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long QT syndrome,3 Brugada syndrome,4 atrial fibrillation,5–7 
sinus node dysfunction (SND)8 and cardiac conduction 
disease (CCD) including atrioventricular (AV) conduction 

T he SCN5A gene encodes the pore-forming α sub-
unit of the cardiac voltage-gated sodium channel, 
NaV1.5, the channel responsible for the generation 

and subsequent propagation of cardiac action potential 
(AP) through the heart.1,2 Mutations in SCN5A reportedly 
cause a variety of cardiac arrhythmia disorders, including 
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Background:  The SCN5A gene encodes the α subunit of the cardiac voltage-gated sodium channel, NaV1.5. The missense muta-
tion, D1275N, has been associated with a range of unusual phenotypes associated with reduced NaV1.5 function, including cardiac 
conduction disease and dilated cardiomyopathy. Curiously, the reported biophysical properties of SCN5A-D1275N channels vary 
with experimental system.

Methods and Results:  First, using a human embryonic kidney (HEK) 293 cell-based heterologous expression system, the SCN5A-
D1275N channels showed similar maximum sodium conductance but a significantly depolarizing shift of activation gate (+10 mV) 
compared to wild type. Second, we generated human-induced pluripotent stem cells (hiPSCs) from a 24-year-old female who carried 
heterozygous SCN5A-D1275N and analyzed the differentiated cardiomyocytes (CMs). Although SCN5A transcript levels were 
equivalent between D1275N and control hiPSC-CMs, both the total amount of NaV1.5 and the membrane fractions were reduced 
approximately half in the D1275N cells, which were rescued by the proteasome inhibitor MG132 treatment. Electrophysiological 
assays revealed that maximum sodium conductance was reduced to approximately half of that in control hiPSC-CMs in the D1275N 
cells, and maximum upstroke velocity of action potential was lower in D1275N, which was consistent with the reduced protein level 
of NaV1.5.

Conclusions:  This study successfully demonstrated diminished sodium currents resulting from lower NaV1.5 protein levels, which 
is dependent on proteasomal degradation, using a hiPSC-based model for SCN5A-D1275N-related sodium channelopathy.
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(HEK) 293 cells were co-transfected with plasmids encoding 
the human β1 subunit and either WT or D1275N-SCN5A, 
as described previously.7

Human-Induced Pluripotent Stem Cell (hiPSC) Generation 
and CM Differentiation
A 24-year-old female diagnosed with SND and an AV 
conduction block was screened for mutations in ion chan-
nel genes after informed consent had been obtained. hiP-
SCs were generated from peripheral blood mononuclear 
cells using an integration-free approach, by transfecting 
cells with episomal vectors encoding multiple reprogram-
ing factors (OCT3/4, SOX2, KLF4, L-MYC, LIN28 and a 
TP53-targeting shRNA),17 before culturing them on a 
mitomycin C-treated SNL feeder layer in Primate ES cell 
medium (ReproCELL, Tokyo, Japan); four hiPSC lines 
were used in this study. hiPSCs generated from a healthy 
individual were used as controls (201B7 and 253G1).18 
CMs were differentiated from hiPSCs using an embryoid 
body (EB) formation protocol, as described previously.19,20 
Six to eight weeks after cardiac differentiation, we analyzed 
hiPSC-CMs in each experiment in this study. This study 
was approved by the Kyoto University ethics review board 
and conformed to the Declaration of Helsinki.

DNA Sequencing, Karyotyping, Immunocytochemistry, 
Teratoma Formation
DNA sequencing, immunocytochemistry, and teratoma 
formation were performed using standard protocols, as 
described previously.19 All exons of the SCN5A gene were 
sequenced after polymerase chain reaction (PCR) amplifi-
cation and compared to the reference sequence. In addition, 
other cardiac ion channel genes (59 in total, Table S1), 
responsible for inherited arrhythmias such as LQTS, BrS, 
CCD, and arrhythmogenic right ventricular cardiomy-

block.2 Additionally, in rare cases, SCN5A mutations are 
associated with dilated cardiomyopathy (DCM).9,10 The 
SCN5A missense mutation, D1275N, has been associated 
with several unusual phenotypes associated with reduced 
sodium channel function, including DCM, SND, CCD, 
and atrial and ventricular tachyarrhythmias.11–13 The 
reported electrophysiological properties of SCN5A-
D1275N channels vary with experimental system; studies 
using heterologous expression systems showed no major 
differences between the mutant and wild-type (WT) chan-
nels,14,15 whereas peak sodium current densities were 
reduced in SCN5A-D1275N knock-in mice than in WT 
ones.16 The functional properties of SCN5A-D1275N 
channels in human cardiomyocytes (CMs) are currently 
unclear. Thus, the present study aimed to investigate the 
biophysical properties of SCN5A-D1275N channels using 
human-induced pluripotent stem cell-derived CMs (hiPSC-
CMs) generated from a patient with familial CCD who 
carried the SCN5A-D1275N mutation. We show that 
SCN5A-D1275N hiPSC-CMs exhibit reduced NaV1.5 pro-
tein expression and reduced maximum sodium conduc-
tance, which is consistent with the SCN5A phenotypes 
associated with reduced sodium channel function observed 
in the patient. Furthermore, treatment with the protea-
some inhibitor, MG132, rescued the membrane NaV1.5 
protein levels, suggesting that ubiquitin-dependent prote-
olysis might be the major underlying mechanism resulting 
in NaV1.5 loss-of-function in D1275N channels.

Methods
SCN5A Mutagenesis and Human Embryonic Kidney 293 
Cell Transfection
Site-directed mutagenesis was used to construct the mutant 
SCN5A expression plasmid. Human embryonic kidney 

Figure 1.    Functional analysis of SCN5A-
D1275N channels in HEK 293 cells. (A) 
Representative sodium current traces 
from human embryonic kidney (HEK) 293 
cells expressing SCN5A-wild-type (WT) 
or -D1275N channels. Currents were elic-
ited by the voltage step protocol shown 
in the inset. (B) The average relationship 
between sodium current density and volt-
age observed in WT (open circles) and 
D1275N (closed circles) channels. The 
current was normalized to cell capaci-
tance to give peak current densities. 
(C) The maximum sodium conductance 
(Gmax) in WT and D1275N channels. (D) 
The relationship between channel avail-
ability and voltage, showing the voltage 
dependence of relative sodium conduc-
tance activation (right-hand traces) and 
steady-state inactivation (left-hand traces) 
in WT (open circles) and D1275N (closed 
circles) channels. The activation curve of 
D1275N channels showed a 10 mV depo-
larizing shift. The voltage step protocols 
for activation and inactivation are shown 
in the right and left insets, respectively.
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Figure 2.    Clinical and hereditary background of the donor patient carrying the SCN5A-D1275N mutation. (A) An electrocardio-
gram showing the cardiac activity of the proband. (B) Pedigree chart, showing the proband (indicated by an arrow) and their 
parents and siblings. Squares indicate males and circles indicate females. Filled symbols indicate the present of cardiac abnor-
malities. Individuals carrying the mutation are indicated by (+). (C) Chromatogram showing a heterozygous single-nucleotide 
change in SCN5A (c.3823G>A, indicated by the arrow), resulting in p.D1275N. (D) Schematic showing the topology of the 
α-subunit of the voltage-gated cardiac sodium channel, NaV1.5. The position of the D1275N residue is indicated with an arrow.

Figure 3.    Embryoid body beating rate, SCN5A mRNA and protein expression in human-induced pluripotent stem cells (hiPSC)-
cardiomyocytes (CMs). (A) The spontaneous beating rate (in bpm) of embryoid bodies in Control and D1275N hiPSC-CMs. The 
beating rate was significantly lower in cells with mutant channels than in controls. ***P<0.001. (B) Relative expression of the SCN5A 
transcript normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in both D1275N and Control hiPSC-CMs. (C) 
Representative Western blots showing expression of NaV1.5 relative to β-actin in purified D1275N and Control hiPSC-CMs (Top). 
Quantification of the data by densitometry (Bottom). *P<0.05. (D) Representative Western blots showing expression of NaV1.5 in 
cytosolic proteins and membrane protein in D1275N and Control hiPSC-CMs, with DMSO or MG132. Mitogen-activated protein 
kinase (MAPK)(Erk1/2) antibody was used as a negative intracellular marker, and anti-Na+/K+ ATPase α1 subunit antibody was 
used as a positive membrane protein marker. (E) Normalized NaV1.5 membrane signals were obtained by dividing the ‘‘Membrane’’ 
signal by the corresponding ‘‘Cytosolic’’ signal; both signals being obtained from the same Western blot. The NaV1.5 membrane 
signals were significantly lower in D1275N hiPSC-CMs than in controls, similarly to the Western blots in total protein shown in (C). 
MG132 increased the membrane signals in D1275N hiPSC-CMs up to the level of that in Controls. *P<0.05.
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USA). Chromosomal Q-banding analysis was performed 
using a standard procedure (Trans Chromosomics, Yonago, 
Japan). See the supplementary material section for detailed 
experimental methods.

Counting the Beating Rate of hiPSC-EBs
hiPSC-EBs in the chamber, heated at 37 degrees, were 
observed under a fluorescence microscope (Biozero BZ-9000, 
KEYENCE, Osaka, Japan), and the motion was recorded 
to analyze the beating frequency.

Purification of hiPSC-CMs
CMs were purified from hiPSC differentiation cultures using 
fluorescence-activated cell sorting (FACS) and an anti-
body that targets the CM-specific surface marker, SIRPA 
(BioLegend, San Diego, CA, USA).21,22 See the supplemen-
tary material section for detailed experimental methods.

mRNA Quantification Using Real-Time Polymerase Chain 
Reaction
SCN5A mRNA expression in purified hiPSC-CMs was 
quantified using real-time PCR and TaqMan probes, as 
described previously.19 See the supplementary material sec-
tion for detailed experimental methods.

Western Blotting
Approximately 20–40 µg total protein was extracted from 
3.0×105 purified CMs with TNE buffer. The relative expres-
sion of the total sodium channel protein was quantified 
using standard Western blotting protocols, as described 
previously.23 See the supplementary material section for 
detailed experimental methods. In order to elucidate the 
possible role of ubiquitin-dependent proteolysis in the neg-
ative regulation of NaV1.5, we examined the effect of the 
proteasome inhibitor, MG132 (Wako, Osaka, Japan). We 
incubate hiPSC-CMs with DMSO or 10 µmol/L MG132 for 
24 h before protein extraction. NaV1.5 membrane and cyto-
solic proteins were obtained separately using a Mem-PERTM 
Plus Membrane Protein Extraction Reagent kit (Thermo 
Fisher Scientific, Waltham, MA, USA), following the man-
ufacturer’s protocol.

Electrophysiological Assays
The hiPSC-CMs were enzymatically dissociated and plated 
onto gelatin-coated glass coverslips. APs and voltage-gated 
sodium currents were recorded using a whole-cell patch-
clamp technique. See the supplementary material section 
for detailed experimental methods.

opathy, were also screened by targeted gene sequencing 
methods using HaloPlex Target Enrichment System (Agilent 
Technology, CA, USA) and MiSeq system (Illumina, CA, 

Figure 4.    Action potential (AP) recordings for Control and 
D1275N human-induced pluripotent stem cells (hiPSC)-
cardiomyocytes (CMs). (A) Representative traces of sponta-
neous APs recorded for ventricular (V)-like, atrial (A)-like, and 
nodal (N)-like hiPSC-CMs. See inset for scale. (B) The propor-
tional distribution of AP types in the Control and D1275N 
hiPSC-CMs. (C) Representative traces of APs induced by 
current stimulation at 1 Hz in the Control and D1275N hiPSC-
CMs. Vertical bars denote depolarizing stimulation. The right 
panels show enlargements of AP onsets.

Table 1.  AP Parameters in Control and D1275N hiPSC-CMs

AP parameters
1-Hz pacing 2-Hz pacing

Control  
(n=6)

D1275N  
(n=8)

Control  
(n=6)

D1275N  
(n=8)

MDP (mV)    −58±2.4　    −60±1.4　    −58±2.4　    −58±1.2　
APA (mV)    97±4.4    97±2.9    94±3.2    89±3.0

Max dV/dt (mV/ms) 26.2±5.7 　12.6±1.2† 20.4±3.1 　11.0±1.6†

APD 50 (ms) 177±33 148±31 113±19   99±22

APD 90 (ms) 215±37 173±34 145±22 123±23

†P<0.01 vs. Control. AP, action potential; APA, AP amplitude; APD, AP duration; CM, cardiomyocyte; hiPSC, human-
induced pluripotent stem cell; Max dV/dt, maximum rate of rise of the AP upstroke; MDP, maximum diastolic potential. 
The number of experiments is indicated in parentheses. Data are presented as mean ± standard error of measurement.
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stained positively for the pluripotency markers, OCT3/4, 
SSEA4, and TRA-1-60 (Figure S1A). The SCN5A-D1275N 
mutation was detected in the patient-derived iPSCs, but 
not in the controls. hiPSC pluripotency was confirmed by 
injecting cells into the testes of CB-17/Icr-severe combined 
immunodeficiency (scid)/scid Jcl mice and observing the 
formation of teratomas-containing tissue derived from all 
three germ layers (Figure S1B). The control and D1275N-
hiPSC lines displayed a normal karyotype (Figure S1C).

Enrichment and Characterization of hiPSC-CMs
Flow cytometric analysis of the hiPSC cultures revealed no 
significant difference in the proportion of non-myocyte 
lineage cell populations in the D1275N culture compared 
to the control (24.4±4.0% vs. 38.5±11.7% for D1275N and 
Control, respectively; Figure S2A). Similarly, no significant 
difference in the proportion of cells positive for SIRPA, a 
cell-surface CM marker, was seen in the D1275N culture 
compared to the control (37.9±3.1% vs. 27.1±3.3% for 
D1275N and Control, respectively; Figure S2B). D1275N 
and control hiPSCs were sorted by FACS using an anti-
SIRPA antibody to enrich for hiPSC-CMs. The propor-
tion of unsorted SIRPA+ and SIRPA− cells expressing 
cardiac Troponin T (cTnT) in each line was then measured 
(Figure S2C). Substantial enrichment for cTnT+ CMs was 
seen in the SIRPA+ populations from both hiPSC lines 

Ca2+ Imaging
Ca2+ transients were recorded from enzymatically dispersed 
single hiPSC-CMs, which were electrically stimulated single 
cells, using a protocol described previously.19 See the supple-
mentary material section for detailed experimental methods.

Statistical Analysis
Continuous variables are presented as the mean ± standard 
error of measurement. Categorical variables are expressed 
as frequencies. Differences between group means were 
assessed using Student’s t-tests. Differences in categorical 
variable frequencies were evaluated using chi-squared 
tests. P<0.05 was considered statistically significant.

Results
SCN5A-WT and D1275N Channel Currents Show Minor 
Differences in a HEK 293 Expression System
Whole-cell sodium currents in HEK 293 cells expressing 
either SCN5A-WT or -D1275N channels were recorded 
using patch-clamp techniques, and representative traces 
are shown in Figure 1A. While cells with mutant channels 
displayed marginally reduced peak sodium current density 
compared to those with WT channels (−252±38 pA/pF vs. 
−326±42 pA/pF, recorded at −20 mV and −30 mV, respec-
tively; Figure 1B), this difference was not significantly dif-
ferent. There was also no significant difference in maximum 
sodium conductance (Gmax) between them (Gmax=3.90±0.49 
S vs. 4.71±0.56 S for D1275N and WT, respectively; 
Figure 1C). However, SCN5A-D1275N channels showed 
a significant depolarizing shift in the steady-state activa-
tion curve compared to WT channels, with D1275N and 
WT exhibiting half-maximal potential values (V1/2) of 
−35.4±1.0 mV and −45.5±1.5 mV, respectively (P<0.001, 
Figure 1D, Table S2). The V1/2 and slope factor of the steady-
state fast inactivation curve did not differ between the two 
channels (Figure 1D, Table S1).

Case Presentation and Generation of hiPSCs
hiPSCs were generated from a 24-year-old Japanese female 
suffering from recurrent dizziness. Her electrocardiogram 
on admission showed notable bradycardia, with a heart 
rate of 33 beats/min, due to sinus arrest with a junctional 
escape rhythm (Figure 2A). A physical examination and 
echocardiography revealed no abnormalities. Holter mon-
itoring displayed recurrent long pauses of up to 12 s due to 
sinus pause and AV block, and a pacemaker was 
implanted. A family history of cardiac abnormalities was 
noted (Figure 2B); the patient’s father had atrial fibrillation 
with AV block and received a pacemaker at the age of 32 
years. Her younger brother suffered from cerebral infarc-
tion and AV block at age 23 years and a pacemaker was 
implanted. Her father and brother had no echocardio-
graphic abnormalities, but her asymptomatic younger sis-
ter showed borderline left ventricular enlargement. Genetic 
analyses identified the heterozygous SCN5A missense 
mutation, c.3823G>A, p.D1275N, in the proband, her 
father, younger brother, and asymptomatic younger sister 
(Figure 2C). We detected no other rare variants in the pro-
band by targeted gene sequencing for 59 cardiac ion chan-
nel-related genes (Table S1). The mutant SCN5A-D1275N 
residue is located in the third transmembrane region of 
domain III of NaV1.5 (Figure 2D). hiPSCs were successfully 
generated from the female patient; they exhibited charac-
teristic human embryonic stem cell morphology and 

Figure 5.    Sodium current recordings for Control and D1275N 
human-induced pluripotent stem cells (hiPSC)-cardiomyo-
cytes (CMs). (A) Representative sodium current traces for 
Control and D1275N hiPSC-CMs. Currents were elicited by 
the protocol shown in the inset. (B) The average relationship 
between sodium current density and voltage observed in 
Control (open circles) and D1275N (closed circles) channels. 
The current was normalized to the cell capacitance to give a 
measure of peak current densities. Curves were fitted with the 
Boltzmann equation, I=(V−Vrev)×Gmax×[1+exp(V−V1/2)/k]−1, 
where I is the peak sodium current during the test pulse 
potential, V. The parameters estimated by the fitting are Vrev 

(reversal potential), Gmax (maximum conductance), and k (slope 
factor). (C) The maximum sodium conductance (Gmax) in Control 
and D1275N channels. *P<0.05.
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protein levels were approximately 50% lower in D1275N 
hiPSC-CMs compared to the controls (densitometric ratios 
of NaV1.5/β-actin were 0.59±0.03 vs. 1.10±0.04 for D1275N 
and Control, respectively; P<0.05; Figure 3C).

Proteasome Inhibitor, MG132, Prevented the Reduction of 
NaV1.5 Cell Membrane Expression
Western blot analysis of membrane and cytosolic fractions 
of NaV1.5 revealed that the ratio of membrane/cytosolic 
levels were reduced to approximately half in D1275N 
hiPSC-CMs compared to the controls (densitometric ratios 
of membrane/cytosolic NaV1.5 were 0.52±0.07 vs. 1.18±0.35 
for D1275N with DMSO and Control with DMSO, respec-
tively; P<0.05; Figure 3D,E). Notably, we found that D1275N 
hiPSC-CMs treated with MG132 restored NaV1.5 cell 
membrane expression up to those of the controls (densito-
metric ratio of membrane/cytosolic NaV1.5 was 0.95±0.17 
for D1275N with MG132; Figure 3D,E).

AP Max dV/dt Is Reduced in D1275N hiPSC-CMs
APs were recorded in control and D1275N hiPSC-CMs 
using a current clamp technique. AP traces are typically 

compared to the unsorted cells; in the SIRPA+ population, 
89.6±4.3% and 87.3±1.7% of cells from the D1275N and 
Control lines, respectively, were cTnT+, whereas in the 
unsorted population, 56.1±10.8% and 58.1±6.8% of cells 
from the D1275N and Control lines, respectively, were 
cTnT+ (Figure S2D,E). No difference in cTnT+ enrichment 
was seen between the 2 hiPSC lines.

Beating Rate Is Reduced in D1275N hiPSC-EBs
The D1275N hiPSC-EBs exhibited a significantly lower beat-
ing rate than controls (42±4 beats/min vs. 101±4 beats/min 
for D1275N and Control, respectively; P<0.001; Figure 3A), 
which was consistent with the clinical phenotype of the 
proband.

D1275N hiPSC-CMs Display Lower Sodium Channel 
Protein Expression But Unchanged mRNA Expression
Purified D1275N and control hiPSC-CMs showed equiva-
lent levels of SCN5A mRNA expression, as determined by 
qPCR (1.13±0.34 vs. 1.00±0.32 for D1275N and Control, 
respectively; Figure 3B). Conversely, Western blot analysis 
of sodium channel protein expression revealed that NaV1.5 

Figure 6.    Gating properties of sodium channels in Control and D1275N human-induced pluripotent stem cells (hiPSC)-cardiomy-
ocytes (CMs). (A) The relationship between the channel availability and voltage, showing the voltage dependence of relative sodium 
conductance activation (right-hand traces) and steady-state inactivation (left-hand traces) in Control (open circles) and D1275N 
(closed circles) hiPSC-CMs. Curves were fitted with the Boltzmann equation, I/Imax=1/[1+exp(V−V1/2)/k], to determine the membrane 
potential for half-maximal inactivation or activation (V1/2) and the slope factor, k. The activation curve of D1275N hiPSC-CMs showed 
a 4 mV depolarizing shift. The voltage step protocols for activation and inactivation are shown in the right and left insets, respectively. 
(B) Time-course of recovery after inactivation in Control (open circles) and D1275N (closed circles) hiPSC-CMs. The double-pulse 
protocol used is shown in the inset. Curves were fitted with a biexponential equation: I/Imax=Af[1−exp(−t/τf)]+As[1−exp(−t/τs)], where 
Af and As are fractions of fast and slow inactivation components, and τf and τs are the time constants of fast and slow inactivation 
components, respectively. (C) Onset of slow inactivation. The time-course of entry into the slow inactivation state for Control (open 
circles) and D1275N (closed circles) hiPSC-CMs was obtained using the double-pulse protocol shown in the inset. Curves were 
fitted with a single exponential equation: I/Imax=y0+A[1−exp(−t/τ)]. (D) Closed-state inactivation. The transfer rate of sodium channels 
from a closed-state to an inactivated closed state, without an intervening open state, was measured for Control (open circles) and 
D1275N (closed circles) hiPSC-CMs using the double-pulse protocol shown in the inset. Curves were fitted with a single exponential 
equation: I/Imax=y0+A[1−exp(−t/τ)].
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disorders. The SCN5A-D1275N mutation was first identi-
fied in a large Dutch family suffering from atrial stand-
still,14 then shortly afterwards the same mutation was 
discovered in a large European family with CCD, atrial 
and ventricular tachyarrhythmia, and DCM.11,12 To date, 
SCN5A-D1275N has been reportedly associated with a 
wide variety of arrhythmias, with or without DCM.13,25 
Functional studies into the electrophysiology of SCN5A-
D1275N channels have reported contradictory results. 
Some studies using heterologous expression systems such 
as Xenopus oocytes, Chinese hamster ovary cells, or tsA201 
cells, showed no major differences in the peak sodium cur-
rent densities and sodium channel kinetics of WT and 
D1275N channels,14,16 whereas another study using Xenopus 
oocytes and HEK 293 cells found a reduction in peak 
sodium current densities in D1275N channels.15 Recently, 
a study using a human SCN5A-D1275N knock-in mouse 
model reported that sodium channel protein levels and 
peak sodium current densities were lower in D1275N 
knock-in mice than in Controls.16 Additionally, a study 
using a transgenic zebrafish model of SCN5A-D1275N 
demonstrated reduced heart rate, sinus pause, and AV 
block.26 In order to assess the biophysical properties of 
SCN5A-D1275N channels in a human CM model, we 
generated hiPSCs from a patient carrying SCN5A-D1275N 
who had presented with SND and an AV block. The 
D1275N hiPSC-CMs exhibited reduced maximum sodium 
conductance and lower sodium channel protein expression, 
which is consistent with both the patient’s clinical symp-
toms and the knock-in mouse model observations.

D1275N channel protein levels were reduced whereas 
mRNA expression was unaffected in our hiPSC model, 

categorized as ventricular-like (V-like), atrial-like (A-like) 
or nodal-like (N-like) according to the criteria described in 
the Supplementary Methods section. The proportion of APs 
in each category varied between the control and D1275N 
hiPSC-CMs; control cell APs were 48% V-like, 38% A-like, 
and 14% N-like, whereas D1275N APs were 50% V-like, 
42% A-like, and 8% N-like (Figure 4A,B). Furthermore, 
the max dV/dt was significantly lower in D1275N hiPSC-
CMs than in Controls (12.6±1.2 mV/ms vs. 26.2±5.7 mV/ms 
in D1275N and Control, respectively, at 1 Hz (P<0.01), 
and 11.0±1.6 mV/ms vs. 20.4±3.1 mV/ms in D1275N and 
Control, respectively, at 2 Hz (P<0.01); Figure 4C, Table 1). 
Other AP parameters, including maximum diastolic poten-
tial, AP amplitude, and AP duration measured at 50% 
(APD50) and 90% (APD90), did not differ significantly 
between the hiPSC-CM lines, when pacing was set at 1 or 
2 Hz (Table 1).

D1275N hiPSC-CMs Exhibit Lower Peak Sodium Current 
Densities Than Controls
Sodium currents were recorded for Control and D1275N 
hiPSC-CMs. The peak sodium current densities in the 
D1275N hiPSC-CMs were approximately half those of 
Control cells (−117±16 pA/pF vs. −206±25 pA/pF at −20 
mV for D1275N and Control cells, respectively); a highly 
significant difference (P<0.001; Figure 5A,B). And the Gmax 
of the sodium channel was also reduced in the D1275N 
hiPSC-CMs compared to Control cells (Gmax=2.31±0.33 S 
vs. 3.53±0.35 S for D1275N and Control, respectively; 
P<0.05; Figure 5C). Considering the sodium current kinet-
ics, the D1275N hiPSC-CMs exhibited a slight, but signifi-
cant, depolarizing shift of the steady-state activation curve 
of 4 mV relative to the Controls (V1/2=−33.1±1.2 mV vs. 
−37.1±1.1 mV for D1275N and Control, respectively; 
P<0.05; Figure 6A). However, other gating parameters, 
including steady-state inactivation, recovery from inactiva-
tion, the onset of slow inactivation, and closed-state inac-
tivation, did not differ significantly between the D1275N 
and Control hiPSC-CMs (Figure 6B–D, Table 2).

D1275N hiPSC-CMs Showed No Significant Difference in 
Ca2+ Transient Properties and the Frequency of Diastolic 
Ca2+ Waves
We performed Ca2+ transient recordings of the D1275N 
and Control hiPSC-CMs under electrical field stimulation. 
There was no significant difference in the frequency of 
diastolic Ca2+ waves between the D1275N and Control 
cells. After 100 nmol/L isoproterenol administration, the fre-
quency of diastolic Ca2+ waves slightly increased but there 
was no significant difference between them (Figure S3A,B). 
We also assessed the Ca2+ transient properties associ-
ated with the contraction of CMs, such as Ca2+ transient 
amplitude, maximal upstroke velocity (Vmax upstroke), Vmax 
upstroke time to peak, and Ca2+ transient duration at 90% 
decay (CTD 90).24 Isoproterenol administration slightly, 
but not significantly, shortened Vmax upstroke time and 
CTD90 in both cells. We found no significant differences 
in all measurements between the D1275N and Control 
hiPSC-CM before and after isoproterenol administration 
(Figure S3C).

Discussion
The SCN5A mutation, D1275N, has been associated with 
left ventricular dysfunction and a wide variety of arrhythmia 

Table 2.  Sodium Channel Gating Parameters in Control and 
D1275N hiPSC-CMs

Control D1275N

Peak INa density (n=21) (n=25)

−206±25　  −117±16†　　　
Steady-state activation

    V1/2 −37.1±1.1　  −33.1±1.2‡　　　
    k   5.4±0.3 5.9±0.3

Steady-state fast inactivation (n=21) (n=25)

    V1/2 −72.6±1.2　 −72.7±1.1　　　
    k   6.9±0.2 6.3±0.1

Recovery from inactivation (n=12) (n=12)

    Af   0.38±0.03 0.40±0.02

    As   0.62±0.03 0.60±0.02

    τf (ms) 59.6±6.8 43.9±7.4　　
    τs (ms) 404.2±28.6 348.9±29.1　　
Onset of slow inactivation (n=11) (n=11)

    A   0.64±0.02 0.64±0.01

    τ (ms) 30.6±4.6 41.5±6.5　　
Closed-state inactivation (n=20) (n=18)

    A   0.91±0.01 0.93±0.01

    τ (ms) 103.5±9.1　　 91.1±12.7

†P<0.001 vs. Control, ‡P<0.05 vs. Control. Parameters were 
obtained from fitting individual experiments, as illustrated in 
Figure 5. τ, time constant; A, fractional amplitude; INa, sodium 
current; k, slope factor; V1/2, half-maximal potential. Other abbre-
viations as in Table 1. The number of experiments is indicated in 
parentheses. Data are presented as mean ± standard error of 
measurement.

Advance Publication by-J-STAGE



HAYANO M et al.

attenuated sodium currents causing defective AP propaga-
tion between CMs.

Study Limitations
In the present study, there is a racial difference between the 
D1275N and Control iPSCs, and they were generated by 
different reprograming protocols. We cannot exclude the 
possibility that phenotypes can be associated with unrec-
ognized genetic variants.

Conclusions
We established a hiPSC-based model for SCN5A-D1275N-
related sodium channelopathy, and successfully demon-
strated reduced maximum sodium conductance resulting 
from reduced NaV1.5 protein expression, which is depen-
dent on proteasomal degradation. Our hiPSC-based model 
could be valuable in mechanistic investigations of the 
diverse phenotypes resulting from this mutation.
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