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Abstract 1 

Background: The ability to descend stairs independently is impaired from a relatively early stage in 2 

patients with knee osteoarthritis. The purpose of this study was to evaluate the performance in patients 3 

with knee osteoarthritis when stepping down a step by evaluating the dynamic stability using the 4 

extrapolated center of mass. 5 

Methods: Twenty-three individuals with medial knee osteoarthritis were evaluated during step descent 6 

without any assistance. Kinematic/kinetic data were collected using a three-dimensional motion 7 

analysis system and force platforms. The extrapolated center of mass and its deviation from the 8 

anterior boundary on the base of support (margin of stability) were calculated at the initiation of 9 

descent. Joint angles and internal joint moments were collected at the stance limb. The relationship 10 

between patients’ dynamic stability control, which was measured by the timed up and go test, and the 11 

length of margin of stability were analyzed. Relationships between the length of the margin of stability 12 

and each kinematic/kinetic variable were also evaluated  13 

Findings: The margin of stability positively correlated with the time taken for a timed up and go test. 14 

A positive correlation was additionally observed between the ankle dorsiflexion angle and the margin 15 

of stability. It was also found that a higher ratio of ankle plantar flexion moment by support moment 16 

was associated with a larger margin of stability.  17 

Interpretation: Patients with knee osteoarthritis who had high ability in dynamic stability control were 18 

observed to move their center of mass anteriorly at the initiation of stepping down. It was also 19 

suggested that these patients could dorsiflex their ankle joint and generate sufficient ankle plantar 20 

flexor torque. 21 
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1. Introduction 22 

Knee osteoarthritis (knee OA) is one of the most common lower extremity diseases in the elderly 23 

[1, 2] known to cause pain, joint stiffness, and limitations in activities of daily living [3–5]. The ability 24 

to independently negotiate stairs is frequently required in daily living. However, this ability, 25 

particularly the action of descending stairs, is easily impaired to the extent that many patients with 26 

knee OA are unable to ascend or descend stairs without any assistance, even if these patients’ 27 

conditions are not severe enough to indicate surgery. Previous studies have described that patients with 28 

knee OA demonstrated a slower stair descent than their healthy elderly counterparts [6] and patients 29 

gradually developed difficulties in stair decent with disease progression [7, 8]. It was also reported 30 

that knee OA patients who underwent knee replacement could not completely recover from their 31 

abnormality in descending stairs, such as a decrease in descent speed [9] and the use of a handrail [10], 32 

even several months after surgery. Based on these studies, it was supposed that the decline in the ability 33 

to descend stairs caused by knee OA would limit mobility independence in the long term. In addition, 34 

10% of falls in the elderly happen during stair negotiation [11], which also indicates that changes in 35 

the method used to descend stairs caused by a decline in physical function could lead to an increased 36 

risk of falling. Although it was expected that stair descending would influence mobility independence 37 

and risk of falls, few studies have investigated the performance of stair descending in patients with 38 

knee OA by analyzing their motions. Moreover, while some previous studies have investigated the 39 

time-spatial variables in stair descent in patients with knee OA [9], further analysis is needed to 40 

consider the lower extremity joint mechanics during stair descent. 41 

It is characteristic of the mechanics in descending steps that much more muscle force, which 42 

regulates the anterior-inferior rotation of the body caused by gravity, is required compared to level 43 

walking. Therefore, we considered that a quantitative evaluation of dynamic stability during the 44 

regulation of the anterior-inferior rotation of the body in stair descent would be valuable in clarifying 45 

the features in stair descent in patients with knee OA. In recent studies, dynamic stabilities in some 46 

locomotor activities, such as level walking, have been estimated by calculating the extrapolated center 47 

of mass (XcoM), which is a concept based on an inverted pendulum model [12]. XcoM is obtained 48 
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from the anterior-posterior position and the forward velocity of the center of mass (CoM). Dynamic 49 

stability in locomotor activities is evaluated by observing Margin of Stability (MoS), which represents 50 

the instantaneous distance between the XcoM and the anterior boundary of the base of support (BoS) 51 

[13, 14]. One previous study used this method to evaluate dynamic stability while patients descended 52 

stairs and disclosed that older individuals showed reduced dynamic stability control compared with 53 

young individuals [15]. In patients with knee OA, the condition is also likely to alter their control 54 

strategies during stair descent because of such impairments as joint stiffness and muscle weakness, 55 

which are caused by their pathology. However, no study has evaluated performance of stair descent in 56 

patients with knee OA with regards to dynamic stability using the MoS calculated from XcoM as a 57 

measure, and the variables (e.g., joint angle and internal joint moment) associated with this 58 

performance are unclear. 59 

The purpose of this study was to evaluate the performance in terms of dynamic stability while 60 

stepping down stairs in patients with knee OA through observation of XcoM and MoS behavior. We 61 

hypothesized that performance in descending a step is associated not with knee joint 62 

kinematics/kinetics but with other joints kinematics/kinetics because the hip/ankle joint would 63 

compensate for their failure of joint angular displacement or torque generation at the knee in patients 64 

with knee OA. 65 

 66 

2. Methods 67 

2.1 Participants 68 

Twenty-three individuals with medial knee OA diagnosed by an orthopedic surgeon were recruited 69 

for this study. Patients with other types of arthritis (e.g., lateral knee OA, rheumatoid arthritis) or those 70 

who had undergone previous surgery in the lower extremities were excluded. Patients diagnosed with 71 

any other disease that could affect ambulation were also excluded from the study. All participants were 72 

able to descend at least one step without any assistance. Following Institutional Review Board 73 

approval, written informed consent was obtained from each participant before the study began. 74 

While only the affected limb was analyzed in this study, the more symptomatic side of each patient 75 
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was involved if patients had bilateral knee OA. The radiographic severity of each patient was 76 

determined using Kellgren-Lawrence classification by an experienced orthopedic surgeon. The 77 

disease-specific scale of the Japanese Knee Osteoarthritis Measure (JKOM) was used to evaluate their 78 

symptoms and physical functions. The JKOM is a self-administered measure consisting of 25 items, 79 

which include subjective pain in level walking, standing, or climbing stairs as well as physical 80 

functions related to the activities of daily living and social functions. The maximum score for the 81 

JKOM is 100 points, and higher scores indicate more impaired function. Pain in daily living was also 82 

quantified by using the visual analog scale (VAS). The participants’ demographic characteristics are 83 

shown in Table 1.  84 

 85 

2.2 Measure of functional balance ability 86 

To evaluate each participant’s ambulation and functional balance ability, the timed up and go test 87 

(TUG) was used. In this test, participants initially sat on a chair with a seat height of 42 cm. Each 88 

participant was instructed to stand up, walk toward a mark, which had been placed 3 m from the 89 

starting position, turn around, walk back to the chair, and sit down again. They were also asked to 90 

perform this sequence of activities as fast as possible. Each participant completed the trials twice, and 91 

the time taken to complete the test was recorded. The faster of the two trials was used for analysis. 92 

   93 

2.3 Motion capture of descending a step  94 

All participants performed three trials of stepping one step down. The step riser height and tread 95 

width were 20 and 40 cm, respectively (Fig. 1). They were asked to descend at a self-selected speed 96 

and to lead with the uninvolved limb. In order to standardize the step length between participants, each 97 

trial began with the subjects standing with both toes against the anterior edge of the step. They were 98 

instructed not to cross their toes over a line that was drawn 25 cm from the edge of the step when they 99 

descended toward the lower step. Both arms were folded in front of their abdomen in an attempt to 100 

standardize the effects of motion of the upper extremities on their ambulation. Before the sampled 101 

trials, each participant completed a couple of trials for familiarization.  102 

Kinematic and kinetic data were obtained using a three-dimensional motion analysis system  103 
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(Vicon Nexus; Vicon Motion Systems Ltd., Oxford, UK) and force platforms (Kistler Japan Co., Tokyo, 104 

Japan). The step was placed upon the platform, and ground reaction force data were collected during 105 

the trials. The sampling frequency of the motion analysis system and force platforms were 200 Hz and 106 

1000 Hz, respectively, and these two were synchronized during the analysis. Thirty reflective markers 107 

were placed on the following bony landmarks by a single examiner: the spinous process of the seventh 108 

cervical vertebra and the tenth thoracic vertebra, suprasternal notch, xiphoid process, bilateral 109 

acromioclavicular joints, lateral humeral epicondyle, styloid process of the radius, anterior superior 110 

iliac spine, posterior superior iliac spine, superior aspect of the greater trochanter, lateral and medial 111 

femoral epicondyle, lateral and medial malleolus, first and fifth metatarsal heads, and calcaneus. The 112 

hip joint center was determined by first calculating a vector linking the reflective markers attached at 113 

both greater trochanters. Then, the hip joint center was identified as the interpolated point located at a 114 

distance of 18% of the vector norm from each marker attached at the superior aspect of the greater 115 

trochanter along the vector. The knee joint center was determined as the mid-point between two 116 

markers located at the lateral and medial femoral epicondyles. The ankle joint center was located at 117 

the mid-point between the lateral and medial malleolus [16]. 118 

The Vicon Bodybuilder (Vicon Nexus; Vicon Motion Systems Ltd., Oxford, UK) application was 119 

used for calculating the position of the CoM with respect to laboratory coordinates. Joint angles and 120 

internal moments in the sagittal plane were also calculated at the hip, knee, and ankle of the involved 121 

limb. The internal joint moments were determined by using inverse dynamics. Before these 122 

calculations, displacement of each marker was filtered using a fourth-order Butterworth low-pass filter 123 

with a 6-Hz cutoff. The moment of inertia was determined as in previous study described by Winter 124 

et al. [17]. All kinetic data were low-pass filtered with a 25-Hz cutoff and normalized for body weight 125 

and height. 126 

 127 

2.4 Data analysis 128 

Using the data of CoM displacement, XcoM values were determined as follows:  129 

XcoM = pCoM + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
�𝑔𝑔𝑔𝑔⁻¹

 , 130 
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where pCoM is the anterior-posterior position of the CoM, which was projected to the ground, vCoM 131 

denotes the anterior-posterior velocity of the CoM, g is the acceleration of gravity, and l is the distance 132 

between the CoM and the center of the ankle joint (Fig. 1). XcoM is the estimated CoM position which 133 

represents the position that the CoM would reach to during dynamic movement and is calculated by 134 

adding the anterior-posterior velocity of CoM divided by the eigenfrequency of the inverted pendulum 135 

to the temporary position of the CoM. The margin of stability (MoS), which was used as the variable 136 

representing the performance of stair descent in subsequent analysis, was defined as the distance 137 

between the XcoM and the anterior boundary of the BoS, which was approximated as the anterior edge 138 

of the step in this study. As the position of the CoM is within the BoS while postural stability is 139 

sustained, an increase in MoS indicates that the XcoM exceeds the BoS and stability is therefore 140 

disturbed [12]. The waveforms of MoS and internal joint moment at each joint during stepping down 141 

a stair for one representative patient are described in Figure 2. 142 

For subsequent analysis, a value for the MoS was obtained at the time when a marker placed on  143 

the heel of the uninvolved limb descended beneath the edge of the step (i.e., when the vertical height 144 

of the marker became less than 20 cm with respect to laboratory coordinates). Variables of each joint 145 

angle and internal joint moment were also sampled at the same time to clarify which joint 146 

kinematic/kinetic variables were most associated with the performance of stair descent in these 147 

patients. Further, a value for the support moment, which was defined as the summation of hip extension, 148 

knee extension, and ankle plantar flexion moments [18], was obtained, and the proportions of each 149 

joint moment to each support moment were calculated. This timing was chosen for analysis because 150 

patients’ motion at this timing was easily observed visually even in the clinical setting. In addition, the 151 

timing was chosen because the body would move in accordance with the inverted pendulum model 152 

immediately after the initiation of the descent movement, while CoM continues to drop during stair 153 

descent (i.e. the CoM movement would gradually deviate from the inverted pendulum model). 154 

 It was also selected because controlling anterior-inferior rotation of the body at this timing, when 155 

the swing limb started going down toward the lower step, requires much energy to be generated by the 156 

stance (involved) limb.   157 

 158 
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2.5 Statistical analysis 159 

For each kinematic and kinetic variable, the averaged values of the three trials were used for 160 

subsequent statistical analysis. First, Pearson correlation coefficient was calculated between the time 161 

taken for TUG and MoS to evaluate the relationship between the MoS and each patient’s functional 162 

balance ability. Furthermore, the relationships between the joint angle and internal joint moment at 163 

each joint and the MoS were assessed using the same correlation coefficients. Spearman rank 164 

correlation coefficients were also calculated between the MoS and the proportions of each joint 165 

moment by support moment. The significance level was set at 5%. IBM SPSS statistics 20.0 was 166 

used for the statistical analysis. 167 

 168 

3. Results 169 

The mean time taken for the TUG test was 6.83 sec (Table 2). Kinematic and kinetic variables 170 

including MoS, anterior-posterior position and velocity of CoM, joint angles, internal joint moments, 171 

and the proportions of each joint moment by support moment are shown in Table 3. MoS was 172 

positively correlated with the time taken for TUG and was significant (r = -0.42, p < 0.05, Table 2 and 173 

Fig. 2). For the joint angles and internal joint moments, a positive correlation was observed between 174 

the ankle dorsiflexion angle and the MoS (r = 0.44, p < 0.05), while hip extension moment was 175 

negatively correlated with MoS (r = -0.57, p < 0.01). It was also found that a higher ratio of ankle 176 

plantar flexion moment (r = 0.54, p < 0.01) and a lower ratio of hip extension moment (r = -0.48, p < 177 

0.05) to support moment were both associated with a larger MoS. 178 

      179 

4. Discussion 180 

Although patients with knee OA experience a decline in their ability to negotiate stairs, especially 181 

descending stairs, no study has investigated their performance quantitatively. Therefore, we attempted 182 

to assess patients’ performance in stepping down by evaluating the XcoM and MoS, which has been 183 

used to quantify dynamic stability in previous studies. Furthermore, this study also aimed to 184 

investigate which variables (i.e., joint angular displacement and internal torque exertion at each joint 185 
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in the lower extremity) affected the stair descent performance. As a result, it was suggested that 186 

dynamic stability control during stepping down was associated with angular displacement and internal 187 

torque generation not at the knee but mainly at the ankle joint, which supported our hypothesis. 188 

  We presumed that it is reasonable to evaluate the dynamic stability to quantify patients’ performance 189 

because control of the anterior-inferior rotation of their body caused by gravity is required when 190 

descending stairs. Therefore, the MoS, which indicates the magnitude of the deviation between XcoM 191 

and BoS, was calculated for each patient with knee OA to evaluate their dynamic stability while 192 

descending a step. Although XcoM, which is based on the inverted pendulum model, is the estimated 193 

position of the center of the body mass, movement during stair ambulation does not always accord 194 

with this model. In terms of stair descent, the distance between the CoM and the ankle joint center is 195 

gradually shortened as the body descends toward the lower step (i.e., l is gradually shortened). 196 

Therefore, the XcoM calculated in this study might be overestimated compared to the actual location 197 

in which the CoM was moving, which was also mentioned in a previous study that investigated XcoM 198 

during stair descent [15]. It was, however, assumed that this would have little or no impact on the 199 

results in the study because the timing at which the XcoM was collected in this study was almost 200 

simultaneous with the initiation of stepping down, when anterior inclination and lower displacement 201 

of patient’s body were very limited.  202 

   The results of this study showed that patients who performed the TUG test quickly could descend 203 

a step with a larger MoS. Since the TUG test includes the motions of walking, changing direction, 204 

standing, and sitting, the time taken for the TUG test is commonly used as an evaluation of ambulation 205 

ability [19]. Subjects who could perform the TUG test rapidly were acknowledged to have high 206 

ambulation ability. While the TUG test is also used for evaluating functional balance in general, we 207 

applied this test to patients with knee OA in an attempt to clarify the relationship between the 208 

functional balance ability (dynamic stability control in activities of daily living) and MoS during stair 209 

descent. Several previous studies have disclosed that if the XcoM exceeds BoS (which would be 210 

equivalent to the MoS becoming larger in this study), the body might be unstable [20], which could 211 

induce falling. On the other hand, when a subject initiates any kind of ambulation, CoM needs to 212 

exceed BoS [21]. Therefore, it was assumed that patients with high ability in dynamic stability control 213 
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could increase their MoS more than patients with low dynamic stability control at initiation of stair 214 

ambulation. In this study, the timing when the heel of the uninvolved limb descended lower than the 215 

edge of step, that is when the swing limb started moving towards the lower step, was chosen for 216 

analysis. As patients descended only one step in this study, which is unlike stair negotiation 217 

encountered in daily living, the timing mentioned above was close to the initiation of ambulation. 218 

Patients with high dynamic stability control were observed to start descending with a larger MoS.   219 

With regard to kinematic variables, larger MoS values were observed in patients who started 220 

stepping down with a larger ankle dorsiflexion angle. This trend indicated that ankle dorsiflexion 221 

contributed to moving patients’ CoM anteriorly. As a previous study disclosed that patients with knee 222 

OA demonstrated later ankle dorsiflexion during the support phase of stair descent than their healthy 223 

elderly counterparts [22], it is thought that some type of relationship exists between ankle dorsiflexion 224 

during stair descent and difficulties with stair negotiation in these patients. Patients with knee OA, 225 

who are widely known to have impaired knee extensor muscle function [23, 24] and to descend stairs 226 

with a limited knee flexion angle [7, 22], were required to further flex other joints in the lower 227 

extremity in order to displace their CoM anterior-inferiorly. Consequently, patients who could move 228 

their CoM anteriorly when they initiated stair descent, those who had high dynamic stability control, 229 

were expected to descend the step with a larger ankle dorsiflexion angle. In contrast, patients who had 230 

an inferior ability for stair descent could not move their CoM anteriorly due to the decrease in the 231 

ankle dorsiflexion angle. Although the performance of stair descent is generally thought to be affected 232 

by pain in patients with knee OA, patients included in this study did not have severe pain (the mean 233 

VAS score in daily activities was 29 mm) that could have affected their movement in each trial. 234 

The results also indicated several relationships between the length of the MoS and several kinetic 235 

variables. Larger MoS values were associated with a higher ratio of internal ankle plantar flexion 236 

moment to support moment, while a higher hip extension moment and its ratio to support moment had 237 

an opposite relationship with MoS. According to these results, patients with high ability in dynamic 238 

stability control were assumed to initiate stepping down with greater ankle plantar flexion torque. 239 

Based on a previous study, which clarified the association between the magnitude of internal ankle 240 

plantar flexor torque and anterior velocity of the CoM during stair descent in healthy elderly 241 
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participants [15], it was suggested that greater ankle extensor torque was associated with MoS, which 242 

is calculated using the anterior velocity. Since the support moment was not significantly correlated 243 

with the length of the MoS in this study (r = 0.34, p = 0.108), patients who could perform a stair 244 

descent smoothly generated a relatively large amount of ankle plantar flexor torque regardless of how 245 

much gross amount of leg extensor torque was generated. Regarding the negative correlation between 246 

internal hip extension torque and MoS, patients who did not generate enough extensor torque at the 247 

ankle joint, that is, those who did not displace their CoM anteriorly enough, were presumed to 248 

compensate for the shortage of support moment with hip extensor torque to support their body weight.   249 

There were some limitations to this study; first, this study only included patients with knee OA. 250 

Further investigation will be required because this study did not compare these kinematic kinetic 251 

variables with healthy, age-matched subjects and hence cannot conclude that the changes in movement 252 

were derived solely from knee OA. Another limitation was that the task in this study was a simulated 253 

step down, which is not quite the same as the type of stair descent that patients encounter in daily 254 

living. However, this study used stepping down for motion analysis because not all of our patients 255 

could descend stairs without using a handrail; therefore, we could not use actual stairs for safety 256 

reasons. Finally, we evaluated the participants’ stair descent performance by analyzing the correlation 257 

between the length of MoS and time taken for the TUG test. This test, which is commonly used to 258 

evaluate abilities in ambulation and functional balance, was applied to patients in order to measure 259 

their performance during stepping down. However, since the TUG test does not include stair 260 

ambulation as one of its tasks, the application of this test for evaluating the ability of stair ambulation 261 

has not been defined. Further study that uses a measurement to evaluate patients’ ability will likely be 262 

required with a particular focus on stair ambulation. 263 

 264 

5. Conclusion 265 

   This study aimed to evaluate the performance of stair descent, an activity that is difficult for 266 

patients with knee OA, by using the XcoM and MoS, which express the dynamic stability in 267 

ambulation. The results showed that patients with high dynamic stability control were able to move 268 
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their XcoM more anteriorly at the initiation of step down, and these patients were observed to descend 269 

a step with a larger ankle dorsiflexion angle and more ankle plantar flexor torque. The findings in this 270 

study will contribute to movement modification or exercise prescriptions for patients who experience 271 

an impaired ability of stair negotiation.   272 

  273 

Acknowledgements 274 

We would like to thank Junji Katsuhira for his assistance in motion analysis. 275 

 276 

277 



 
13 

 

Reference  278 

[1] Muraki S, Akune T, Oka H, Ishimoto Y, Nagata K, Yoshida M, et al. Incidence and risk factors for 279 

radiographic knee osteoarthritis and knee pain in Japanese men and women: a longitudinal population-280 

based cohort study. Arthritis Rheum. 2012;64(5):1447-56. 281 

[2] Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, et al. Prevalence of knee osteoarthritis, 282 

lumbar spondylosis, and osteoporosis in Japanese men and women: the research on 283 

osteoarthritis/osteoporosis against disability study. J Bone Miner Metab. 2009;27(5):620-8. 284 

[3]van Dijk GM, Veenhof C, Spreeuwenberg P, Coene N, Burger BJ, van Schaardenburg D, et al. Prognosis 285 

of limitations in activities in osteoarthritis of the hip or knee: a 3-year cohort study. Arch Phys Med Rehabil. 286 

2010;91(1):58-66. 287 

[4]Bedson J, Mottram S, Thomas E, Peat G. Knee pain and osteoarthritis in the general population: what 288 

influences patients to consult? Fam Pract. 2007;24(5):443-53. 289 

[5]Jevsevar DS, Riley PO, Hodge WA, Krebs DE. Knee kinematics and kinetics during locomotor activities 290 

of daily living in subjects with knee arthroplasty and in healthy control subjects. Phys Ther. 1993;73(4):229-291 

39; discussion 40-2. 292 

[6]Hicks-Little CA, Peindl RD, Fehring TK, Odum SM, Hubbard TJ, Cordova ML. Temporal-spatial gait 293 

adaptations during stair ascent and descent in patients with knee osteoarthritis. J Arthroplasty. 294 

2012;27(6):1183-9. 295 

[7] Kaufman KR, Hughes C, Morrey BF, Morrey M, An KN. Gait characteristics of patients with knee 296 

osteoarthritis. J Biomech. 2001;34(7):907-15. 297 

[8]Costigan PA, Deluzio KJ, Wyss UP. Knee and hip kinetics during normal stair climbing. Gait Posture. 298 

2002;16(1):31-7. 299 

[9]Marmon AR, Milcarek BI, Snyder-Mackler L. Associations between knee extensor power and functional 300 

performance in patients after total knee arthroplasty and normal controls without knee pain. Int J Sports 301 

Phys Ther. 2014;9(2):168-78. 302 

[10]Zeni JA, Jr., Snyder-Mackler L. Preoperative predictors of persistent impairments during stair ascent 303 

and descent after total knee arthroplasty. J Bone Joint Surg Am. 2010;92(5):1130-6. 304 

[11] Startzell JK, Owens DA, Mulfinger LM, Cavanagh PR. Stair negotiation in older people: a review. J 305 



 
14 

 

Am Geriatr Soc. 2000;48(5):567-80. 306 

[12] Hof AL. The 'extrapolated center of mass' concept suggests a simple control of balance in walking. 307 

Hum Mov Sci. 2008;27(1):112-25. 308 

[13] Hof AL, van Bockel RM, Schoppen T, Postema K. Control of lateral balance in walking. Experimental 309 

findings in normal subjects and above-knee amputees. Gait Posture. 2007;25(2):250-8. 310 

[14] Major MJ, Stine RL, Gard SA. The effects of walking speed and prosthetic ankle adapters on upper 311 

extremity dynamics and stability-related parameters in bilateral transtibial amputee gait. Gait Posture. 312 

2013;38(4):858-63. 313 

[15] Bosse I, Oberlander KD, Savelberg HH, Meijer K, Bruggemann GP, Karamanidis K. Dynamic stability 314 

control in younger and older adults during stair descent. Hum Mov Sci. 2012;31(6):1560-70. 315 

[16] Kito N, Shinkoda K, Yamasaki T, Kanemura N, Anan M, Okanishi N, et al. Contribution of knee 316 

adduction moment impulse to pain and disability in Japanese women with medial knee osteoarthritis.  Clin 317 

Biomech (Bristol, Avon). 25. England: 2010 Elsevier Ltd; 2010. p. 914-9. 318 

[17] Winter DA. Biomechanics and motor control of human movement. David AW, editor. Hoboken, N.J.: 319 

Wiley; 2005. 320 

[18] Winter DA. Overall principle of lower limb support during stance phase of gait. J Biomech. 321 

1980;13(11):923-7. 322 

[19] Botolfsen P, Helbostad JL, Moe-Nilssen R, Wall JC. Reliability and concurrent validity of the 323 

Expanded Timed Up-and-Go test in older people with impaired mobility. Physiother Res Int. 324 

2008;13(2):94-106. 325 

[20] Arampatzis A, Karamanidis K, Mademli L. Deficits in the way to achieve balance related to 326 

mechanisms of dynamic stability control in the elderly. J Biomech. 2008;41(8):1754-61. 327 

[21] Kuo AD, Donelan JM, Ruina A. Energetic consequences of walking like an inverted pendulum: step-328 

to-step transitions. Exerc Sport Sci Rev. 2005;33(2):88-97. 329 

[22] Hicks-Little CA, Peindl RD, Hubbard TJ, Scannell BP, Springer BD, Odum SM, et al. Lower extremity 330 

joint kinematics during stair climbing in knee osteoarthritis. Med Sci Sports Exerc. 2011;43(3):516-24. 331 

[23] Lewek MD, Rudolph KS, Snyder-Mackler L. Quadriceps femoris muscle weakness and activation 332 

failure in patients with symptomatic knee osteoarthritis. J Orthop Res. 2004;22(1):110-5. 333 



 
15 

 

[24] Baert IA, Jonkers I, Staes F, Luyten FP, Truijen S, Verschueren SM. Gait characteristics and lower 334 

limb muscle strength in women with early and established knee osteoarthritis. Clin Biomech (Bristol, Avon). 335 

2013;28(1):40-7. 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 



 
1 

 

Figure Legends 

  

Figure 1. Evaluation of dynamic stability during stepping down with XcoM, pCoM: anterior-posterior 

position of CoM, vCoM: the anterior-posterior velocity of CoM, g: acceleration of gravity (9.8 m/s2), 

l: the distance between the CoM and the center of the ankle joint, XcoM: extrapolated center of mass, 

MoS: margin of stability 

 

Figure 2. The representative waveform (n=1) of MoS (black line), internal hip extension moment (gray 

solid line), internal knee extension moment (gray dashed line), internal ankle planter flexion moment 

(gray dotted line). The red line drawn in this graph represents the time point chosen for analysis.    

 

Figure 3. The relationship between the time taken for TUG and MoS at the initiation of stepping down 

for all participants (r = -0.42, p < 0.05) 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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KL grade: Kellgren-Lawrence grade, FTA: femorotibial angle, VAS: visual analog scale 
     JKOM: Japanese Knee Osteoarthritis Measure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Demographic characteristics of the participants, mean (standard deviation) 
Age (years) 66.7 (8.5)  
Height (cm） 156.5 (4.7) 
Weight (kg) 59.8 (6.8) 
KL grade I: 2 II: 13 III: 4 IV: 4 
FTA (deg) 180.4 (4.3) 
VAS (mm)  29 (21) 
JKOM score  19.1 (13.1) 
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TUG: timed up and go test, MoS: margin of stability 
* Correlation is significant at p < 0.05 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Mean value (standard deviation) of the time taken for TUG and its correlation to MoS 
TUG (sec) 6.83 (0.86) 

Correlation coefficient to MoS r = -0.42* 
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MoS: margin of stability, pCoM: anterior-posterior position of center of mass, vCOM: anterior-
posterior velocity of center of mass 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Mean values (standard deviation) of MoS, pCoM, vCoM, and lower joint kinematic/kinetic 
variables 
MoS, pCoM, vCoM  

MoS (cm) 2.8 (2.9) 
pCoM (cm) -2.6 (1.9) 
vCoM (m/sec) 0.21 (0.04) 

  
Joint angle (deg)  

Hip flexion 22.7 (8.73) 
Knee flexion 36.6 (4.2) 

Ankle dorsiflexion  23.0 (3.7) 
  

Internal joint moment (Nm/kg*m)  
Hip extension 0.18 (0.39) 

Knee extension 0.99 (0.23) 
Ankle plantar flexion 1.34 (0.24) 

  
Proportions to support moment (%)  

Hip extension  5.7 (18.5) 
Knee extension 40.5 (13.4) 

Ankle plantar flexion 53.8 (9.9) 
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Values denote Pearson or Spearman coefficients 
*Correlation is significant at p < 0.05  ** Correlation is significant at p < 0.01

Table 4. Correlations between each kinematic/kinetic variable and MoS during stepping down  
Joint angle   

Hip flexion   0.16 
Knee flexion 0.15 

Ankle dorsiflexion   0.44* 
  

Internal joint moment  
Hip extension     -0.57** 

Knee extension -0.20 
Ankle plantar flexion -0.28 

  
Proportions to support moment  

Hip extension  -0.48* 
Knee extension 0.16 

Ankle plantar flexion   0.54** 
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Highlights 

• We evaluated dynamic stability control during stepping down in patients with knee 

osteoarthritis. 

• The degree of dynamic stability control was quantified by calculating the extrapolated center 

of mass. 

• Patients with high dynamic stability control were able to move their extrapolated center of 

mass more anteriorly at the initiation of step down. 

• Adequate ankle joint dorsiflexion and plantar flexor torque generation would improve the 

performance during stair descent in patients with knee osteoarthritis. 


