
dUz

= ∑
p≥0

−1
zp+1

∂
∂up

and υ(z) is the vacuum expectation value of the generating function of
singlet operators of the form Tr(�p log �):

υ(z) := 1

N
Tr

〈
log �

z − �

〉
= 1

N

N∑
s=1

〈
log φs

z − φs

〉
, (28)

which is computed by using the resolvent ω(z) as

υ(z) =
∫

R+
dxρ(x)

log x

z − x
=

∮
CR+

dw

2π i
ω(w)

log w

z − w
. (29)

Similarly, the λ̃ dependence of the free energy is determined as

∂F

∂λ̃
= −∂ log N

∂λ̃
− N

2̃λ2

〈
N∑

s=1

(log φs)
2

〉
= −∂ log N

∂λ̃
− N 2

2̃λ2

∫
R+

dxρ(x)(log x)2

= −∂ log N

∂λ̃
− N 2

2̃λ2

∮
CR+

dw

2π i
ω(w)(log w)2. (30)

Acting d
dTz

and d
dUz

on the free energy gives correlators of singlet operators such that(
m∏

l=1

d

dUwl

)(
n∏

k=1

d

dTzk

)
(−F) = N n+m

〈
m∏

l=1

Tr
(

log �

wl − �

) n∏
k=1

Tr
(

1

zk − �

)〉
conn

(31)

with n > 1, where the subscript conn means the connected part of the correlator. It is also possible
to compute correlators including some number of the operator Tr(log �)2 by differentiating the free
energy several times with respect to λ̃.

We remark that it is not guaranteed and has to be confirmed that correlators computed in this way
agree with those computed from the original theory by using the path integral.3 In other words, the
potential of the matrix model generally depends on operators inserted in the path integral. This can
easily be seen by considering a partition function of some supersymmetric theory computed by using
the localization method. Since correlators of non-supersymmetric operators cannot be computed by

3 The author would like to thank S. Sugimoto for discussion on this point.
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the exact method, the potential of the matrix model cannot be reused to compute correlators of non-
supersymmetric operators. In this context the matrix model potential is available when operators
inserted in the path integral or parameters deforming the original theory maintain supersymmetry.

4. Solution of the loop equation

In this section we solve the loop equation in Eq. (26) in the 1/N expansion. The analysis will depend
on the large-N behavior of the potential. Generically it can be written as

W (φ) = W0(φ) + 1

N
W1(φ), (32)

where W0(φ), W1(φ) do not depend on N . For explicit calculation maintaining a certain extent of
the generality we study the case where the potential is given by Eq. (14) with λ̃, tp of order one:

W0(φ) = 1

2̃λ
(log φ)2 + log φ +

∞∑
p=0

tpφ
p + · · · . (33)

In the examples of supersymmetric Chern–Simons theory in Sect. 2, this case corresponds to the
’t Hooft limit with the number of flavors NF of order N . Accordingly, the consistent 1/N expansion
of the resolvent will be such that

ω(z) =
∞∑

g=0

(N−2gωg(z) + N−2g−1ωg+ 1
2
(z)) =

∑
ḡ∈ 1

2 N

N−2ḡωḡ(z). (34)

Plugging this into the loop equation and expanding with respect to 1/N , the loop equation is
decomposed as follows. For g = 0,

ω2
0(z) =

∮
CR+

dw

2π i

W ′
0(w)ω0(w)

z − w
, (35)

K̂ω 1
2
(z) = −

∮
CR+

dw

2π i

W ′
1(w)ω0(w)

z − w
, (36)

which we call the genus-zero and genus-half loop equations respectively for convenience, and for
g ≥ 1,

K̂ωg(z) =
g−1∑
g′=1

ωg′(z)ωg−g′(z)

+
g−1∑
g′=0

ωg′+ 1
2
(z)ωg−g′− 1

2
(z) −

∮
CR+

dw

2π i

W ′
1(w)ωg− 1

2
(w)

z − w
+ d

dTz
ωg−1(z),

K̂ωg+ 1
2
(z) = 2ωg(z)ω 1

2
(z) +

g−1∑
g′=1

2ωg′(z)ωg−g′+ 1
2
(z) −

∮
CR+

dw

2π i

W ′
1(w)ωg(w)

z − w
+ d

dTz
ωg− 1

2
(z),

(37)

where we define

K̂ f (z) :=
∮

CR+

dw

2π i

W ′
0(w)

z − w
f (w) − 2ω0(z)f (z). (38)
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From these equations, ωḡ(z) can be determined in order from ḡ = 0. Once the resolvent is determined
at the order ḡ in the 1/N expansion, so is the density function from Eq. (23) as

ρḡ(x) = ωḡ(x − iε) − ωḡ(x + iε)

2π i
, (39)

where ρ(z) = ∑∞
g=0(N

−2gρg(z) + N−2g−1ρg+ 1
2
(z)) = ∑

ḡ∈ 1
2 N N−2ḡρḡ(z). The coupling

dependence of the free energy on tp is determined from Eq. (17) as

d

dTz
F0 = 1

z
− ω0(z),

d

dTz
Fḡ = −ωḡ(z), (40)

where ḡ ≥ 1
2 and F = ∑∞

g=0(N
2−2gFg + N 1−2gFg+ 1

2
) = ∑

ḡ∈ 1
2 N N 2−2ḡFḡ .

4.1. Planar solution

Let us solve the planar loop equation of Eq. (35). First we show that the planar loop equation
contains the saddle point equation of the starting matrix model in the large-N limit. For this purpose
we compute the discontinuity of both sides in Eq. (35) between x − iε and x + iε. The discontinuity
of the left-hand side is

(ω0(x − iε) − ω0(x + iε))(ω0(x − iε) + ω0(x + iε)) = 2π iρ0(x)(ω0(x − iε) + ω0(x + iε)),

where we used Eq. (39). That of the right-hand side is∫
R+

dyW ′
0(y)

(
ρ0(y)

x − iε − y
− ρ0(y)

x + iε − y

)
=

∫
R+

dyW ′
0(y)ρ0(y)2π iδ(x − y) = W ′

0(x)2π iρ0(x).

Therefore we obtain

ω0(x − iε) + ω0(x + iε) = W ′
0(x), (41)

with x in the support of the density function in the leading order of the 1/N expansion. This is the
same as the saddle point equation derived from the starting matrix model in Eq. (13) in the large-N
limit.

Suppose that the support of the density function consists of s distinct connected intervals,
supp(ρ0) = ∪s

i=1[a2i−1, a2i], where 0 < a1 < · · · < a2s. Taking account of the fact that the
loop planar equation in Eq. (35) is quadratic, we make each interval correspond to a square root cut
of the solution. Under this ansatz we solve Eq. (41). Let us consider a trial function H (z) that sees

the deviation of the resolvent from the s-cut square root function h(z) =
√∏2s

i=1(z − ai):

ω0(z) = h(z)H (z). (42)

As mentioned in the previous section, we solve the loop equation so that the resolvent behaves as
ω0(z)∼1

z in the limit approaching infinity. This suggests that the trial function behaves as H (z)∼ 1
zs+1

up to the signature, and thus is analytic around infinity. Therefore, using the Cauchy theorem we
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find that4 ∮
C∞

dw

2π i

H (w)

w − z
= 0, (43)

where z is a complex number outside supp(ρ0) and C∞ is an infinitely large circle. Assuming further
that the trial function is analytic except for the support of the leading density function, we can
compute the left-hand side by deforming the contour to the non-analytic region:

H (z) +
∮

Csupp(ρ0)

dw

2π i

H (w)

w − z
= H (z) + −

∫
supp(ρ0)

dy

2π i

W ′
0(y)

(y − z)h(y)
, (44)

where we used Eq. (41) in advance and Csupp(ρ0) denotes a circle encircling the intervals supp(ρ0)

counterclockwise. Therefore the trial function is determined as

H (z) = − −
∫

supp(ρ0)

dy

2π i

W ′
0(y)

(y − z)h(y)
= −

∮
Csupp(ρ0)

dw

2π i

W ′
0(w)

(w − z)h(w)

1

2
, (45)

so is the planar resolvent:

ω0(z) = −h(z)

2

∮
Csupp(ρ0)

dw

2π i

W ′
0(w)

(w − z)h(w)
. (46)

Then the planar density function is computed from Eq. (39) as

ρ0(x) = h(x)

π i
−
∫

supp(ρ0)

dy

2π i

W ′
0(y)

(x − y)h(y)
, (47)

with x ∈ supp(ρ0) = ∪s
i=1[a2i−1, a2i] and h(x) := h(x − iε) for x ∈ R+.

The endpoints of the cuts are determined in the following way. Assume that the solution obtained
above behaves asymptotically as ω0(z) = 1

z + · · · approaching infinity. This is satisfied if and
only if

1

2

∮
Csupp(ρ0)

dw

2π i

wkW ′
0(w)

h(w)
= ±δk ,s ∀k = 0, . . . , s, (48)

where the signature is chosen suitably. These give s + 1 constraints for 2s endpoints of the cuts,
which is not sufficient unless s = 1. For the s ≥ 2 case, the residual conditions are provided by
stability against the tunneling of eigenvalues between different cuts [39]. We demonstrate the residual
condition following Ref. [40]. First we write the total matrix model potential in terms of the density
function in the large-N limit:

Vtot

N 2 =
∫

R+
dx�0(x)W0(x) − −

∫
R+

dxdy�0(x)�0(y) log |x − y| − μ

(∫
R+

dx�0(x) − 1
)

, (49)

4 One may more generally conclude that, for example,
∮

C∞
dw
2π i

(ws+P1(z)ws−1+···+Ps−1(z))H (w)

w−z = 0, where Pi(z)
are polynomials of z. The resolvent obtained from this form in the same way as described below at first looks
different from Eq. (46), but reduces to the same form by using the boundary condition, which is the same as
Eq. (48). We give a comment on this point below.
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where μ is a Lagrange multiplier and �0 is the dynamical planar density function determined by the
saddle point equation

W0(x) − 2 −
∫

R+
dy�0(y) log |x − y| − μ = 0. (50)

Differentiating this with respect to x leads to Eq. (41), which we solved as Eq. (46). This suggests
that integrating Eq. (41) with respect to x does not get back to Eq. (50), because the density function
is not analytic on the edges of the cuts so integration of Eq. (41) takes different values on each
interval in general. Requiring those values to be the same (as μ) gives a non-trivial condition.5 To
write down the condition we define a function μ̃ on R+ by

μ̃(x):=Re
[

W0(x) − 2 −
∫

R+
dyρ̃0(y) log(x − y)

]
, (51)

where ρ̃0(y) is defined by the analytic continuation of ρ0(y) from an interval to the whole positive
real axis. Then the function ρ̃0(x) takes pure imaginary values outside supp(ρ0). Differentiating with
respect to x gives μ̃(x)′ = Re[−2π iρ̃0(x)], which suggests that the derivative of μ̃(x) vanishes on
each cut and thus μ̃(x) is constant on each cut, as expected. The condition for all of these constants
to be equal can be written as μ̃(a2i − ε) = μ̃(a2i+1 + ε) ∀i = 1, 2, . . . , s − 1. Since

μ̃(a2i+1 + ε) − μ̃(a2i − ε) =
∫ a2i+1+ε

a2i−ε

dxμ̃(x)′ =
∫ a2i+1+ε

a2i−ε

dx(−2π iρ̃0(x)) = −
∮

βi

dwω0(w),

where βi = C[a2i ,a2i+1] is a circle encircling the interval [a2i, a2i+1] counterclockwise, we obtain6∫ a2i+1+ε

a2i−ε

dxρ̃0(x) = 0 or
∮

βi

dwω0(w) = 0 (52)

∀i = 1, 2, . . . , s − 1. These yield the residual s − 1 constraint equations to fix the 2s endpoints of the
cuts.

There is a comment on the solution in Eq. (46). By using the condition in Eq. (48), the solution
can be rewritten in a different form such as

ω0(z) = −h(z)

2zk

∮
Csupp(ρ0)

dw

2π i

wkW ′
0(w)

(w − z)h(w)
, (53)

where k = 0, 1, . . . , s. On the other hand, this form of solution can be obtained directly by starting
with a different equation from Eq. (43) as mentioned in footnote 4. Then the cuts can be determined
not only by the asymptotic condition ω0(z) = 1

z + · · · with z ∼ ∞, but also the fact that ω0(z) is
non-singular around z ∼ 0. These two conditions give the condition in Eq. (48).

The free energy in the leading order of the 1/N expansion is easily determined as

F0 = Vtot − lim
N→∞

log N

N 2 (54)

5 It is possible to consider a case where the Lagrange multiplier in Eq. (49) takes different values on each
interval. In this case their values become parameters of the theory and play the role of a kind of chemical
potential.

6 The chemical potentials mentioned in footnote 5 can be added such that
∮

βi
dwω0(w) = μi for

i = 1, 2, . . . , s − 1.
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with Eq. (50). From this expression, we can reproduce the derivatives of the free energy with respect
to the coupling constants obtained in the previous section. For example, acting d

dTz
on Eq. (54) yields

dF0

dTz
=

∫
R+

dxρ0(x)
dW0(x)

dTz
=

∫
R+

dxρ0(x)
−x

z(z − x)
= 1

z
−
∫

R+
dx

ρ0(x)

z − x
, (55)

where we used Eq. (50),
∫

R+dxρ0(x) = 1, and Eq. (33). This is nothing but the equation in
Eq. (40).

4.2. Hole correction

The hole correction of the resolvent is determined by the genus-half loop equation in Eq. (36).
Let us derive the saddle point equation at this order from Eq. (36). For this purpose let us rewrite
Eq. (36) as

∮
CR+

dw

2π i

W ′
1(w)ω0(w) + W ′

0(w)ω 1
2
(w)

z − w
− 2ω0(z)ω 1

2
(z) = 0. (56)

As in the planar case, we compute the discontinuity of the left-hand side between x − iε and x + iε.
The discontinuity of the first term is computed as∫

R+
dy(W ′

1(y)ρ0(y) + W ′
0(y)ρ 1

2
(y))

(
1

x − iε − y
− 1

x + iε − y

)
= 2π i(W ′

1(x)ρ0(x) + W ′
0(x)ρ 1

2
(x)).

That of the second term is

−2π i(ρ0(x)(ω 1
2
(x − iε) + ω 1

2
(x + iε)) + W ′

0(x)ρ 1
2
(x)).

Therefore we obtain

ω 1
2
(x − iε) + ω 1

2
(x + iε) = W ′

1(x) (57)

with x ∈ supp(ρ0). Combining this with the planar saddle point equation in Eq. (35) we obtain

ω0, 1
2
(x − iε) + ω0, 1

2
(x + iε) = W ′(x) (58)

with x ∈ supp(ρ0), where we set ω0, 1
2

:= ω0 + N−1ω 1
2
. This is the same form as the planar saddle

point equation in Eq. (35), replacing W0(x) with W (x), and the previous argument to solve this
equation holds without any modification. Therefore a solution of the usual saddle point equation
is correct up to the order of hole correction! This is a nice simplification, while the caveat is the
region that Eq. (58) holds. That is, the region where we need to solve Eq. (58) is on supp(ρ0).
However, when we solve Eq. (58) as done in Sect. 4 the cut appears as the support of the density
function including the hole correction, supp(ρ0, 1

2
). This small discrepancy may imply that the loop

equation can be solved by assuming that the support of the planar density function matches the one
including the hole correction. This assumption may be important to separate out the genus-half one
from ω0, 1

2
(z). We expect that the discussion above will hold in more general matrix models such as

two-matrix models. We leave the proof of this conjecture to future work.
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4.3. Genus-one correction

Let us determine the genus-one correction of the resolvent. For simplicity we first study the case
where W1 = 0, so ω 1

2
= 0. In this case the genus-one loop equation, Eq. (37) with g = 1,

reduces to

K̂ω1(z) = d

dTz
ω0(z). (59)

This can be solved in the same manner as in the ordinary Hermitian matrix model [33,34]. Let us
first compute the right-hand side:

dω0(z)

dTz
= d log h(z)

dTz
ω0(z) + h(z)

2

∮
Csupp(ρ0)

dw

2π i

dW ′
0(w)

dTz
− W ′

0(w)
d log h(w)

dTz

(z − w)h(w)

= d log h(z)

dTz
ω0(z) + h(z)

2

∮
Csupp(ρ0)

dw

2π i

−1

(z − w)3h(w)
+ h(z)

2

∮
Csupp(ρ0)

dw

2π i

−W ′
0(w)

d log h(w)
dTz

(z − w)h(w)
.

Then the second term is computed as

h(z)

2

∮
Cz

dw

2π i

1

(z − w)3h(w)
= −h(z)

2

1

2

(
1

h(z)

)′′
= −1

4

⎛⎝3

4

2s∑
i=1

1

(z − ai)2 + 1

2

∑
i<j

1

(z − ai)(z − aj)

⎞⎠.

The third term is

h(z)

2

2s∑
i=1

d(−ai)

dTz

∮
Csupp(ρ0)

dw

2π i

−W ′
0(w)

2(z − w)h(w)(w − ai)
= −d log h(z)

dTz
ω0(z) +

2s∑
i=1

dai

dTz

1

z − ai

1

4
h(z)M (1)

i ,

where we set

M (k)
i :=

∮
Csupp(ρ0)

dw

2π i

W ′
0(w)

h(w)(w − ai)k
. (60)

Therefore we obtain

dω0(z)

dTz
= −

⎛⎝ 3

16

2s∑
i=1

1

(z − ai)2 + 1

8

∑
i<j

1

(z − ai)(z − aj)

⎞⎠ +
2s∑

i=1

dai

dTz

1

z − ai

1

4
h(z)M (1)

i . (61)

In order to compute dai
dTz

, we act d
dTz

on the constraint equations of the edges of the cuts, Eqs. (48)
and (52):

∮
Csupp(ρ0)

dw

2π i
wk

d
dTz

W ′
0(w) − W ′

0(w) d
dTz

log h(w)

h(w)
= 0, k = 0, 1, . . . , s, (62)

∫ a2l+1

a2l

dx
d

dTz

(
W ′

0(x) − 2ω0(x)
) = 0, l = 1, 2, . . . , s − 1, (63)
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where we used 2π iρ̃0(x) = W ′
0(x) − 2ω0(x). These are computed as

kzk−1

h(z)
+ 1

2

2s∑
i=1

(
ak

i
dai

dTz
M (1)

i − zk

h(z)(z − ai)

)
= 0, (64)

1

2

2s∑
i=1

Kl,i

h(z)(z − ai)
+ 1

2

2s∑
i=1

Kl,i
d(−ai)

dTz
M (1)

i = 0, (65)

where Kl,i := ∫ a2l+1
a2l

dx h(x)
(x−ai)

. The solution can be written as

dai

dTz
= 1

M (1)
i

(
1

h(z)(z − ai)
+

s−2∑
l′=0

αi,l′
zl′

h(z)

)
, (66)

where αi,l are determined by plugging this back in and setting the coefficients of polynomials with
respect to z to zero. The determining equations of αi,l are:

2s∑
i=1

(ak
i αi,l′ − ak−1−l′

i ) = 0 (0 ≤ l′ ≤ k − 2),
1

2

2s∑
i=1

ak
i αi,k−1 + k − 1

2
= 0, (67)

2s∑
i=1

ak
i αi,l′ = 0 (k ≤ l′ ≤ s − 2), (68)

2s∑
i=1

Kl,iαi,l′=0 (1 ≤ l ≤ s − 1, 0 ≤ l′ ≤ s − 2). (69)

Substituting Eq. (66) into Eq. (61), we find

dω0(z)

dTz
= 1

16

∑
i

1

(z − ai)2 − 1

8

∑
i<j

1

(z − ai)(z − aj)
+ 1

4

2s∑
i=1

s−2∑
l′=0

1

z − ai
αi,l′a

l′
i . (70)

This can be rewritten as the image of the linear operator K̂ in such a way that

dω0(z)

dTz
= K̂

[
1

16

∑
i

χ
(2)
i (z) − 1

8

∑
i<j

χ
(1)
i (z) − χ

(1)
j (z)

ai − aj
+ 1

4

2s∑
i=1

s−2∑
l′=0

χ
(1)
i (z)αi,l′a

l′
i

]
, (71)

where χ
(n)
i (z) satisfies K̂χ

(n)
i (z) = 1

(z−ai)n for n ≥ 1. χ
(n)
i (z) is constructed inductively as follows.

Start with the identity

1

(z − w)(w − ai)n
= 1

(z − w)(z − ai)n
+

n∑
k=1

1

(z − ai)k(w − ai)n−k+1
(72)

∀n ≥ 1. Acting
∮
Csupp(ρ0)

dw
2π i

W ′
0(w)

h(w)
on both sides and computing the right-hand side results in

∫
Csupp(ρ0)

dw

2π i

W ′
0(w)

h(w)

1

(z − w)(w − ai)n
= 2ω0(z)

1

h(z)(z − ai)n
+

n∑
k=1

M (n−k+1)
i

(z − ai)k
. (73)
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Equivalently,

K̂

(
1

h(z)(z − ai)n

)
=

n∑
k=1

M (n−k+1)
i

(z − ai)k
. (74)

The case with n = 1 implies that χ
(1)
i (z) = 1

M (1)
i

1
h(z)(z−ai)

. Assuming that χ
(n)
i (z) is constructed

so that K̂χ
(n)
i (z) = 1

(z−ai)n is valid for n ≤ n − 1, we can rewrite the right-hand side as
M (1)

i
(z−ai)n

+∑n−1
k=1 M (n−k+1)

i K̂χ
(k)
i (z). Therefore we find that

K̂

(
1

M (1)
i

(
1

h(z)(z − ai)n
−

n−1∑
k=1

M (n−k+1)
i χ

(k)
i (z)

))
= 1

(z − ai)n
. (75)

Hence, if we define χ
(n)
i (z) by

χ
(n)
i (z) = 1

M (1)
i

(
1

h(z)(z − ai)n
−

n−1∑
k=1

M (n−k+1)
i χ

(k)
i (z)

)
, (76)

then K̂χ
(n)
i (z) = 1

(z−ai)n is valid for n = n. By using this function we finally solve the genus-one
loop equation as

ω1(z) = 1

16

2s∑
i=1

χ
(2)
i (z) − 1

8

∑
i<j

χ
(1)
i (z) − χ

(1)
j (z)

ai − aj
+ 1

4

2s∑
i=1

s−2∑
l′=0

χ
(1)
i (z)αi,l′a

l′
i (77)

up to terms in the kernel of the operator K̂ such as zm

h(z) with m = 0, . . . , s. Note that ω1(z) behaves at

most as 1
zs+1 , and thus the leading asymptotic behavior of the total resolvent ω(z) is unchanged; so

is the cut. From Eq. (77), the coupling dependence of the genus-one free energy can be determined.
For example, the dependence on tp is determined by Eq. (40), and that on λ̃ is by Eq. (30).7

Next we consider the case where the matrix model potential contains the 1/N correction: W1(w) �=
0. In this case, as derived in Eq. (37), the genus-one loop equation is corrected by the genus-half

resolvent so that K̂ω1(z) = ω 1
2
(z)2 − ∮

CR+
dw
2π i

W ′
1(w)ω 1

2
(w)

z−w + d
dTz

ω0(z). This equation is more involved
and there may be some simplification in the way that the planar resolvent and the genus-half one
can be determined at the same time as shown in Sect. 4.2. To see this, consider the deviation of
the resolvent from the solution ω(z) = ω0, 1

2
(z) + δω(z) and substitute this into the original loop

equation of Eq. (26). We obtain

2ω0, 1
2
(z)δω(z) + δω(z)2 −

∮
CR+

dw

2π i

W ′(w)

z − w
δω(w) + 1

N 2

d

dTz
(ω0, 1

2
(z) + δω(z)) = 0. (78)

Since ω0, 1
2

is of order one, δω(z) is of order 1/N 2: δω = N−2ω̃1 +O(N−3). Therefore, at the leading
order of the 1/N expansion this reduces to

K̂ω̃1(z) = d

dTz
ω0, 1

2
(z), (79)

7 The differential equation in Eq. (40) will be solved as in the original Hermitian matrix model for the
one-cut case [33] and the two-cut case [34], though such explicit solutions of the genus-one free energy do not
contain the information about the dependence on other coupling constants such as λ̃.
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where we define K̂ by

K̂f (z) :=
∮

CR+

dw

2π i

W ′(w)

z − w
f (w) − 2ω0, 1

2
(z)f (z). (80)

This equation is of the same form as the one without the hole correction by replacing ω0, W0 with
ω0, 1

2
, W , respectively. Since the above argument to solve this equation holds as it is by performing

the replacement, a solution of Eq. (79) is given in the same form as Eq. (77), where ai and M (n)
i are

replaced with the ones including the hole correction. We emphasize that this simplification happens
only at the genus-one order, and at higher order one may need to solve Eq. (37) in general.

5. Applications

In this section we apply the presented formulation developed in the previous section to a few examples.
First we apply it to the three-sphere partition function in U(N )k pure Chern–Simons theory in order
to test the presented framework by comparing with the exact result known for pure Chern–Simons
theory as reviewed in the appendix. Secondly, we apply it to N = 2 U(N )k Chern–Simons theory
with nF fundamental chiral multiplets and n̄F anti-fundamental ones. This system does not admit
the Fermi gas analysis in general, and there may be no systematic way to study the system beyond
the spherical limit except for our formulation at present.

5.1. Pure Chern–Simons theory

The matrix model potential for pure Chern–Simons theory is given by Eq. (13) with Eq. (10). For
simplicity we first study the case where there is no hole correction. Then W ′(w) = W ′

0(w) = log w
wλ̃

+ 1
w .

Let us first determine the planar resolvent. For λ̃ > 0, the potential has only one stable minimum
so we have only to consider a solution with one cut: supp(ρ0) = [a−, a+] with 0 < a− < a+. In
order to simplify the integration we start with a solution of the form of Eq. (53) with k = 1:

ω0(z) = −h(z)

2z

∮
C[a− ,a+]

dw

2π i

log w
λ̃

+ 1

(w − z)h(w)
, (81)

where h(z) = √
(z − a−)(z − a+). Inflating the contour we can compute the right-hand side as

ω0(z) = h(z)

2z

∮
C(−∞,0]

dw

2π i

log w
λ̃

(w − z)h(w)
+ h(z)

2z

log z
λ̃

+ 1

h(z)

=
log

(
(a−+a+)z−2a−a+−2

√
a−a+h(z)

(−a−−a+−2h(z)+2z)

)
2̃λz

+ 1

2z
, (82)

where we computed the first term as

h(z)

2̃λz

∫ 0

−∞
dw

2π i

(log |w| − π i) − (log |w| + π i)

(w − z)h(w)
= h(z)

2̃λz

log
(

(a−+a+)z−2a−a+−2
√

a−a+h(z)
z(−a−−a+−2h(z)+2z)

)
h(z)

. (83)

The edges of the cut, a−, a+, are determined by the asymptotic behavior around infinity and the
regularity around the origin. ω0(z) can approach 1

z when z → −∞, which is achieved if and only

if log
(

a−+a++2
√

a−a+
2+2

)
= λ̃. ω0 is regular at the origin if and only if log

( −4a−a+
−a−−2

√
a−a+−a+

)
= −̃λ.
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(a) (b)

Fig. 1. (a) The blue and yellow curves depict the matrix model potential and the planar density function,
respectively, when λ̃ = 0.5. The eigenvalues tend to clump around the potential minimum. (b) The differen-
tiation of the planar free energy with respect to λ̃ is plotted. The blue curve depicts the result obtained by the
resolvent method and the yellow one is from the past exact result. They almost coincide.

These can be solved as a± = (e
λ̃
2 ±

√
ẽλ − 1)2. Note that a−a+ = 1. Then the planar resolvent can

be simplified as

ω0(z) = 1

λ̃z
log

(
z + 1 + h(z)

2

)
. (84)

The planar density function is computed as

ρ0(x) =
tan−1

(√
(x−a−)(a+−x)

1+x

)
πλ̃x

. (85)

This solution matches the one given in Ref. [36], where the solution is expressed in the original
coordinates. We plot the density function as well as the potential in Fig. 1(a).

The planar free energy is given by Eq. (54) and its λ̃ derivative is Eq. (30):

∂F0

∂λ̃
= 1

12
− 1

2̃λ2

∫ a+

a−
dxρ0(x)(log x)2. (86)

We could not perform the integration on the right-hand side analytically, so instead we evaluated it
numerically. The numerical result is in good agreement with the past exact result of Eq. (A19), as
can be seen in Fig. 1(b).

Next we study the genus-one correction. Now we consider the one-cut solution, so the genus-one
correction of the resolvent is given by

ω1(z) = 1

16
(χ

(2)
− (z) + χ

(2)
+ (z)) − 1

8

1

a− − a+
(χ

(1)
− (z) − χ

(1)
+ (z)), (87)

where χ± are defined by Eq. (76). M (1)
± , M (2)

± are computed by Eq. (60). As in the computation of
the resolvent, the integration can be simplified by using Eq. (48):

M (1)
± = 1

a±

∮
C[a− ,a+]

dw

2π i

wW ′
0(w)

h(w)(w − a±)

= 1

λ̃a±

∮
C[a− ,a+]

dw

2π i

log w

h(w)(w − a±)
+ 1

a±

∮
C[a− ,a+]

dw

2π i

1

h(w)(w − a±)
.
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By inflating the contour to infinity, the first term is computed as

−1

λ̃a±

∫ 0

−∞
dy

−1

h(y)(y − a±)
= −1

λ̃a±

(
2
√

w − a∓
(a± − a∓)

√
w − a±

) ∣∣∣∣0−∞
= −2

λ̃a±
√

a±(
√

a± + √
a∓)

,

and the second term vanishes. Therefore M (1)
± = −2

λ̃a3/2
± (

√
a±+√

a∓)
. In the same way, M (2)

± are computed

as M (2)
± = 2(5

√
a±+4

√
a∓)

3a5/2
± λ̃(

√
a±+√

a∓)
2 .

The genus-one correction of the free energy is computed by using Eq. (30):

∂F1

∂λ̃
= 1

12
− 1

2̃λ2

∫ a+

a−
dxρ1(x)(log x)2 = 1

12
− 1

λ̃2

∫ 0

−∞
dxω1(x) log(−x). (88)

This time we could perform the integral analytically:

∂F1

∂λ̃
= ẽλ(̃λ − 2) + λ̃ + 2

24(ẽλ − 1)̃λ
=

λ̃ coth
(

λ̃
2

)
− 2

24̃λ
. (89)

This result is in precise agreement with the past exact result of Eq. (A20) with ζ = 0.
Next we consider the case where the matrix model potential has a hole correction by the “FI

parameter”:8 W ′(w) = log w
wλ̃

+ 1+ ζ̃
N

w with ζ̃ = i ζ
2 , which is still integrable as shown in the appendix.

As discussed in Sect. 4.2, we solve the usual saddle point equation ω(x − iε) + ω(x + iε) = W ′(x),
which is correct up to the hole order. To emphasize the difference from the previous computation
we denote the cut with a prime, so that supp(ρ0, 1

2
) = [a′−, a′+]. Then a solution of this saddle point

equation, ω0, 1
2
(x), is given by

ω0, 1
2
(z) = −h́(z)

2z

∮
C[a′− ,a′+]

dw

2π i

log w
λ̃

+ 1 + ζ̃
N

(w − z)h́(w)
, (90)

where h́(z) = √
(z − a′−)(z − a′+). This can be computed in the same way as previously and we

obtain9

ω0, 1
2
(z) =

log

(
(a′−+a′+)z−2a′−a′+−2

√
a′−a′+h́(z)(

−a′−−a′+−2h́(z)+2z
)

)
2̃λz

+ 1 + ζ̃
N

2z
. (91)

The edges of the cut are also determined in the same way. The result is a′± = ca±, where c = e−̃λ
ζ̃
N

and a± are the same as previously. By using this, the resolvent up to the hole order is simplified as

8 The usage of this terminology can be justified by adding some auxiliary fields into the pure Chern–Simons
theory so that the theory has N = 2 supersymmetry.

9 The planar resolvent and the hole one are determined from this by

ώ0(z) =
log

(
(a′−+a′+)z−2a′−a′+−2

√
a′−a′+ h́(z)(

−a′−−a′+−2h́(z)+2z
)

)
2̃λz

+ 1

2z
, ω 1

2
(z) = ζ̃

2z
,

which should be done before the edges of the cuts are determined.
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ω0, 1
2
(z) = c−1ω0(ź), where ź = c−1z. As argued in Sect. 4.3, the genus-one resolvent is given by

ω̃1(z) = 1

16
(χ́

(2)
− (z) + χ́

(2)
+ (z)) − 1

8

1

a′− − a′+
(χ́

(1)
− (z) − χ́

(1)
+ (z)), (92)

where χ́
(n)
i (z) is given by Eq. (76) with ai replaced by a′

i. By using a′± = ca±, the genus-one resolvent
including the FI term can be written as ω̃1(z) = c−2ω1(ź). Finally, we compute the differentiation
of the total free energy with respect to λ̃:

∂F́

∂λ̃
= 7N 2 − 1

12
− N 2

2̃λ2

∫ a′+

a′−
dxρ0, 1

2
(x)(log x)2 − 1

2̃λ2

∫ a′+

a′−
dxρ́1(x)(log x)2 + · · · , (93)

where the ellipsis represents the terms of order N−3. Then the second term is computed as

− N 2

2̃λ2

∫ a′+

a′−
dxρ0, 1

2
(x)(log x)2 = − N 2

2̃λ2

(∫ a+

a−
dx́ρ0(x́)(log x́)2 + (log c)2

)
.

The third term is

− 1

2̃λ2

∫ a′+

a′−
dxρ́1(x)(log x)2 = − 1

λ̃2

∫ 0

−∞
dxω̃1(x) log(−x) = −c−1

λ̃2

∫ 0

−∞
dx́ω1(x́) log(−x́).

As a result, we obtain

∂F́

∂λ̃
= ∂F

∂λ̃
− N 2

2̃λ2
(log c)2 + · · · = ∂F

∂λ̃
− ζ̃ 2

2
+ · · · . (94)

This is in perfect agreement with the past exact result of Eq. (A20).

5.2. N = 2 Chern–Simons theory with arbitrary numbers of fundamental and
anti-fundamental chiral multiplets

As another example we consider the matrix model of N = 2 Chern–Simons theory with
nf fundamental chiral multiplets and n̄f anti-fundamental ones with the canonical R-charge.
Let us set

n(±)
f = nf ± n̄f . (95)

Without losing generality, we can assume that nf ≥ n̄f . The matrix model potential of this system is
given by combining Eqs. (7) and (8):

W (φs) = 1

2̃λ
(log φs)

2 +
(

1 + ζ̃

N

)
log φs + n̄f

N
log

(√
φs + 1/

√
φs

2

)
− n(−)

f

N
�

(−i log φs

2π
+ 1

2

)
.

(96)

Its derivative is

W ′(w) = log w

wλ̃
+ 1 + ζ̃

N

w
+ 1 − w

2w(1 + w)

1

N

(
n(−)

f
i log w

2π
− n(+)

f
1

2

)
, (97)

where we used �′(z) = −πz cot(πz). Thus it is clear that the matrix model potential takes complex
values for a general number of chiral multiplets.
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In order to determine the number of cuts in the resolvent by identifying that of the potential
minimum, we regard the matrix model potential as an analytic function with all the parameters.
When n(−)

f is pure imaginary and λ̃, ζ̃ , and n(+)
f are real, the potential becomes real. We fix the

number of cuts of the resolvent in this situation.
We consider the large-k , N limit, holding its ratio and the other parameters ζ̃ , n(±)

f fixed. In this
limit the potential has only one stable minimum, as in the case of pure Chern–Simons theory, so we
have only to consider a solution with one cut: supp(ρ0) = [a−, a+] with 0 < a− < a+.

We compute the resolvent up to the hole correction by Eq. (53) with k = 1:

ω0, 1
2
(z) = −h(z)

2z

∮
C[a− ,a+]

dw

2π i

log w
λ̃

+ 1 + ζ̃
N + 1−w

2(1+w)
1
N

(
n(−)

f
i log w

2π
− n(+)

f
1
2

)
(w − z)h(w)

, (98)

where h(z) = √
(z − a−)(z − a+). Inflating the contour we can compute the right-hand side by

picking up the pole as

ω0, 1
2
(z) = h(z)

2z

∮
C(−∞,0]

dw

2π i

log w
λ̃

+ n(−)
f
N

i log w
4π

1−w
1+w

(w − z)h(w)
+ h(z)

2z

1
N

(
−n(+)

f
1
2

)
(−1 − z)h(−1)

+ h(z)

2z

log z
λ̃

+ 1 + ζ̃
N + 1−z

2(1+z)
1
N

(
n(−)

f
i log z

2π
− n(+)

f
1
2

)
h(z)

, (99)

where the first term is the contribution of the logarithmic branch cut (−∞, 0], the second one is that
of the pole at w = −1, and the third one is at w = z. We compute the integrations such that∮

C(−∞,0]

dw

2π i

log w

(w − z)h(w)
=

∫ 0

−∞
dw

−1

(w − z)h(w)
= f (z) − log(z)

h(z)
, (100)

∮
C(−∞,0]

dw

2π i

(1 − w) log w

(1 + w)(w − z)h(w)
=

∫ 0

−∞
dwP −(1 − w)

(w + 1)(w − z)h(w)
= F(z) − F(−1) + (z−1) log(z)

h(z)

z + 1
,

(101)

where

f (z) = log
(

(a− + a+)z − 2a−a+ − 2
√

a−a+h(z)

−a− − a+ − 2h(z) + 2z

)
, F(z):=

(1 − z)f (z)

h(z)
. (102)

Then the resolvent becomes

ω0, 1
2
(z) = 1

2z

⎡⎣f (z)

⎛⎝1

λ̃
+ n(−)

f

N

i

4π

1 − z

1 + z

⎞⎠ + 1 + ζ̃

N

+ 1

(z + 1)

1

N

(
−n(−)

f
i

4π
h(z)

2f (−1)

h(−1)
+ n(+)

f
1

2

h(z)

h(−1)
− n(+)

f
1 − z

4

)]
. (103)

The edges of the cut a−, a+ are determined by the asymptotic behavior around infinity and the
regularity around the origin. ω0, 1

2
(z) can approach 1

z when z → −∞, which is achieved if and
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only if

1

2

[
log

(
a− + a+ + 2

√
a−a+

2 + 2

)⎛⎝1

λ̃
− n(−)

f

N

i

4π

⎞⎠ + 1

+ 1

N

(
ζ̃ + n(−)

f
i

4π

2f (−1)

h(−1)
+ n(+)

f
1

2

−1

h(−1)
− n(+)

f
−1

4

)]
= 1. (104)

ω0, 1
2

is regular at the origin if and only if

log
( −4a−a+

−a− − 2
√

a−a+ − a+

)⎛⎝1

λ̃
+ n(−)

f

N

i

4π

⎞⎠ + 1

+ 1

N

(
ζ̃ − n(−)

f
i

4π
h(0)

2f (−1)

h(−1)
+ n(+)

f
1

2

h(0)

h(−1)
− n(+)

f
1

4

)
= 0. (105)

From these equations the edges of the cut are determined order by order in 1/N .
As argued in Sect. 4.2, the planar resolvent should be determined so as to have the same cut as that

of ω0, 1
2
(z). Since the leading part of the potential in the large-N limit is unchanged, the form of the

planar resolvent is unchanged except for the edges of the cut: Eq. (82) with ai → ai. The genus-half
resolvent is determined before the edges of the cut are expanded in the 1/N power series and given by

ω 1
2
(z) = 1

2z

[̃
ζ + f (z)

(
n(−)

f

i

4π

1 − z

1 + z

)
+ 1

(z + 1)

(
−n(−)

f

i

4π
h(z)

2f (−1)

h(−1)
+ n(+)

f

1

2

h(z)

h(−1)
− n(+)

f

1 − z

4

)]
.

(106)

Then, as argued in Sect. 4.3, the genus-one resolvent is given by

ω̃1(z) = 1

16
(χ

(2)
− (z) + χ

(2)
+ (z)) − 1

8

1

a− − a+
(χ

(1)
− (z) − χ

(1)
+ (z)), (107)

where the χ
(n)
i (z) are given by Eq. (76) with a± replaced by a±. The λ̃ derivative of the free energy

up to the genus-one order is given by

∂F

∂λ̃
= −∂ log N

∂λ̃
− N 2

2̃λ2

∫ a+

a−
dxρ0, 1

2
(x)(log x)2 − 1

λ̃2

∫ 0

−∞
dxω̃1(x) log(−x). (108)

It is known that this system has the dual description known as Seiberg-like duality [41]. The dual
theory is U(N ′)−k Chern–Simons theory with nf fundamental and n̄f anti-fundamental chiral multi-
plets, with nf n̄f mesonic operators as well as some monopole operators with a suitable superpotential,
where N ′ depends generally on N , k , nf , and n̄f , which is still in the class investigated in this paper.
It would be interesting to test the duality from our general solution. We hope to come back to this
problem in a future publication.

6. Discussion

In this paper we have performed a general analysis of a class of matrix models describing Chern–
Simons matter theories on the three-sphere incorporating the standard technique of 1/N expansion
developed in the study of ordinary Hermitian matrix models. We have derived the loop equation for
all orders in the 1/N expansion and presented its explicit solution up to the genus-one order when
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the potential has a 1/N correction. We have applied the formulation to pure Chern–Simons theory
and confirmed that the presented solution reproduces the exact result known in the past. We have
also applied the framework to N = 2 Chern–Simons theory with arbitrary numbers of fundamental
and anti-fundamental chiral multiplets, and obtained a formal expression for the solution up to the
genus-one order in the 1/N expansion.

This paper mainly focused on the construction of the framework to solve a class of matrix models.
We are very much interested in applying the formula obtained in this paper to a duality pair of Chern–
Simons matter systems and testing that the bosonization duality holds at the next leading order in
the 1/N expansion. In particular, it would be interesting to develop the presented large-N technique
in a class of unitary matrix models which arises as a partition function of Chern–Simons matter
theories on S2 ×S1. For a class of Chern–Simons vector models, the effective matrix model potential
was determined exactly in the leading order of the large-N limit [19], and the three-dimensional
bosonization was confirmed at that order. We hope that the formulation developed in this paper is
useful for future study in this direction.

In this paper, in order to study beyond the planar limit we adopted the iterative procedure given
in Refs. [33,34]. Another iterative approach has been proposed, using the Feynman graph of the
trivalent vertexes [42,43]. It would be interesting to reformulate the formula presented in this note
in terms of the different approach.

Another interesting question is whether this class of matrix models has the equivalent description
of some two-dimensional CFTs as ordinary Hermitian matrix models [44–46] (see also Ref. [47]).
Naively, the answer seems to be no due to the fact that the degrees of freedom in a three-dimensional
system are much bigger than those of a two-dimensional one in a generic situation. However, we have
a suspicion that the answer could be yes for a certain matrix model of this kind, intuitively because
vector models coupling to Chern–Simons theory appear as an effective field theory of an anyonic
system [48,49], and the wave function describing a quantum Hall state known as the Laughlin wave
function [50] is given by a correlator of certain two-dimensional (rational) CFTs [51]. In fact, it
was shown that this answer becomes yes for a similar class of matrix models to the one studied in
this paper [52], where the corresponding CFT is identified with a q-deformed one. Exploring this
question is left for future work.

There is a straightforward generalization of the presented formulation to a different gauge group
[53] or two matrices. This generalization to two matrices is important for the application to higher
supersymmetric Chern–Simons matter theories such as the ABJM theory [54]. The 1/N correction
of the free energy in the ABJM theory was computed in Refs. [55–57]. In this development, a new
technique called the Fermi gas approach was invented [56]. This approach is powerful for studying
non-perturbative aspects of theABJM theory from the S3 partition function [58,59]. It is an important
problem to test whether the traditional techniques of matrix models can reproduce the results obtained
by new ones in recent developments beyond the spherical limit.

We hope to come back to these issues in the near future.
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Appendix. Partition function of pure Chern–Simons theory on S3

In this appendix we give a brief overview of the three-sphere partition function in U(N )k pure
Chern–Simons theory, and a derivation of its large-N expansion as used in the main text.

The partition function is defined formally by a path integral over the gauge field on S3 such that10

ZCS =
∫

DA exp
{
− ik

2π

∫
S3

(
1

2
A ∧ dA − i

3
A ∧ A ∧ A

)}
. (A1)

The classic paper Ref. [60] demonstrated explicitly in the case of SU(2) that this can be exactly
determined as a function of the Chern–Simons level without performing the path integral by clarifying
its relation to a modular transformation matrix of the characters in the corresponding affine Lie
algebra. Generalization to an arbitrary gauge group is straightforward. Since modular transformation
matrices had already been determined in general affine Lie algebras [61], the exact result of the
partition function for U(N )k pure Chern–Simons theory was given by

ZCS = k− N
2

N−1∏
I=1

(
2 sin

π I

k

)N−I

. (A2)

After this exact result was studied in terms of the 1/N and 1/k expansions [62,63], it was insightfully
observed that the Chern–Simons partition function of Eq. (A2) exactly matches that of the topological
string theory on a Calabi–Yau three-fold background by identifying the string coupling constant with
the pure imaginary Chern–Simons level [64]. This led to the conjecture of gauge/geometry duality
[65] between Chern–Simons and topological string theories [66,67].

It was subsequently pointed out that the partition function in Eq. (A1) reduces to a matrix model
such that [31]

ZCS =
(−)

N (N−1)
2 exp

{−π(N−1)N (N+1)
6ik

}
i

N2
2

(2π)N N !
∫

RN
dNσ exp

{
−i

k

4π

N∑
s=1

σ 2
s

}
N∏

t �=s

2 sinh
(

σs − σt

2

)
.

(A3)

This matrix model was extensively studied in relation to topological string theory [68,69]. With the
help of the Weyl denominator formula, the matrix integral was explicitly performed by Gaussian inte-
gration in perfect agreement with Eq. (A2) [2]. This matrix model was also evaluated exactly by the
orthogonal (or characteristic) polynomial method in accordance with Eq. (A2) [70]. The orthogonal
polynomials associated with this matrix model were found to be Stiltjes–Wigert polynomials.

Let us compute the matrix model in a Fermi-gas-like approach [56] including the “FI term”:

ZCS =
(−)

N (N−1)
2 exp

{−π(N−1)N (N+1)
6ik

}
i

N2
2

(2π)N N !

×
∫

RN
dNσ exp

{
−i

k

4π

N∑
s=1

σ 2
s − i

1

2
ζ

N∑
s=1

σs

}
N∏

t �=s

2 sinh
(

σs − σt

2

)
. (A4)

10 Here, k is the renormalized Chern–Simons coupling constant so that k = κ + sgn(κ)N , where κ is the
level of the corresponding WZW model.
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For this purpose we rewrite the partition function as a determinant by using the Weyl denominator
formula

∏
s>t

2 sinh
(

σs − σt

2

)
= det

s,t

[
exp

{
σs

(
t − N + 1

2

)}]
. (A5)

From this formula we can show that∏
s �=t

2 sinh
(

σs − σt

2

)
= N !det

s,t

[
eσs(−s+t)

]
, (A6)

which enables us to rewrite the partition function as

ZCS = (−)
N (N−1)

2 exp
{−π(N − 1)N (N + 1)

6ik

}
i

N2
2 det

s,t

[∫
dσs

2π
exp

{
−(i

k

4π
σ 2

s + i
1

2
ζσs)

}
eσs(−s+t)

]
.

(A7)

The inside of the determinant is computed by Gaussian integration as follows:∫
dσs

2π
exp

{
−(i

k

4π
σ 2

s + i
1

2
ζσs)

}
eσs(−s+t) =

√
1

ik
exp

{
−π i(−i 1

2ζ − s + t)2

k

}
. (A8)

Plugging this back in gives

ZCS = (−)
N (N−1)

2 exp
{−π(N − 1)N (N + 1)

6ik

}
i

N2
2 det

s,t

[√
1

ik
exp

{
−π i(−i 1

2ζ − s + t)2

k

}]

= k
−N

2 exp
{

π iNζ 2

4k

}∏
s>t

2 sin
(

π(s − t)

k

)
,

where in the second equation we used det
s,t

[fsMs,t] = (
∏

s fs)det
s,t

[Ms,t] and the Weyl denominator

formula in Eq. (A5). By using the formula
∏

s>t 2 sin
(

π(s−t)
k

)
= ∏N

I=1(2 sin π I
k )N−I , we obtain

ZCS = k− N
2 exp

{
π iNζ 2

4k

} N−1∏
I=1

(
2 sin

π I

k

)N−I

. (A9)

Then the free energy is computed as

FCS = − log ZCS = N

2
log k − π iNζ 2

4k
−

N−1∑
I=1

(N − I ) log
(

2 sin
π I

k

)
. (A10)

The 1/N expansion was done as follows [64,66]. The expansion coefficients are determined as
functions of λ = N

k :

FCS =
∞∑

g=0

N 2−2gFg(λ). (A11)

By using

sin x = x
∞∏

n=1

(
1 −

( x

πn

)2
)

, log(1 − x) = −
∞∑

m=1

xm

m
, (A12)
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the second term in Eq. (A10) can be expanded as

−
N−1∑
I=1

(N − I ) log
(

2 sin
π I

k

)
=

N−1∑
I=1

(I − N ) log

(
2
π Iλ

N

∞∏
n=1

(
1 −

(
π Iλ/N

πn

)2
))

= −N (N − 1)

2
log

2πλ

N
+

N−1∑
I=1

(I − N ) log I +
∞∑

m=1

ζ(2m)

m

(
λ

N

)2m N−1∑
I=1

(N − I )I 2m, (A13)

where ζ(m) is the zeta function defined by ζ(s) := ∑∞
n=1

1
ns . The second term in Eq. (A13) can

be expressed by using Barn’s function as
∑N−1

I=1 (I − N ) log I = − log G(N + 1), whose large-N
expansion is known:

log G(N + 1) = N 2
(

1

2
log N − 3

4

)
+ N

2
log 2π − B2

2
log N + ζ ′(−1) +

∞∑
g=2

B2g

2g(2g − 2)
N 2−2g .

Here, Bn is the nth Bernoulli number defined by11

x

ex − 1
=

∞∑
n=0

Bn

n! xn. (A14)

The summation in the last term in Eq. (A13) can be done by using a formula such that12

N−1∑
I=1

(N − I )I 2m = N 2m+2

(2m + 1)(2m + 2)
+

m∑
g=1

(
2m

2g − 2

)
−B2g

2g
N 2m+2−2g . (A15)

Plugging these back in, we obtain the free energy as

FCS = N

2
log k − N (N − 1)

2
log

2πλ

N

+
∞∑

m=1

ζ(2m)

m
λ2m

[
N 2

(2m + 1)(2m + 2)
+

m∑
g=1

(
2m

2g − 2

) −B2g

2g
N 2−2g

]

− π iNζ 2

4k
−
(

N 2
(

1

2
log N − 3

4

)
+ N

2
log 2π − B2

2
log N + ζ ′(−1) +

∞∑
g=2

B2g

2g(2g − 2)
N 2−2g

)

= N 2
[

− 1

2
log 2πλ + 3

4
+

∞∑
m=1

ζ(2m)

m

λ2m

(2m + 1)(2m + 2)

]
+ B2

2
log N − π iNζ 2

4k

− ζ ′(−1) +
∞∑

m=1

ζ(2m)λ2m −B2

2m
+

∞∑
g=2

N 2−2g −B2g

2g(2g − 2)

[
1 +

∞∑
m=g

ζ(2m)λ2m2
(

2m − 1
2g − 3

)]
.

11 Our definition of the Bernoulli number is different from the one adopted in several past works such as
Refs. [63,64,66]. The difference is B(there)

g = (−)g−1B(here)
2g .

12 This can be proved by using

N∑
I=1

I m = N m+1

m + 1
+ N m

2
+

[ m
2 ]∑

g=1

B2g

2g

(
m

2g − 1

)
N m−2g+1,

where [x] is the integer part of x.
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As a result, the coefficients in the 1/N expansion of the form in Eq. (A11) are determined as

F0 = −1

2
log 2πλ + 3

4
+

∞∑
m=1

ζ(2m)

m

λ2m

(2m + 1)(2m + 2)
, (A16)

F1 = −ζ ′(−1) − π iλζ 2

4
+

∞∑
m=1

ζ(2m)λ2m −B2

2m
, (A17)

Fg = −B2g

2g(2g − 2)

[
1 +

∞∑
m=g

ζ(2m)λ2m2

(
2m − 1
2g − 3

)]
(g ≥ 2). (A18)

A few comments are in order. The leading term in the 1/N expansion, F0, can be obtained directly
from Eq. (A10) by taking the large-N limit [62]:

F0 = lim
N→∞

FCS

N 2 = lim
N→∞ − 1

N

N−1∑
I=1

(
1 − I

N

)
log

(
2 sin

πλI

N

)
= −

∫ 1

0
dτ(1 − τ) log(2 sin πλτ),

where in the last equation we used the definition of the Riemann integral. This can be further computed
by using Eq. (A12) as

F0 = π i

4
− 1

6
iπλ + ζ(2)

2iπλ
+ ζ(3)

(2πλ)2 − 1

(2πλ)2 Li3(e−2π iλ), (A19)

where Lis(z) is the polylogarithm defined by Lis(z) = ∑∞
n=1

zn

ns . The next-to-leading term F1 can be
simplified by using Eq. (A12) as follows:

F1 = −ζ ′(−1) − π iλζ 2

4
+ 1

12
log

sin πλ

πλ
. (A20)
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