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Abstract Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are
widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide
typical of thousands in Northern California, USA, to decipher hydrologic-mechanical interactions that
modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly
with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable
pressure along the landslide’s lateral shear boundaries resulting from seasonal soil expansion and contraction
modulated its reactivation and speed. Slope-stability modeling suggested that the landslide’s observed
behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling
considering only transient hydrologic conditions predicted movement five to six months prior to when it was
observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely
modulates motion of many landslides and should be considered to improve forecasts of clayey landslide
initiation and mobility.

1. Introduction

Landslides present significant hazards to human safety and the built environment, causing billions of dollars
in damages (Spiker & Gori, 2003) and thousands of casualties (Kirschbaum et al., 2010; Petley, 2012) on an
annual basis worldwide. Landslides also denude hillslopes and mobilize sediment that eventually impacts
surface water bodies; in many regions, landslides are the primary agent of geomorphic change (Mackey &
Roering, 2011; Roering et al., 2009; Schmidt & Montgomery, 1995; Simoni et al., 2013). The hazards that land-
slides present and their control on landscape change are largely dictated by the timing of their occurrence,
their size, and the duration, speed, and total amount of their movement. However, although long studied, the
ability to predict future landslide behavior remains challenging. Elevation of pore-water pressure is a primary
cause of landslide failure and acceleration (e.g., Angeli et al., 1996; Bovis & Jones, 1992; Corominas et al., 2005;
Fleming et al., 1988; Godt et al., 2008; Guerriero et al., 2014; Handwerger et al., 2013; Iverson, 2000, 2005;
Iverson & Major, 1987; Keefer & Johnson, 1983; Lu & Likos, 2004; Malet et al., 2004; Montgomery et al.,
1998; Schulz et al., 2009, 2012, 2017; Skempton et al., 1989; Terzaghi, 1950; van Asch, 2005; van Asch et al.,
2007; Wang et al., 2010). As dictated by the oft-utilized Coulomb-Terzaghi failure criterion (e.g., Terzaghi
et al., 1996), resistance to shear failure (τ) along landslide boundaries depends on cohesive stresses (c) and
friction (ϕ) modulated by normal stress (σ) and pore-water pressure (p):

τ ¼ σ � pð Þ tan ϕ þ c (1)

Elevated pore-water pressure reduces normal stress to effective normal stress (σ’ = σ � p), which reduces fric-
tional resistance. Despite this understanding, identifying consistent and accurate pore-water pressure levels
that instigate movement remains difficult for many landslides (e.g., Angeli et al., 1996; Gasparetto et al., 1996;
Massey et al., 2013; Petley et al., 2005; Pyles et al., 1987; Shibasaki et al., 2016). Similarly, the observed speed of
many landslides correlates poorly with pore-water pressure (e.g., Picarelli et al., 2004; Schulz et al., 2009;
Shibasaki et al., 2016; van Asch, 2005; van Asch et al., 2007; Wienhöfer et al., 2010). Shear strength that
increases with shearing rate has been proposed to explain the lack of acceleration to unbounded speeds
for many slow-moving landslides (e.g., Angeli et al., 1996; Corominas et al., 2005; Iverson, 2000; Iverson &
Major, 1987; Keefer & Johnson, 1983; Skempton et al., 1989; van Asch, 2005; van Asch et al., 2007; Vulliet &
Hutter, 1988a, 1988b; Wang et al., 2010), but laboratory tests often reveal that gouge strengthening is negli-
gible or too low to explain observations (e.g., Angeli et al., 1996; Baum & Johnson, 1993; Keefer & Johnson,
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1983; Skempton, 1985; van Asch et al., 2007). We sought to improve understanding of controls on landslide
initiation and speed by monitoring and testing materials from a persistent, slowly moving landslide (Two
Towers; Figure S1) in Northern California, USA. We hypothesized that the landslide’s activity strongly
depended upon variable pressure along its lateral boundaries that resulted from seasonal soil swelling and
shrinking.

2. Study Area

Thousands of landslides occur in Northern California that move persistently (including episodically on a sea-
sonal basis) and slowly for many years (Handwerger et al., 2013; Keefer & Johnson, 1983; Kelsey, 1978; Mackey
& Roering, 2011; Roering et al., 2009), resulting in morphology suggestive of flow. Thus, these landslides often
are referred to as earthflows as described in the classification system of Hungr et al. (2001). Earthflows occur
in many landscapes worldwide and locally dominate hillslope denudation and sediment transport (e.g., Bovis
& Jones, 1992; Giordan et al., 2013; Keefer & Johnson, 1983; Kelsey, 1978; Mackey & Roering, 2011; Roering
et al., 2009; Simoni et al., 2013). Although flow is implied by their name, ample evidence (e.g., Baum et al.,
1993; Corominas et al., 2005; Fleming & Johnson, 1989; Keefer & Johnson, 1983; Schulz et al., 2009;
Skempton et al., 1989) reveals that nearly all of their movement occurs by sliding along bounding shear
zones, as with landslides, in general (e.g., Baum & Johnson, 1993; Skempton, 1985; Terzaghi, 1950).
Earthflows typically occur in clayey granular material (soil), as do many other slowly moving landslides
(e.g., Baum & Johnson, 1993; Terzaghi, 1950). The Two Towers landslide is typical of many earthflows in the
region as indicated by its speed, composition, and failure mechanism being similar to those of more than
100 others that have been studied (Bennett et al., 2016; Handwerger et al., 2013, 2015; Iverson & Major,
1987; Keefer & Johnson, 1983; Kelsey, 1978; Mackey & Roering, 2011; Roering et al., 2009). The landslide
occurs in Franciscan Complex mélange primarily comprising mudstone, sandstone, greenstone, chert, ser-
pentinite, and schist that is tectonically sheared and weathered to mixtures of clay, silt, sand, and rock frag-
ments (Handwerger et al., 2013; Kelsey, 1978; Mackey & Roering, 2011; Roering et al., 2009). Two Towers is
~250 m long and averages about 40 m wide and 7 m deep (Figures S1 to S3). The landslide’s ground surface
is inclined on average ~15° and is generally smooth and planar, suggesting a similarly smooth, planar base
(Baum et al., 1993; Coe et al., 2009; Guerriero et al., 2014). The lateral boundaries of the landslide are approxi-
mately vertical to excavated depths of ~2 m, as are those of many other earthflows and slowly moving land-
slides (e.g., Fleming & Johnson, 1989; Guerriero et al., 2014; Kelsey, 1978; Schulz et al., 2009). Where exposed
along its lateral boundaries, shear gouge is a few centimeters thick and heavily striated and slickensided.
Remote-sensing studies (Bennett et al., 2016; Handwerger et al., 2013, 2015; Mackey & Roering, 2011;
Roering et al., 2009; Roering et al., 2015) indicate that Two Towers and similar landslides in the region move
primarily by shear translation at average speeds generally less than 1 m/year.

3. Methods
3.1. Field Monitoring

We made hourly measurements of rainfall, groundwater head, landslide movement, horizontal total stress,
and vertical deformation of landslide material from 11 November 2014 to 22 July 2017. Rainfall was mea-
sured using a tipping-bucket gauge. Groundwater head was measured (0.01 m resolution, 0.03 m accu-
racy) at two depths each within the landslide head (3.66 and 6.07 m), middle (3.95 and 5.69 m), and
toe (2.62 and 3.66 m) (Figures S1 to S3) using vibrating-wire piezometers placed within boreholes back-
filled first with ~0.3 m of soil obtained during boring and then with bentonite granules to the ground
surface. Horizontal total stress was measured at 1.83 m depth in the landslide center, and fluid stress also
was measured at the same location (both with 0.01 kPa resolution, 0.07 kPa accuracy) to permit calcula-
tion of effective stress (σ0). The plate-shaped total stress sensor was installed within a slot oriented
approximately normal to the landslide movement direction and which was made into the bottom of
an excavated pit; the pit was subsequently backfilled. Landslide movement was measured using a
30.5 cm long biaxial tilt sensor (0.003 mm displacement resolution, long-term accuracy of 0.23 mm)
installed within polyvinyl chloride-cased boreholes (i.e., a slope inclinometer). The slope inclinometer
was used to attempt to identify the depth of the landslide base at each monitoring station and continu-
ously measured landslide movement at the toe location. Potential vertical expansion and contraction of
landslide material were measured using a borehole strain gauge (i.e., vertical deformation sensor;
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0.04 mm resolution, 0.15 mm accuracy) with ends encased in cement such that it measured deformation
over the depth interval 0.20–1.72 m upon installation. All sensors contained thermistors, and readings
were temperature compensated, with the exception of the rain gauge.

3.2. Laboratory Testing

Samples for laboratory testing were obtained by hand from pits excavated to maximum depths of ~2 m.
Water content, density, shrink-swell amount, swell pressure, torsional residual shear strength, particle-size
distribution, and Atterberg limits were measured following respective ASTM standards (ASTM International,
2008). Mineralogy was determined by X-ray diffraction (Brown & Brindley, 1980; Eberl, 2003; Moore &
Reynolds, 1997; Poppe et al., 2001). Some shear strength tests were performed using a specialized, large-scale
ring-shear apparatus not covered by ASTM (DPRI-5; Sassa et al., 2004; Wang et al., 2010; Wang & Sassa, 2002).
Additional details regarding strength testing are available in the supporting information.

4. Results

Table S1 provides properties of the landslide materials determined in the laboratory. Ring-shear tests indi-
cated frictional resistance that was invariant with shearing rate within the tested range (0.0003 to 1 mm s�1;
Tables S2 and S3), as is commonly observed for slowly moving landslides (e.g., Baum & Johnson, 1993; Keefer
& Johnson, 1983; Skempton, 1985). X-ray diffraction indicated that ~50–64% of the landslide material finer
than 0.002 mm is composed of chlorite and illite/mica interstratified with smectite. Smectite is highly expan-
sive, and swell pressure tests (Table S1) revealed that pressures of 118–310 kPa developed as water content
increased from that measured in situ during April 2013 to saturation levels. Pressures of 320–695 kPa devel-
oped when specimens were initially air-dried and then saturated. For comparison, maximum normal stress (σ;
equation (1)) calculated for the landslide base from laboratory and monitoring results (below) was 136 kPa.
Although these swell pressures may seem extreme, they are typical of many expansive soils and similar to
those measured in situ during other studies (Joshi & Katti, 1980; Brackley & Sanders, 1992). Swell potential
generally correlates positively with liquid limit and clay content (e.g., Terzaghi et al., 1996), which is not appar-
ent in Table S1. This lack of correlation was assumed to result from geological heterogeneity of the mélange
in which the landslide was formed, and from specimens for the different tests for each generalized location
(e.g., head, toe) being taken from distances as much as ~10 m apart.

Slope-inclinometer profiling indicated landslide thickness of 6.34, ~7.9, and 3.58 m for the head, middle, and
toe locations, respectively. Considering the length of the inclinometer probes, shear gouge was less than
30.5 cm thick at the head location and less than 61 cm thick at the toe location; the inclinometer did not
reveal nonmoving ground beneath the landslide at the middle location. Monitoring indicated that the upper
~1.7 m of the landslide experienced seasonal vertical expansion and contraction of 3 cm that correlated well
with onset and cessation of the rainy season, respectively (Figure 1); however, expansion and contraction
may have extended to greater depths. Significant seasonal changes in moisture content that cause expan-
sion and contraction may have extended to depths of ~5 m, as implied by the water table dropping to this
depth during the dry season (Figures S2 and S3). We observed contraction-induced opening of lateral bound-
ing shear zones during the dry season (Figure S5) but total depths of opening were unknown (open to at least
~1 m depth where excavated). Pore-water pressures and horizontal total and effective stress were elevated
during the rainy season and declined thereafter. Pressure head varied annually by ~3m, on average, suggest-
ing ~3 m of annual water table fluctuation. Horizontal effective stress increased by ~24 kPa during the rainy
season; however, drying-induced soil shrinkage resulted in loss of soil contact with the sensor for approxi-
mately three to four months each year so actual effective stress varied by greater amounts. Consistent with
our laboratory and monitoring observations, other monitoring studies reveal horizontal swell pressures of
~80–300 kPa upon wetting (Joshi & Katti, 1980; Brackley & Sanders, 1992). The region experienced extreme
drought preceding and during the early part of our study that slowed most landslides (Bennett et al.,
2016); we observed only minor movement (6–20 mm) during the spring and summer of 2015 and 2016.
Prodigious rainfall occurred during late 2016 and early 2017 along with slide movement that was more typi-
cal (44 mm) for the region’s earthflows (e.g., Handwerger et al., 2013, 2015); that motion continued to the end
of our monitoring (22 July 2017). Landslide speed was similar to that observed for slow landslides throughout
the region (Handwerger et al., 2013, 2015).
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5. Discussion and Implications

As indicated by Figure 1 and in contrast with established theory regarding the importance of pore-water
pressure on landslide stability (equation (1)), reactivated landslide motion did not occur at consistent
pore-water pressures as has been reported previously (e.g., Angeli et al., 1996; Gasparetto et al., 1996;
Massey et al., 2013; Petley et al., 2005; Pyles et al., 1987; Shibasaki et al., 2016), and movement generally
occurred after peak pressures had passed. For example, average head above the landslide base calculated
from our six piezometer records was 3.92, 4.34, and 4.62 when landslide movement initiated during 2015,
2016, and 2017, respectively, and was 3.57 and 3.43 when the landslide stopped moving during 2015 and
2016. Similarly, landslide speed often correlated poorly with pore-water pressure, with peak speed
observed as pressure declined (Figure 1). Average head above the landslide base was 3.78, 3.85, and
4.41 when peak speeds were observed during 2015, 2016, and 2017, respectively. For evaluating landslide
stability and rigorously testing the potential importance of pore-water pressure on landslide movement,
equation (1) can be recast as the ratio of stresses resisting motion to those driving motion (often refer-
enced as the factor of safety, F), with unity indicating incipient motion and values below unity indicating
instability:

F tð Þ ¼ tanφ dγu þ lγsð Þ cosθ � p½ �
dγu þ lγsð Þ sinθ (2)

where d is the slope-normal depth of the water table; l is the slope-normal, water-saturated landslide thick-
ness; θ is the angular inclination of the landslide base (assumed here to parallel the ground surface); and γu
and γs are the weights of unit volumes of soil above and below the water table, respectively. Cohesion (c) in
equation (1) is omitted here because it is assumed to be nil for fully developed shear gouge (i.e., in the resi-
dual strength condition) as exists at landslides that have moved farther than several centimeters to deci-
meters (e.g., Skempton, 1985; Terzaghi et al., 1996). Figure 2 shows F(t) calculated using measured
material properties, the average basal slope of 15°, an assumed average landslide thickness of 7 m (toe mor-
phology suggested that our toe monitoring location was in an area of downslope thinning of the landslide),
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and observed time series of d, l, and p, with these temporally dependent variables being averages from the
six piezometers (values were linearly interpolated for missing records for deep head at the landslide head
monitoring site 14 June 2015 to 22 July 2015 and shallow and deep head at the lower monitoring site 7
December 2016 to 18 January 2017). Emphasized in Figure 2 is the factor of safety range that implies
landslide motion, which was selected by identifying the highest F (threshold F) at which motion was
observed (0.974); perfect agreement between equation (2) results and observed motion at F below
unity should not be expected because only one spatial dimension is considered by this use of
equation (2). Although it captures all movement periods by definition, the threshold factor of safety
poorly differentiates observed periods of motion from periods of stability (Figure 2). For example, it
suggests that landslide movement should have commenced approximately five to six months prior to
each movement episode and that landslide speed should have peaked approximately three months
prior to when peak speeds were observed. Hence, as has been commonly observed and noted
previously herein, mechanisms unrelated to pore-water pressure must have also been responsible for
controlling the landslide’s behavior.

Evaluation of Figure 1 indicates that pore-water pressures at the time of landslide reactivation were higher
when soil swelling (as suggested by vertical deformation) was higher and vice versa; average head above
the landslide base and vertical deformation at the time of the three reactivations were 3.92 and 1.0 cm,
4.34 and 1.8 cm, and 4.62 and 2.6 cm. Figure 1 also indicates that peak landslide speeds occurred as soil
shrinkage was occurring and pore-water pressures were declining. We hypothesize that variable swell pres-
sure along the lateral boundaries of the landslide served as a primary control on the landslide’s reactivation
and speed. Horizontal swell pressures are well known as being problematic in design and construction of
foundation and retaining walls (Richards, 1985; Taylor & Smith, 1986; Basma et al., 1995; Terzaghi et al.,
1996; Lu & Likos, 2004). Lateral earth pressure theory suggests that horizontal pressures are typically
~0.2–0.6 of vertical pressures in nonexpansive material (Terzaghi et al., 1996), whereas studies have shown
that horizontal pressures may reach more than five times those of vertical pressures in expansive soils upon
wetting (Richards, 1985). We observed annual horizontal effective stress variation approximately equivalent
to the calculated vertical effective stress at the stress sensor location (Figure 1 and ~30 kPa, respectively);
however, the lack of soil contact with the sensor during dry periods indicates that horizontal stress variations
were higher than measured. Our laboratory tests revealed much greater inherent swell pressure in the mate-
rial comprising the landslide body (Table S1). Swell pressure changing with moisture content may modulate
frictional resistance along the landslide’s lateral boundaries just as effective normal stress (σ0) modulates fric-
tional resistance along the landslide’s basal boundary (equation (1)). As indicated by Figure 1, and as should
be expected from infiltration of water at the ground surface, swell pressure (horizontal effective stress)
increases immediately as moisture content rises (Aksu et al., 2015) and it does so at progressively greater
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depths as wetting fronts move downward, resulting in increased swell (vertical deformation) of landslide
material. During the rainy season, ongoing infiltration keeps soils above the water table in a swelled state,
and these swelled soils behave essentially like caliper brakes on a wheel by increasing resistance to
movement along the landslide’s sides. With sufficient infiltration, pore-water pressures along the
landslide’s shear boundaries increase and reduce frictional resistance (equation (1)). If these pressures rise
sufficiently high, as they may have during the winter and spring of 2017 (Figure 1), declining overall
resistance to landsliding results in landslide acceleration. If pore-water pressures do not rise sufficiently
high, landsliding might still occur during soil drying as swell pressures are consequently reduced, similar to
releasing the brakes on the wheel. This is consistent with our observations during the spring-summer
movement episodes of 2015 and 2016 (Figure 1). We test this conceptual model of swell-modulated
landsliding below.

Three-dimensional modeling is required to fully account for swell and pore-water pressure effects along land-
slide lateral boundaries and concurrent pore-pressure effects along basal boundaries but would prove chal-
lenging, considering the variable depth and amount of swelling and uncertainty in proper consideration of
changing lateral pressures, among other complications. However, our record of vertical deformation
(Figure 1) reflects fluctuating soil volume as it seasonally swells and shrinks (the sensor averages effects of
swelling over a great depth compared to the stress sensor), so we can use these measurements to estimate
approximately the potential contribution of swell pressure to changing frictional resistance of the landslide’s
boundaries. Figure 3 shows results with the addition of the vertical deformation to the resistance term from
equation (2) (numerator; cohesion [c] is again assumed to be nil):

F tð Þ ¼ tanφ dγu þ lγsð Þ cosθ � pþ csSn½ �
dγu þ lγsð Þ sinθ (3)

where Sn is swell pressure approximated by normalizing the vertical deformation time series by the maxi-
mum observed amount (3 cm) and cs is a constant determined through iteration. Using the same factor of
safety threshold of 0.974 used for Figure 2, the best fit cs was 9.1, suggesting that swelling contributed as
much as 3.1 kPa of resistance to landslide motion, or ~8–9% of the total resistance; the landslide lateral
boundaries account for ~26% of the overall boundary. As indicated by Figure 3, including resistance from soil
swelling along the landslide’s lateral boundaries resulted in nearly perfect agreement between observed and
modeled timing of landslide motion. Additionally, landslide speeds generally correlated well with the factor
of safety, with peak speeds occurring during lowest F, and speeds for given movement periods being higher
when F was lower. The addition of swell resistance results in much smaller factor of safety declines than
expected from pore-pressure change (Figure 2), suggesting that swell-induced increased resistance restrains
landslide acceleration and may help to prevent catastrophic landsliding. We conclude that swell pressure
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to capture all movement periods, and F is emphasized (with red color) when it is below the threshold; this threshold
predicts movement that strongly correlates with observed movement.
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strongly modulated mobility of the landslide we studied and likely had similar influence on other landslides
for which Two Towers is a typical representative.

As with many landslides (e.g., Angeli et al., 1996; Bovis & Jones, 1992; Gasparetto et al., 1996; Handwerger
et al., 2013; Petley et al., 2005; Picarelli et al., 2004; Pyles et al., 1987; Shibasaki et al., 2016; van Asch, 2005;
van Asch et al., 2007; Wienhöfer et al., 2010), behavior of the Two Towers landslide could not be well pre-
dicted from pore-pressure variation alone. Angeli et al. (1996) observed higher pore-water pressure at land-
slide initiation than at cessation, similar to our observations, and concluded that this was due to shear
strength of the landslide they studied increasing during suspension of landsliding. Our monitoring revealed
inconsistent pore-water pressures at landslide reactivation, and our laboratory tests failed to reveal strength
recovery between tests (although testing only indirectly explored recovery), so this mechanism was likely
unimportant at Two Towers. Accelerated shear-induced dilation may cause declining pore-water pressure
and increased shear resistance during accelerated landslide motion, which may restrain some landslides
(e.g., Iverson, 2005; Schulz et al., 2009), but this mechanism is not supported by our monitoring or testing
results. Some studies (van Asch, 2005; van Asch et al., 2007) concluded that landslide speed differences at
identical pore-water pressures could be due to extension and compression of moving landslide material
and related changes to localized pore-water pressures and material properties. Deformation of landslide
material as it overrides wavy basal boundaries and consequent changes in pore-water pressure also likely
contribute resistance to motion of many landslides (Baum & Johnson, 1993; Keefer & Johnson, 1983;
Mizuno, 1989). Although often proposed, but rarely demonstrated (e.g., Angeli et al., 1996; Baum &
Johnson, 1993; Iverson, 2000; Iverson & Major, 1987; Keefer & Johnson, 1983; Skempton, 1985; van Asch
et al., 2007; Vulliet & Hutter, 1988a, 1988b; Wang et al., 2010), strengthening of boundary shear gouge at
increased shear rates was unimportant at Two Towers, based on our laboratory results. Our results strongly
suggest that variable swell pressure modulated the landslide’s timing and speed and could account for the
inconsistent pore-water pressure observed during its reactivation and movement. We therefore expect that
variable swell pressure at other clayey landslides may at least partly account for similar poor correlations
between landslide activity and pore-water pressure. Increased resistance from swelling apparently caused
Two Towers to move more slowly than it probably would in the absence of swelling (Figures 2 and 3), and
we conclude that this mechanism may also slow other clayey landslides.

Clay soils susceptible to significant swelling occupy ~20% of the land surface of the United States, whereas
clay minerals compose approximately two thirds of argillaceous sediments that form ~60% of stratigraphy
worldwide (Taylor & Smith, 1986). Essentially, all clay is expansive to some degree upon wetting (Mitchell &
Soga, 2005; Terzaghi et al., 1996), with pressures for some clay mixtures reaching nearly 10 MPa (Basma et al.,
1995). Therefore, we conclude that soil swelling may partly determine timing and speed of many landslides,
with the degree to which it does so determined by multiple factors. Swell pressure may be a critical beha-
vioral control for landslides such as Two Towers with its relatively high content of expansive clay, whereas
swell pressure would have negligible effect in materials with low expansion potential. Landslide geometry
should largely determine potential consequences of variable swell pressure; swelling should have reduced
effect as landslide lateral boundaries flatten from vertical, as the ratio of lateral boundary dimensions relative
to basal boundary (i.e., subparallel to the ground surface) dimensions decreases, and as the proportion of
swell pressure variation decreases relative to pore-water pressure variation. Additionally, soil expansion
and contraction may modify hydraulic (Aksu et al., 2015; Lu & Likos, 2004) and strength properties (Lu &
Likos, 2004; Terzaghi et al., 1996). Hence, the effects of swelling are complex, necessitating further study.
Our findings strongly suggest that swell pressures can modulate landslide timing and speed and may reduce
the potential for catastrophic landslidemotion. Swell pressures therefore should be considered for evaluating
landslide hazards and the impacts of landslides on the landscape.
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