1	Influences of fascicle length during isometric training on improvement of muscle strength
2	Hiroki Tanaka ¹ *, Tome Ikezoe ¹ , Jun Umehara ¹ , Masatoshi Nakamura ^{1, 2} , Hiroki Umegaki ¹ ,
3	Takuya Kobayashi ¹ , Satoru Nishishita ¹ , Kosuke Fujita ¹ , Kojiro Araki ¹ , Noriaki Ichihashi ¹
4	
5	1) Human Health Sciences, Graduate School of Medicine, Kyoto University, 53, Shogoin-Kawahara-
6	cho, Sakyo-ku, Kyoto 606-8507, Japan.
7	2) Department of Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
8	
9	*Corresponding author:
10	Hiroki Tanaka (🖂)
11	Human Health Sciences, Graduate School of Medicine, Kyoto University
12	53 Shogoin-Kawahara-cho, Sakyo-ku,
13	Kyoto 606-8507,
14	Japan.
15	
16	Telephone: +81-75-751-3935; Fax: +81-75-751-3909
17	
18	E-mail: tanaka.hiroki.8w@kyoto-u.ac.jp

1 Abstract

 $\mathbf{2}$ This study investigated whether low-intensity isometric training would elicit a greater improvement 3 in maximum voluntary contraction (MVC) at the same fascicle length, rather than the joint angle, 4 adopted during training. Sixteen healthy women (21.8 ± 1.5 years) were randomly divided into an $\mathbf{5}$ intervention group and a control group. Before (Pre-) and after (Post-) training, isometric 6 plantarflexion MVCs were measured every 10 ° through the range of ankle joint position from $\overline{7}$ 20° dorsiflexion to 30° plantarflexion (i.e. 6 ankle angles). Medial gastrocnemius (MG) fascicle length 8 was also measured at each positions, using B-mode ultrasound under 3 conditions of muscle activation: 9 at rest, 30%MVC at respective angles, and MVC. Plantarflexion resistance training at an angle of 10 20° plantarflexion was performed 3 days a week for 4 weeks at 30% MVC using 3 sets of twenty, 3 seconds (-s) isometric contractions. MVC in the intervention group increased at 0° and 10° 11 12plantarflexion (0°; Pre 81.2 \pm 26.5 Nm, Post 105.0 \pm 21.6 Nm, 10°; Pre 63.0 \pm 23.6 Nm, Post 81.3 \pm 1320.3 Nm), which was not the angle used in training (20°). However, the fascicle length adopted in 14training at 20° plantarflexion and 30% MVC was similar to the value at 0° or 10° plantarflexion at 15MVC. Low-intensity isometric training at a shortened muscle length may be effective for improving 16MVC at a lengthened muscle length because of specificity of the fascicle length than the joint angle. 17

18 Keywords: Strength, Isometric training, Low-intensity training, Specificity of fascicle length,

- 1 Specificity of joint angle Ankle plantarflexion
- $\mathbf{2}$
- 3

1 INTRODUCTION

 $\mathbf{2}$

3	It is well known that greater effects of resistance training on muscle strength, both with concentric
4	or eccentric contractions, are observed under the conditions used during training, such as the same
5	movement speed (9) or the same movement pattern (19). When resistance training is performed under
6	isometric conditions, strength gains are known to be influenced by the specificity of the joint angle
7	used during training (10, 13). Kitai and Sale (10) reported that isometric training of ankle
8	plantarflexion using maximum voluntary contraction (MVC) at an angle of 0° (i.e., 90° angle between
9	the tibia and sole of foot) produced improvement in MVC only around 0° of ankle position (MVC
10	between -5° and 5°). These results demonstrate the 'so called' specificity of joint angle on training
11	effects. However, Weir et al. (20, 21) reported that isometric training of knee extension at an intensity
12	of 80%MVC and at a 45° knee position angle resulted in significant improvement in MVC over a
13	range of 30° around the training angle. Rasch and Pierson (18) similarly reported that isometric
14	training of elbow flexion at an intensity of 100%MVC and at a 90° elbow angle produced significant
15	improvement in MVC over a range of 30° around the training angle. Thus, contrary to the specificity
16	of joint angle in isometric training previously accepted, some reports have now demonstrated that
17	improvement in MVC can be obtained over a wide range of joint angles around the training angle. The
18	reason for this inconsistency, however, has not been clearly elucidated.

1	Recent studies examining the changes in the muscle fascicle length during isometric contraction,
2	using ultrasound imaging, have shown the fascicle length to be influenced by both the joint angle and
3	the force exerted during an isometric contraction (3, 8). In particular, these two studies (3, 8)
4	demonstrated that the fascicle length is dependent on the contraction levels, even if a constant joint
5	angle is used during isometric contraction. From these facts, we hypothesized that "specificity" in
6	isometric training, which results in the maximum improvement of MVC, may depend not on the joint
7	angle but, rather, on the fascicle length during training. Several previous studies (18, 20, 21) found
8	improvements of MVC over wide range of joint angles including the training angle, which indicates
9	that the training effect did not strictly follow the specificity of joint angle. In these studies, high-
10	intensity and long-duration isometric contraction or a short rest time was adopted. For instance, the
11	training protocol used in Rasch and Pierson (18) was 15 s (long duration) of MVC, and it was
12	80% MVC with 30 s (short) rest time in Weir et al. (20, 21). Therefore, it could be predicted that fatigue
13	would occur during training, and the contraction may not have been maintained throughout training,
14	which means that actual contraction during training may have been performed at various fascicle
15	length in these studies (18, 20, 21). Taking these previous results into account, there is a possibility
16	that the underlying cause of the wider range of joint angles in strength improvement following
17	isometric training may be that the specificity of strength improvement may owe to the fascicle length
18	during training rather than the joint angle.

1	Arampatzis et al. (3) indicated that the fascicle length measured during low-intensity contraction at
2	a joint position in which the muscle is in a shortened length was equal to the fascicle length measured
3	during a high-intensity contraction at a joint position in which the muscle is in an extended length. In
4	order to discriminate the difference of specificity in training between the fascicle length and the joint
5	angle, we conducted this study by investigating the effect of low-intensity training at shortened muscle
6	length and examine whether the MVC improvement occurs at the same fascicle length or at the same
7	joint angle.
8	The purpose of the present study was to examine whether low-intensity isometric training would
9	yield a greater improvement in MVC at the same fascicle length as the training condition. We
10	hypothesized that low-intensity isometric training would have a greater improvement in MVC at the
11	same fascicle length, rather than at the same joint angle, used during training.
12	
13	METHODS
14	
15	Experimental Approach to the Problem
16	
17	The experimental design of this study was a randomized controlled trial. A flowchart of the
18	experimental protocol is shown in Figure 1. Prior to obtaining pre-training measurements, all subjects

1	were familiarized with the MVC procedure for plantarflexion. In the initial week of the experiment,
2	subjects attended 3 familiarization sessions, practicing MVCs at the 6 ankle joint positions used for
3	testing, set at 10° intervals over the range from 20° dorsiflexion to 30° plantarflexion. An ankle joint
4	angle of 0° (neutral position) was defined as a 90° angle between the fibula and fifth metatarsal bone.
5	Following the familiarization sessions, MVC of the ankle plantarflexors and the fascicle length of the
6	medial gastrocnemius (MG) were measured (Pre-measurement). The same measurements were
7	performed after 4 weeks of intervention (Post-measurement), resulting in a total experimental period
8	of 5 weeks. All measurements and analysis were implemented only at Kyoto University.
9	
10	Subjects
10 11	Subjects
	Subjects Sixteen healthy women (age 21.8 \pm 1.5 years), who were non-athletes and had not been involved in
11	
11	Sixteen healthy women (age 21.8 ± 1.5 years), who were non-athletes and had not been involved in
11 12 13	Sixteen healthy women (age 21.8 ± 1.5 years), who were non-athletes and had not been involved in any regular stretching or resistance training, participated in this study. Subjects with a history of
11 12 13 14	Sixteen healthy women (age 21.8 ± 1.5 years), who were non-athletes and had not been involved in any regular stretching or resistance training, participated in this study. Subjects with a history of neuromuscular disease or musculoskeletal injury involving the lower limbs were excluded. The
11 12 13 14 15	Sixteen healthy women (age 21.8 ± 1.5 years), who were non-athletes and had not been involved in any regular stretching or resistance training, participated in this study. Subjects with a history of neuromuscular disease or musculoskeletal injury involving the lower limbs were excluded. The subjects were randomly assigned to the intervention group (n = 8) or to the control group (n = 8) using

- 1 Kyoto University Graduate School and the Faculty of Medicine (R-0216).
- $\mathbf{2}$

3 Measurements of MVC, the fascicle length and the muscle thickness

4

5	MVC was measured using a Biodex dynamometer (Biodex System 4, Biodex Medical Systems Inc.,
6	Shirley, New York, USA.) with 1000Hz sampling rate, at 6 ankle positions, set at 10° intervals over
7	the range from 20° dorsiflexion to 30° plantarflexion, with the order of MVCs randomized across
8	participants. A range of ankle joint angles (from 20° dorsiflexion to 30° plantarflexion) was
9	determined by a range of motion that all subjects can exert force. For measurement, the ankle joint of
10	the dominant leg was securely attached by velcro strap to the footplate of the dynamometer. Soft cloth
11	was inserted between the velcro strap and instep to prevent unwanted movement of the ankle joint.
12	The trunk and distal thigh were securely fixed by the dynamometer belts to keep the hip joint position
13	of 80° flexion and the knee joint in full extension. The subjects grasped horizontal bars attached to the
14	dynamometer. MVC was exerted for 5 seconds (-s) at each of the 6 ankle joint angles, with more than
15	1 minute (-min) of rest provided between each MVC. The MVC peak torque over each 5-s trial was
16	used for analysis.
1 5	

The fascicle length of the MG was measured at the proximal 30% of the lower leg length (1), using
B-mode ultrasound imaging (LOGIQ e, General Electric, Duluth, GA, USA) with an 8-MHz linear

1	array probe (6 cm). The ultrasound settings used by the measurements were set at 58-70 dB gain.
2	Depth and Dynamic focus of the equipment settings were controlled to achieve a clear image of the
3	muscle thickness and the fascicle length of the MG. The fascicle length was measured at each of the
4	6 test angles of the ankle and under three levels of activation—rest, 30%MVC at the respective angles,
5	and MVC-for a total of 18 test conditions in randomized order. Three images of the fascicle were
6	recorded for each condition. In measurement of the fascicle length at MVC, the images were preserved
7	when exerted force displayed on the dynamometer monitor reached a plateau. The fascicle length was
8	estimated from these images based on the methods which evaluated the distance along a straight line,
9	between extension lines from the aponeurosis and the origin of the fascicle. (Figure 2). Ando et al. (2)
10	demonstrated that this method is useful technique for estimating the fascicle length of quadriceps
11	muscle. This method has been used to determine the fascicle length of the quadriceps muscle in a
12	number of previous studies (4, 6, 7). However, the reliability of the measurements of the MG has not
13	been shown before. Therefore, the reliability of the measurements of MG was assessed at the 6 test
14	ankle angles in a control group. A intraclass correlation coefficients (ICC 1.1) value higher than 0.75
15	is considered valid (12). ICC value for the fascicle length of the MG was valid at all ankle angles in
16	both inter session (ICC > 0.9) that were measured by two images at pre-measurement, and inter day
17	(ICC > 0.75) that were measured by images at pre- and post-measurement. The fascicle length was
18	measured for each condition using image processing software (ImageJ, version 1.48, National

1	Institutes of Health, Bethesda, MD, USA). The mean value of all three images, obtained for each
2	condition, was used in the analysis. The outcome assessors were blinded to measurement conditions
3	(i.e., ankle joint position and level of activation). The fascicle length and the muscle thickness of MG
4	at rest with ankle position of 0° were measured from the ultrasound imaging on the longitudinal plane
5	at baseline and after 4 weeks to examine morphological changes. The muscle thickness was also
6	measured to assess whether the improvement in muscle strength is due to morphologic changes such
7	as muscle hypertrophy. The muscle thickness of MG was measured at the proximal 30% of the lower
8	leg length. The muscle thickness was measured by measuring the line drawn perpendicular from the
9	surface to the deep aponeurosis. To accurately measure the muscle thickness without including non-
10	contractile tissue, the measurement between the inside edges of the aponeurosis was used. Previous
11	studies have shown the reliability of the ultrasound technique for measuring muscle thickness of the
12	MG. (14, 17)
13	
14	Training protocol
15	
16	The intervention group performed resistance training at an intensity of 30%MVC, 3 days per week,
17	for 4 weeks, using a Biodex dynamometer. The isometric resistance training protocol consisted of 3
18	sets of 20 repetitions of plantarflexion contraction, held for 3-s and performed at 20° plantarflexion,
19	with a 1-s rest between contractions, and a 2-min rest between sets. The target intensity of 30% MVC

was displayed on the dynamometer monitor during resistance training. The examiner checked whether
subjects could exert the target intensity at all training session. The training intensity of 30%MVC was
reassessed from MVC values measured after the 2-week intervention. Subjects in the control group
did not receive any intervention.

- $\mathbf{5}$
- 6 Statistical analysis
- $\mathbf{7}$

8	Statistical analysis was performed using SPSS (version 22.0, SPSS Japan Inc., Tokyo, Japan).
9	Normality of the data was evaluated using a Shapiro-Wilk test. Group differences for characteristics
10	and MVC of each ankle joint angle at baseline were assessed using an unpaired t-test. Two-way
11	repeated measures analysis of variance (ANOVA) using two factors (the ankle joint angle and the
12	contraction level) was used to determine the differences in the fascicle length at the baseline due to
13	the ankle joint angle and the contraction level. When a significant main effect was observed,
14	Bonferroni's post hoc test was performed. In intervention group, paired t-test was used to determine
15	the differences in the fascicle length between MVCs at each angle in Post-measurement, and at training
16	condition (at 20° plantarflexion with 30% MVC). The fascicle length at training condition was
17	calculated as the mean value of Pre- and Post-measurement to cancel the possible change in the fascicle
18	length due to training. Split-plot ANOVA, using two factors (group \times time), was used to analyze

1	interaction effects for muscle strength. When a significant interaction was observed, a paired t-test
2	was used to determine the differences between the value at baseline and after 4 weeks in both groups.
3	The effect size (Cohen's d) of MVC changes in pre- and post-measurement was calculated employing
4	the methods used in the following study (16). Paired t-test was used to determine the differences of
5	the fascicle length and muscle thickness between at baseline and after 4 weeks. Differences were
6	considered to be statistically significant at an alpha level of 0.05.
7	
8	RESULTS
9	
10	No subjects dropped out, and all subjects in the intervention group completed the training sessions.
11	Therefore, all data for all subjects in the intervention and control groups were entered in the analysis.
12	The characteristics of the subjects are shown in Table 1. There were no significant differences in
13	age, height, and body mass between subjects in the intervention and the control groups. Baseline MVC
14	of plantarflexion are shown in Table 2, again reported as the mean \pm SD. There were no significant
15	differences in MVC, across all 6 testing positions of the ankle joint angle, between intervention and
16	control groups.
17	

18 Differences in the fascicle length due to the ankle joint angle and the contraction level at baseline

2	Figure 3 shows the fascicle length at rest, 30%MVC, and MVC at each of the 6 test angles at
3	baseline (n=16). Two-way repeated measures ANOVA, using two factors-the ankle joint angle and
4	the contraction level-indicated significant main effects for both the factors. The post-hoc analysis
5	showed significant differences in the fascicle length between all 6 test angles at each contraction level,
6	indicating that the fascicle length decreased with ankle plantarflexion. In addition, the post-hoc
7	analysis showed significant differences between all contraction levels, which shows that the fascicle
8	length decreases with increases in the contraction level at each ankle joint angle.
9	
10	Effects of intervention on MVC
11	
12	Effects of intervention on MVC, measured at each of the 6 test angles of ankle position, are shown
13	in Table 2. Split-plot ANOVA, using two factors (group \times time), showed significant interactions at the
14	discrete ankle positions of 0° and 10° plantarflexion. At 0° and 10° plantarflexion, there were
15	significant differences in MVC between Pre- and Post-measurements for the intervention group, but
16	not for the control group.
17	

18 Effects of intervention on the muscle thickness and the fascicle length

2	There were no significant differences in the fascicle length between baseline and after 4 weeks in
3	both groups (intervention group; baseline: 5.53 \pm 0.75 cm, after: 5.56 \pm 0.78 cm, control group;
4	baseline: 5.99 ± 1.11 cm, after: 5.73 ± 1.36 cm). There were also no significant differences in muscle
5	thickness between baseline and after 4 weeks in both groups (intervention group; baseline: 1.80 ± 0.17
6	cm, after: 1.76 ± 0.18 cm, control group; baseline: 1.79 ± 0.35 cm, after: 1.74 ± 0.27 cm).
7	
8	Comparison of the fascicle length during the training condition and MVC contraction
9	
10	The fascicle lengths measured at 20°, 10° dorsiflexion, 0°, 10°, 20° and 30° plantarflexion with the
11	contraction level of MVC at Post-measurement were 4.39 \pm 1.29 cm, 3.54 \pm 0.90 cm, 3.30 \pm 1.16 cm,
12	2.77 \pm 0.68 cm, 2.48 \pm 0.43 cm and 2.33 \pm 0.34 cm, respectively. The fascicle length at 20°
13	plantarflexion and 30% MVC used for our training condition was 2.95 ± 0.35 cm. Paired t-test showed
14	that there were no significant differences in the fascicle length between training condition
15	(20° plantarflexion with the contraction level of 30% MVC) and at 0° and 10° plantarflexion with MVC,
16	although there was significant difference between training condition and at 20° , 10° dorsiflexion, 20°
17	and 30° plantarflexion with MVC.

DISCUSSION

4	This is the first report demonstrating the influences of fascicle length during isometric training on
5	improvement in muscle strength. The hypothesis of this study was that the effects of isometric training
6	on MVC would be influenced by the muscle fascicle length rather than by the joint angle. Our results
7	provided some evidence for this hypothesis, showing that MVC at 0° and 10° ankle plantarflexion
8	increased after isometric training at 20° plantarflexion, whereas no significant increase were observed
9	in MVC at 20° plantarflexion. In this study, the length of the muscle fascicle of the MG was defined
10	as the length of the bundle of muscle fiber, estimated using ultrasound imaging. Our results showed
11	that the fascicle length varied as a function of both the joint angle and the contraction level, which is
12	consistent with previous studies (3, 8). The fascicle length of the MG muscle at 20° plantarflexion and
13	at a contraction level of 30%MVC (i.e. the training condition), was 2.95 \pm 0.35 cm. This fascicle
14	length was equivalent to the length measured at 0° and 10° plantarflexion at MVC (0° ; 3.30 ± 1.16 cm,
15	10° ; 2.77 ± 0.68 cm). In this study, MVC improved not significantly at 20° plantarflexion but at 0° and
16	10° plantarflexion. This result indicated that improvements in MVC were obtained at the same fascicle
17	length, rather than at the same joint angle, used during training, which consists with our hypothesis.
18	This finding is inconsistent with previous studies (10, 13), which reported the effects of training on

1	MVC to be specific to the joint angle used during training. However, the results of these studies stating
2	the specificity of joint angle could also be considered that MVC improved specific to the fascicle
3	length. Since MVC was exerted during training in these studies, the relation of the fascicle length and
4	the joint angle would be equal in training and MVC measurement. Therefore, the improvement found
5	in the same joint angle would indicate improvement in the same fascicle length.
6	The training intensity used in this study was set at a low-intensity level of 30%MVC. Moreover,
7	the isometric contractions were performed for 3-s, which was shorter than contraction durations used
8	in previous studies (18, 20, 21). The rest period provided between sets was 2-min, which may be
9	sufficient to recover from muscle fatigue. Therefore, we consider that in our study, the targeted training
10	intensity of 30%MVC was maintained and, therefore, that the fascicle length of the MG muscle was
11	consistent during training. Previous studies (18, 20, 21) showed that effects of high-intensity training
12	on MVC were obtained at wider range of joint angles. In these previous studies (18, 20, 21), the high
13	resistance training intensity of 80%MVC or 100%MVC was performed with long isometric
14	contraction or short rest time, such that the target intensity of 80%MVC or 100%MVC may not have
15	been maintained. Under these conditions of isometric training with non-fixed intensities, the fascicle
16	length could have varied, explaining the reported improvements in MVC over a range of joint angles.
17	In addition, it could be hypothesized that the muscle strength may increase over a wide range of joint
18	angles if the magnitude of strength improvements was large.

1	Improvement in muscle strength after resistance training depends on neural adaptations over the
2	initial period of training (i.e., <4 weeks), followed by morphological adaptations in the muscles after
3	6-8 weeks, which mainly contributes to the strength gains (11, 15). Our study showed no changes in
4	morphological measurements such as the fascicle length or the muscle thickness after training.
5	Therefore, the improvement in MVC after a 4-week intervention in this study may be influenced by
6	neural adaptations, such as the increases in muscle activity of agonist muscles and decreases in
7	antagonist coactivation (5). Further investigation is necessary to clarify the interaction between neural
8	adaptation mechanisms and the effects of specificity in the fascicle length during training.
9	This study has some limitations. First, the fascicle length during training was not directly measured.
10	Second, our study considered the fascicle length only for the MG muscle. Therefore, the influence of
11	other plantar flexor muscles and the soleus and lateral gastrocnemius muscles, on measured
12	improvements in MVC is unclear. That is to say, we cannot differentiate if improvements in MVC may
13	also be contributed by specificity in the fascicle length of the soleus or the lateral gastrocnemius
14	muscles during training. Further research is required to clarify the effect of isometric training on MVC,
15	considering the fascicle length of all muscles, which may contribute to strength gain.
16	
17	PRACTICAL APPLICATIONS

1	Th	e results of the present study showed that low-intensity isometric training of ankle plantarflexion
2	improv	ved MVC at more dorsiflexed position than at the training angle. Moreover, the fascicle length
3	of the]	MG at the training position was similar to the fascicle length at the position that improved MVC,
4	which	suggests "specificity" of the fascicle length in isometric training. It is possible that low-intensity
5	trainin	g at shortened muscle length may be suitable and safer for the elderly who cannot perform high-
6	intensi	ty training or for patients who have restricted range of joint motion.
7		
8	Ackno	owledgments
9	The	authors thank all of the participants for their cooperation with this study. The authors declare
10	that th	ey have no conflict of interest.
11		
12	Refere	ences
13		
14	1.	Akagi R and Takahashi H. Effect of a 5-week static stretching program on hardness of the
15		gastrocnemius muscle. Scandinavian journal of medicine & science in sports 24: 950-957, 2014.
16	2.	Ando R, Taniguchi K, Saito A, Fujimiya M, Katayose M, and Akima H. Validity of fascicle length
17		estimation in the vastus lateralis and vastus intermedius using ultrasonography. Journal of
18		electromyography and kinesiology : official journal of the International Society of
19		Electrophysiological Kinesiology 24: 214-220, 2014.
20	3.	Arampatzis A, Mademli L, De Monte G, and Walsh M. Changes in fascicle length from rest to
21		maximal voluntary contraction affect the assessment of voluntary activation. J Biomech 40: 3193-
22		3200, 2007.
23	4.	Blazevich AJ, Cannavan D, Coleman DR, and Horne S. Influence of concentric and eccentric

1		resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol 103:
2		1565-1575, 2007.
3	5.	Carolan B and Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl
4		Physiol 73: 911-917, 1992.
5	6.	Csapo R, Alegre LM, and Baron R. Time kinetics of acute changes in muscle architecture in
6		response to resistance exercise. Journal of science and medicine in sport / Sports Medicine
7		Australia 14: 270-274, 2011.
8	7.	Ema R, Wakahara T, Mogi Y, Miyamoto N, Komatsu T, Kanehisa H, and Kawakami Y. In vivo
9		measurement of human rectus femoris architecture by ultrasonography: validity and applicability.
10		Clinical physiology and functional imaging 33: 267-273, 2013.
11	8.	Fukunaga T, Ichinose Y, Ito M, Kawakami Y, and Fukashiro S. Determination of fascicle length
12		and pennation in a contracting human muscle in vivo. J Appl Physiol 82: 354-358, 1997.
13	9.	Kanehisa H and Miyashita M. Specificity of velocity in strength training. Eur J Appl Physiol
14		Occup Physiol 52: 104-106, 1983.
15	10.	Kitai TA and Sale DG. Specificity of joint angle in isometric training. Eur J Appl Physiol Occup
16		Physiol 58: 744-748, 1989.
17	11.	Kraemer WJ, Fleck SJ, and Evans WJ. Strength and power training: physiological mechanisms of
18		adaptation. Exerc Sport Sci Rev 24: 363-397, 1996.
19	12.	Lee J, Koh D, and Ong CN. Statistical evaluation of agreement between two methods for
20		measuring a quantitative variable. Computers in biology and medicine 19: 61-70, 1989.
21	13.	Lindh M. Increase of muscle strength from isometric quadriceps exercises at different knee angles.
22		Scandinavian journal of rehabilitation medicine 11: 33-36, 1979.
23	14.	Maganaris CN, Baltzopoulos V, and Sargeant AJ. In vivo measurements of the triceps surae
24		complex architecture in man: implications for muscle function. The Journal of physiology 512 (Pt
25		2): 603-614, 1998.
26	15.	Moritani T and Devries HA. Neural factors versus hypertrophy in the time course of muscle
27		strength gain. J Phys Med Rehabil 58: 115-130, 1979.
28	16.	Nakagawa S and Cuthill IC. Effect size, confidence interval and statistical significance: a practical
29		guide for biologists. Biological reviews of the Cambridge Philosophical Society 82: 591-605, 2007.
30	17.	Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, and Cerretelli P. In vivo human
31		gastrocnemius architecture with changing joint angle at rest and during graded isometric
32		contraction. The Journal of physiology 496 (Pt 1): 287-297, 1996.
33	18.	Rasch PJ and Pierson WR. One position versus multiple positions in isometric exercise. American
34		journal of physical medicine 43: 10-12, 1964.
35	19.	Thorstensson A, Hulten B, von Dobeln W, and Karlsson J. Effect of strength training on enzyme
36		activities and fibre characteristics in human skeletal muscle. Acta Physiol Scand 96: 392-398, 1976

1	20.	Weir JP, Housh TJ, and Weir LL. Electromyographic evaluation of joint angle specificity and
2		cross-training after isometric training. J Appl Physiol 77: 197-201, 1994.
3	21.	Weir JP, Housh TJ, Weir LL, and Johnson GO. Effects of unilateral isometric strength training on
4		joint angle specificity and cross-training. Eur J Appl Physiol Occup Physiol 70: 337-343, 1995.
_		

 $\mathbf{5}$

1 Table 1 Characteristics of the participants

 $\mathbf{2}$

	Intervention group($n = 8$)	Control group($n = 8$)	p-value
Age (years)	$21.75 \hspace{0.1in} \pm \hspace{0.1in} 0.71$	$21.88 \hspace{0.2cm} \pm \hspace{0.2cm} 2.10$	0.884
Height (cm)	159.13 ± 5.41	158.13 ± 3.50	0.6 Þ
Body mass (kg)	50.63 ± 5.32	49.13 ± 4.05	0.546
			7

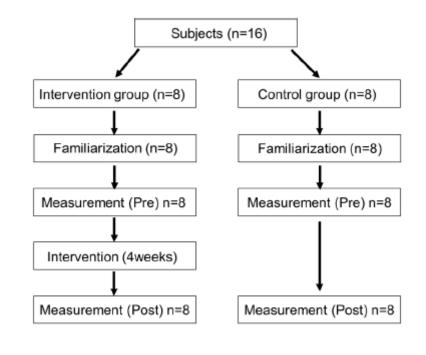
8 Values are expressed as mean \pm SD (standard deviation)

1 Table 2 Effects of intervention on MVC at each ankle joint angle

	i	ntervention group (n =	= 8)		control group $(n = 8)$	
ankle joint angle	Pre (Nm)	Post (Nm)	Effect size (95%CI)	Pre (Nm)	Post (Nm)	Effect size (95%CI)
Dorsiflexion 20°	112.55 ± 37.79	131.09 ± 31.92	0.53 (-0.47 - 1.53)	116.08 ± 40.98	118.53 ± 42.26	0.06 (-0.92 - 1.04)
Dorsiflexion 10°	101.88 ± 30.15	119.24 ± 27.26	0.60 (-0.40 - 1.61)	103.28 ± 35.82	104.76 ± 36.09	0.04 (-0.94 - 1.02)
0°**	$81.26 \ \pm \ 26.52$	105.08 ± 21.56	0.99 (-0.05 - 2.02)	$91.50 \hspace{0.2cm} \pm \hspace{0.2cm} 24.60$	90.78 ± 29.04	-0.03 (-1.01 - 0.95)
Plantarflexion 10°*	62.96 ± 23.55	81.29 ± 20.30	0.83 (-0.19 - 1.86)	71.50 ± 21.06	70.15 ± 21.06	-0.06 (-1.04 - 0.92)
Plantarflexion 20°	50.23 ± 21.14	$62.24 \hspace{0.2cm} \pm \hspace{0.2cm} 20.43$	0.58 (-0.42 - 1.58)	51.51 ± 16.30	53.76 ± 17.44	0.13 (-0.85 - 1.11)
Plantarflexion 30°	$31.84 \hspace{0.2cm} \pm \hspace{0.2cm} 14.70$	$42.74 \hspace{0.2cm} \pm \hspace{0.2cm} 16.60$	0.70 (-0.31 - 1.70)	34.03 ± 15.96	36.38 ± 15.32	0.15 (-0.83 - 1.13)

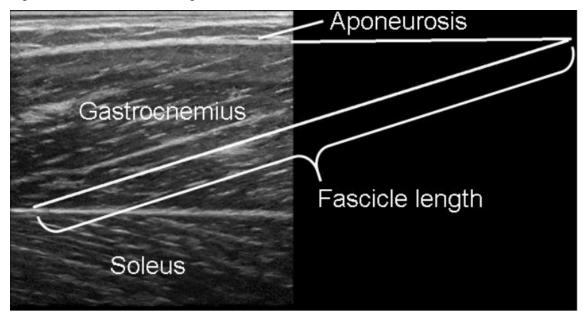
2 Values are expressed as mean \pm SD (standard deviation)

3 CI = confidence interval

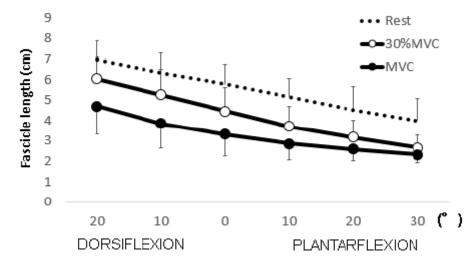

4 Effect size is Cohen's d. d = 0.2, 0.5, 0.8 were considered "small," "medium," and "large" effects, respectively.

5 *; significant interaction between time (Pre and Post) and groups (intervention and control groups)

6 ***P*<0.01,**P*<0.05


 $\overline{7}$

1 Fig. 1 Flowchart of this study


 $\frac{2}{3}$

1 Fig. 2 Estimation of fascicle length

- 3 The fascicle length of the MG was defined as a distance in a straight line between extension lines from
- 4 aponeurosis and fascicle origin.
- $\mathbf{5}$

 $\mathbf{2}$

1 Fig.3 Fascicle length in both groups at baseline

An open circle indicates 30% MVC, and a filled circle indicates MVC values. At all contraction

4 levels, the fascicle length decreases toward plantarflexion. At the same ankle angle, fascicle length

5 decreases toward MVC.