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ABSTRACT 

Objectives: Objectives: The lumbar multifidus muscle (LMF) is a lower back muscle that contributes 

to spinal stability. Several electromyographic analyses have evaluated LMF activity during various 

types of training. The present study examined the activity of the back muscles during quadruped upper 

and lower extremity lifts (QULEL) with different lifting direction and weight loading of extremities.  

Methods: Seventeen healthy men were included as subjects. The exercise conditions comprised raising 

the upper extremity of one side and the lower extremity of the opposite side in a quadruped position 

with different lifting direction and weight loading. The various combinations of lifts were 

modifications of conventional QULEL, in which the upper extremity is raised to 180° shoulder flexion 

and the lower extremity to 0° hip extension. The effects of different lifting directions and weight 

loading on LMF and lumbar erector spinae muscle (LES) activities were measured using surface 

electromyography.  

Results: The LMF activity and the LMF/LES activity ratio on the side of lower extremity lifting were 

higher during QULEL with the upper and lower extremities in abduction than during conventional 

QULEL. The LMF/LES activity ratio was lower during QULEL with weight loading on the upper and 

lower extremities than during conventional QULEL. 

Conclusions: QULEL with abduction of the upper and lower extremities is effective for selectively 

strengthening LMF. 
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INTRODUCTION 

The lumbar multifidus muscle (LMF) is a lower back muscle that contributes to spinal stability.1–3 

Several electromyographic analyses have evaluated LMF activity during various types of training.4–10 

LMF atrophy in acute11,12 and chronic LBP patients has been observed in studies using computed 

tomography (CT) and magnetic resonance imaging (MRI) images.13–16 In patients with LBP, the 

selective atrophy of LMF compared with that of lumbar erector spinae muscle (LES) has been 

demonstrated,17 and the proportion of fatty tissue in LMF increases in them.18,19 Therefore, the 

importance of effective strengthening of LMF is attracting attention in the rehabilitation of patients 

with LBP.  

Furthermore, previous studies20–22 revealed that the activity of LMF, which is a member of the deep 

muscles of the back, decreases, whereas the activity of LES, which is a member of the superficial 

muscles of the back, increases in individuals with LBP or those with LBP history (LBPH). Decreased 

LMF activity causes lumbar spine instability, which may contribute to LBP recurrence.23 A previous 

study has also examined the effect of training on the strengthening of lower back muscles in patients 

with LBP,24 revealing that selective training of LMF immediately increases LMF activity and 

decreases LES activity during spinal movement in a standing position compared with training of all 

lower back muscles (including both LMF and LES). Therefore, training to selectively strengthen LMF 

is considered to be effective in increasing LMF activity in individuals with LBP or LBPH. 

There are various different types for training of the low back muscles including LMF and LES. 

Quadruped upper and lower extremity lift (QULEL), in which the subject raises the upper extremity 

on a side and the lower extremity on the other side to a horizontal position in the quadruped position, 

is known to activate LMS. Ekstrom et al. compared the muscle activities during various exercises in 

healthy subjects and found that QULEL resulted in relatively high activity of the LMF muscle on the 

side where the lower extremity was lifted (lower extremity side) and that the % maximum voluntary 

contraction (%MVC) of LMF was higher than that of LES. On the other hand, LMF activity on the 

side where the upper extremity was lifted (upper extremity side) was lower than LES activity.10 

Therefore, it is considered that QULEL is an adequate exercise to selectively activate the LMF muscle 
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on the lower extremity side. However, because the muscle activity was expressed as %MVC in their 

study, the selectivity of the muscle activity among exercises cannot be compared. Therefore, in this 

study, to obtain a method to train the LMF muscle more selectively and strongly, we examined the 

effect of modifying this exercise by adding rotation moment of the spine by changing the direction of 

lifting upper and lower extremities and weight loading of the extremities. In addition, to estimate the 

selectivity, we examined the activity ratio of LMF and LES (LMF/LES activity ratio). The muscle 

activity ratio has been calculated in some studies examining the activity of the shoulder girdle25,26 or 

the scapular27 muscles. However, to our knowledge, this is the first study to examine the activities of 

LMF and LES in terms of the activity ratio.  

 

METHODS 

Participants 

The sample size required for the present study was calculated utilizing G*Power software version 

3.1.9.2 (Franz Faul, University of Kiel, Kiel, Germany). Results indicated that 10 subjects would 

provide a statistical power of 0.80 and an effect size of 0.40 for analysis of variance. 

The subjects comprised 17 healthy young men (age 22.4 ± 1.3 years, height 173.1 ± 5.7cm, weight 

65.5 ± 11.7 kg). Individuals with musculoskeletal conditions or those with neurological or 

cardiovascular disorders that would limit their ability to perform the exercises were excluded. All 

subjects provided informed consent, and the protocol was approved by the Ethics Committee of the 

Kyoto University Graduate School and Faculty of Medicine. 

 

Experimental procedure 

The experiment was broadly divided into two parts: lifting extremities in (a) different directions and 

with (b) different weight loading. Conventional QULEL is performed by lifting the right upper and 

the left lower extremities to a horizontal position. In the present study, variants of conventional 

QULEL were performed in which the extremities were lifted in different directions as follows (Figure 
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1): (1) right upper extremity lifted to 180° shoulder flexion and left lower extremity lifted to 0° hip 

extension (F–E), (2) right upper extremity lifted to 90° shoulder abduction and left lower extremity 

lifted to 0° hip extension (A–E), (3) right upper extremity lifted to 180° shoulder flexion and left lower 

extremity lifted to maximum hip abduction (F–A), and (4) right upper extremity lifted to 90° shoulder 

abduction and left lower extremity lifted to maximum hip abduction (A–A). The exercise conditions 

with different weight loading of the lifted extremities were further divided as follows (Figure 1): (1) 

F–E (2) F–E with a weight belt weighing 2.5% of the body weight attached to the right wrist (BW; 

F2.5–E), (3) F–E with a weight belt weighing 5.0% of BW (F–E5) attached to the left ankle, and (4) 

F–E with a weight belt weighing 2.5% of BW attached to the right wrist, and weight belt weighing 

5.0% of BW attached to the left ankle (F2.5–E5).  

Exercises were assigned in a random order to each subject. Each exercise was performed thrice, 

with adequate rest periods between the different exercises. 

 

Electromyography (EMG) recording and data analysis 

EMG data were collected by sampling at 1500 Hz, using the Telemyo 2400T (Noraxon USA; 

Scottsdale, AZ, USA). After the electrode sites were cleaned with a scrubbing gel and washed with 

alcohol, bipolar surface electrodes (Ambu; Baltorpbakken, Denmark) with a 2-cm center-to-center 

inter-electrode distance were applied to the four muscles: LMF (at the level of the L5 spinous process 

on a line extending from the posterior superior iliac spine to the interspace between L1 and L2)28 

bilaterally and LES (4-cm lateral to the L1 spinous process)10 bilaterally. The ground electrode was 

affixed to the skin over the iliac crest. In each exercise, the EMG signals were measured for 3 s after 

the subjects raised their extremities and were able to maintain a stable position. The original raw EMG 

signals were bandpass filtered at 10–500 Hz and the root-mean-square amplitude of the signals was 

computed using 50-ms windows. EMG values of each muscle were then expressed as percentages of 

the EMG values during MVCs. The EMG signals during the stable 3-s period were recorded as MVCs 

for each muscle. Furthermore, the LMF/LES activity ratio, which shows the selective strengthening 

of LMF compared with that of LES, was calculated. 
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Statistical analysis 

Statistical analyses were performed using SPSS version 20.0 (IBM Japan; Tokyo, Japan). LMF 

activity, LES activity, and the LMF/LES activity ratio in both the upper extremity and lower extremity 

sides were measured and compared in the exercise conditions with different directions (F–E, A–E, F–

A, A–A) and different weight loading (F–E, F2.5–E, F–E5, F2.5–E5). After EMG variables were 

examined using Shapiro–Wilk tests, differences in the variables were evaluated using repeated 

measure analysis of variance or Friedman tests. If a significant primary effect was found, the 

differences were determined by posthoc Bonferroni or Bonferroni correction test for multiple 

comparisons. P values of <0.05 were considered statistically significant. 

 

RESULTS 

Effects of lifting direction (Table 1)  

There was a significant primary effect on LMF and LES muscle activities and the LMF/LES activity 

ratio in both the upper and lower extremity sides. 

On the upper extremity side, LMF activity during the F–A and A–A conditions was significantly 

lower than that during the F–E condition. LES activity during the A–A condition was significantly 

lower than that during the F–E condition.  

On the lower extremity side, LMF activity during the F–A and A–A conditions was significantly 

higher than that during the F–E condition. There was no significant difference in LES activity between 

the F–E and A–A conditions. The LMF/LES activity ratio during the A–A condition was significantly 

higher than that during the F–E condition. 

 

Effects of weight loading (Table 2)  

There was a significant primary effect in LMF and LES activities in both the upper and lower 

extremity sides. A significant effect was also observed in the LMF/LES activity ratio on the lower 

extremity side only.  
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On the upper and lower extremity sides, LMF and LES activities during the F2.5–E, F–E5, and 

F2.5–E5 conditions were significantly higher than that during the F–E condition. However, the 

LMF/LES activity ratio during the F2.5–E5 condition was significantly lower than that during the F–

E condition on the lower extremity side. 

 

DISCUSSION 

The present study examined the effects of different lifting directions and weight loading of the 

extremities during QULEL to clarify effective methods that can selectively strengthen LMF. 

Analyses with different lifting directions revealed that LMF activity in both the upper and lower 

extremity sides were influenced by hip abduction, as observed in the F–A and A–A conditions. 

Compared with the F–E condition, LMF activity on the lower extremity side was higher, whereas that 

on the upper extremity side were lower, in these conditions. However, shoulder abduction did not 

influence LMF activity on either side, and there was no significant difference in LMF activity between 

the F–E and A–E conditions. A previous study showed that during QULEL in the F–E condition, LMF 

activity on the lower extremity side was higher than LES activity.10 This is because the weight of the 

lifted upper and lower extremities contributes to the rotation moment of the spine, relative to the pelvis, 

toward the lower extremity side, i.e., the ipsilateral rotation moment to the lower extremity side 

increases. Therefore, LMF activity contributing to the contralateral rotation of the spine increases on 

the lower extremity side. Hip abduction during QULEL affects both the flexion and rotation moments 

of the spine. It is assumed that the flexion moment of the spine caused by the weight of the lifted lower 

extremity decreases because the flexion moment arm of the spine, caused by the weight of the lifted 

lower extremity, decreases with hip abduction. Therefore, LMF activity that results in spinal extension 

is considered to decrease with a decrease in the flexion moment of the spine on the lower extremity 

side. On the other hand, the rotation moment arm and the rotation moment of the spine toward the 

lower extremity side, i.e., ipsilateral rotation moment of the lower extremity side, increases with hip 

abduction, and therefore, would lead to increased LMF activity.  

LES activity has been shown to be higher than LMF activity on the upper extremity side during 
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QULEL in the F–E condition.10 This is probably because the rotation moment of the spine toward the 

lower extremity side, caused by the weight of the lifted upper and lower extremities (contralateral 

rotation moment to the upper extremity side), increases when the upper and lower extremities are lifted. 

The increase in rotation moment contributes to an increase in LES activity, resulting in the ipsilateral 

rotation of the spine to the upper extremity side. In the present study, LES activity on the upper 

extremity side was significantly lower during the A–A condition than during the F–E condition, 

whereas there was no such difference on the lower extremity side. Hip and shoulder abduction would 

decrease LES activity, resulting in spinal extension on the upper extremity side. This is because the 

flexion moment of the spine resulting from the weight of the lifted upper and lower extremities 

decreases with shoulder and hip abduction. An MRI study has documented that LES acts on the long 

extension moment arm of the spine,29 and it is assumed that it greatly contributes to the generation of 

spinal extension torque.  

The fact that the LMF/LES activity ratio on the lower extremity side increased to a greater degree 

during the A–A condition than during the F–E condition is also noteworthy. However, there was no 

significant difference in the LMF/LES activity ratio on the upper extremity side between the F–E and 

A–A conditions. It is assumed that the increased LMF/LES activity ratio on the lower extremity side 

is related to increased LMF activity and unchanged LES activity. Therefore, the A–A condition is 

effective in selectively strengthening LMF.  

Furthermore, LMF activity on both sides increased with weight loading compared with that during 

the F–E condition. The increase in LES activity was similar to that in LMF activity. It is assumed that 

the flexion moment of the spine increased because of the weight belts added to the original weight of 

the lifted upper and lower extremities, and LMF and LES activities that result in the extension of the 

spine increased to maintain the position.  

The LMF/LES activity ratio on the lower extremity side decreased when weight was loaded onto 

the lifted upper and lower extremities compared with that during the F–E condition. However, no 

change in the LMF/LES ratio was observed on the upper extremity side between weight loading 

conditions and the F–E condition. This was probably because the increase in LES activity was greater 
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than that in LMF activity on the lower extremity side, although LMF and LES activities increased in 

both sides. Therefore, our results suggest that weight loading of the lifted upper and lower extremities 

during QULEL is disadvantageous for selective LMF training, although it may be effective in cases 

where it is desirable to globally increase LMF and LES activities. 

In future, intervention studies are required to investigate immediate and long-term changes in the 

activity pattern of back muscles during movement in the standing position in patients with LBP and 

LBPH using the training methods that were examined in the present study. Such an investigation will 

contribute to the establishment of effective training techniques for patients with LBP and individuals 

with LBPH.  

 

LIMITATIONS 

The present study has several limitations. First, the present study was performed in healthy subjects. 

It is unclear whether the muscle activity pattern of patients with LBP and individuals with LBPH, who 

may have altered back muscle activity, will show patterns similar to that observed in the present study. 

Second, it is unclear how the intervertebral joints and disks are loaded during these exercises in 

patients with unilateral LBP and individuals with unilateral LBPH who have intervertebral joint and 

disk degeneration. Previous studies have demonstrated that the changes in lower back and abdominal 

muscle activities induced a change in anteroposterior joint shear force at the lumbar intervertebral joint 

and intervertebral compression force during movement.7,30 These findings suggest that loads at the 

intervertebral joints and disks during training may be altered by the change in back muscle activity. In 

the present study, LMF and LES activities changed because of the difference in the lifting direction of 

the extremities and loading weight onto the extremities. However, the shear force of the intervertebral 

joint and the compression force on the intervertebral disk were not measured. Thus, we propose that 

consideration of these factors is necessary when these subjects perform the training exercises in the 

present study. 

 

CONCLUSION 
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The results of the present study suggest that QULEL with shoulder and hip abduction is more 

effective to selectively strengthen LMF on the side where the lower extremity is lifted. Loading weight 

onto both the lifted upper and lower extremities during QULEL is disadvantageous as a selective LMF 

training method because the LMF/LES activity ratio is low. 
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Fig 1. Variants of conventional quadruped upper and lower extremity lifts with the extremities lifted 

(a) in different directions and (b) with different weight loading. 
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Table 1. Lumbar multifidus and lumbar erector spinae muscle activities (% maximal voluntary 

contraction) and the Lumbar multifidus muscle/the lumbar erector spinae muscle activity ratio in 

exercise conditions where the extremities were lifted in different directions. 

 

 F–E A–E F–A A–A 

The upper extremity 

side 

LMF 

LES 

LMF/LES activity 

ratio 

The lower extremity 

side 

LMF 

LES 

LMF/LES activity 

ratio 

 

19.3 ± 5.8 

22.5 ± 6.6 

0.89 ± 0.29 

 

 

 

28.5 ± 10.0 

15.1 ± 7.4 

2.21 ± 1.09 

 

16.7 ± 4.9 

19.4 ± 6.3* 

0.88 ± 0.22 

 

 

 

28.2 ± 9.3 

12.5 ± 5.2 

2.56 ± 1.12 

 

12.6 ± 4.7*†  

19.4 ± 5.7* 

0.66 ± 0.21*†  

 

 

 

34.1 ± 8.4*† 

16.2 ± 7.7† 

2.64 ± 1.43 

 

 

11.3 ± 3.8*†  

15.4 ± 4.7*†‡ 

0.75 ± 0.24†  

 

 

33.1 ± 8.0*† 

14.5 ± 6.2 

2.75 ± 1.37* 

*  significantly different from F–E (p < 0.05),  †  significantly different from A–E (p < 0.05) 

‡   significantly different from F–A (p < 0.05)        

LMF: lumbar multifidus muscle, LES: lumbar erector spinae muscle 

F–E: Right 180° shoulder flexion and left 0° hip extension, A–E: Right 90° shoulder abduction and left 0° hip extension, 

F–A: Right 180° shoulder flexion and left maximal hip abduction,  A–A: Right 90° shoulder abduction and left maximal 

hip abduction  
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Table 2. Lumbar multifidus and lumbar erector spinae muscle activities (% maximal voluntary 

contraction) and the Lumbar multifidus muscle/the lumbar erector spinae muscle activity ratio in 

exercise conditions where weight was loaded onto the lifted extremities. 

 

 F–E F2.5–E F–E5 F2.5–E5 

The upper extremity 

side 

LMF 

LES 

LMF/LES activity 

ratio 

The lower extremity 

side 

LMF 

LES 

LMF/LES activity 

ratio 

 

19.3 ± 5.8 

22.5 ± 6.6 

0.89 ± 0.29 

 

 

 

28.5 ± 10.0 

15.1 ± 7.4 

2.21 ± 1.09 

 

25.5 ± 6.8* 

28.6 ± 8.7* 

0.92 ± 0.17 

 

 

 

32.9 ± 10.2* 

19.0 ± 7.0* 

1.81 ± 0.50 

 

23.8 ± 8.5* 

26.8 ± 8.5* 

0.89 ± 0.24 

 

 

 

33.8 ± 13.1* 

21.6 ± 10.5* 

1.79 ± 0.74 

 

 

27.2 ± 8.6* 

31.5 ± 9.7*‡ 

0.88 ± 0.21 

 

 

38.6 ± 14.5*†‡ 

24.7 ± 9.8*† 

1.68 ± 0.55* 

*  significantly different from F–E (p < 0.05), †  significantly different from F2.5–E (p < 0.05) 

‡  significantly different from F–E5 (p < 0.05) 

LMF: lumbar multifidus muscle, LES: lumbar erector spinae muscle 

F–E: Right 180° shoulder flexion and left 0° hip extension, F2.5–E: F–E with load weighing 2.5% of body weight 

(BW) on the right wrist, F–E5: F–E with load weighing 5.0% of BW on the left ankle, F2.5–E5: F–E with load weighing 

2.5% of BW on the right wrist and load weighing 5.0% of BW on the left ankle  

 

 

 

 

 


