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1 Introduction

We already proposed the orthonormal wavelet basis with arbitrary real dila-
tion factor[4, 5] and the orthonormal basis of wavelets having customizable
frequency bands[6]. Additionally, based on them, we recently proposed a new
type of orthonormal basis of wavelets having not only customizable frequency
bands, but also a wide range of wavelet shapes in the time domain. In this
paper, we introduce its outline (because of space limitations, some proofs of
lemmas and theorems are omitted). This basis has flexible scaling functions,
which can be translated in the time domain under the control of an arbitrary
real constant b, and according to the constant number of b, its wavelets have
variable shapes in the time domain.

First, we define the orthonormal basis of wavelets having customizable
frequency bands and a wide range of wavelet shapes (Sec. 3), and we prove
its orthonormality (Sec. 4). Next, we introduce the perfect translation invari-
ance theorems (PTI theorems),[7, 8] which are useful for designing perfect-
translation-invariant wavelet frames[2, 7, 8, 9, 10, 11, 13] and signal quan-
titative analyses[12] (Sec. 5), and using PTT theorems, we prove that our
proposed wavelets construct a basis in L%(R) (Sec. 6).
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2 Preliminaries

R denotes the set of real numbers, and Z denotes the set of integers, and N
denotes the set of natural numbers. L!'(R) denotes the space of integrable
functions, and L%(R) denotes the space of square integrable functions. We
use the following notation for the inner product of the functions f(t) € L*(R)
and g(t) € L*(R):

(. g) = / " () 90 . 1)

Note that g(¢) is the complex conjugate of g(t). Next, the norm | f|| of the
function f(t) € L*(R) is defined by

Il = VA{F5 £)- (2)
The Fourier transform f(w) of the function f(t) € L'(R) is defined by
FPW) =)= [ rw e 3

The inverse Fourier transform f(t) of the function f(w) € L'(R) is defined
by

£ uut
RO =10 =5 [ Fw) s (@
The Kronecker delta dy; is defined by
1, k=l
5,6,,:{0, ol hiez (5)

3 The definition of the orthonormal basis of
wavelets {1 (t): constant b € R, j,n € Z}

The positive number sequence {R; : j € Z} is defined by

0<-- <R 1<Rj<Rj1<---<o00, jEL. (6)
lim R; =0, (7)
Jj——o00
lim R; = oo. (8)

Jj—o0



The other positive number sequence {A; : 7 € Z} is defined under the
following conditions:

A, >0, jez, 9)
Aj + Aj—i—l < Rj+1 — Rj jEZ. (10)

These sequences {R; : j € Z} and {A, : j € Z} can be freely designed under
the conditions (6)—(10). The bounds of the frequency bands are defined by
{£7R; : j € Z}, and each bounds &7 R; have a crossover area whose length
is 2rA,. With an arbitrary real number constant b, each scaling function set
{4 ,(t) : constant b € R, n € Z} of each level j (j € Z) is defined by

+b
b (1) = (e=Z Z 11
0= (1-152) . nen )
where

1, wl < 7 (R, — Ay),

y(w) = cos (O;(|w])),  7(R; —4Ay) < lw| <m(R, +4,), (12)
0, otherwise,

7w (z—7(R; —A))

0;(z) = 2v( A : (13)
0, <0,

v(z) = { x*(35 — 84z + 70x% — 2023), 0 <z < 1, (14)
1, Tz > 1.

The function v(z) in (14) was proposed by Daubechies[1] for Meyer’s scaling
function,[3] and the following equation holds:

viz)+v(l—z)=1 (15)

Using ¢;(w) in (12), the function set {12)]M(w), dA)JP(w) : j € Z} is defined by

'2

N 2 A

Pj+1 (w)l =19 W)| . w<0 ez (16)
0, w =0,

)P (w) = PM (—w), jez. (17
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The basic wavelet set {¥5 (t) : constant b € R, n € Z} of level j (j € Z) is
defined by

Wh() = V5 [0 (e (A D) g (s =D}

n € 7, (18)
where
1
— = 19
P T R - Ry (19)
R
Bi=—"2 . 20
J Rj-l—l _ Rj ( )

The orthonormal basis of wavelets {¢!, (¢) : constant b € R, j,n € Z} is
defined by

1
;?,n(t) = \I’?,n (t —pj (n + 5)) , J,n€EZ. (21)

3.1 Some equations associated with {ws’n(t) :
constant b € R, j,n € Z}

With j € Z, substituting (12) in (16) and (17),

((cos (0j1(~w)), —m(Rjs1 +Aji1) <w < =7(Rj1 — Ajp),
)= | L, —m(Rj11 — Ajy1) Sw < —7(R, + 4;),
sin (0;(-w)),  —7(R; +4;) <w < —7(R; — 4,),
0, otherwise,
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Lemma 3.1. With j € Z, the following equations hold:

O W, () = (W), (24)
P (@) = fslw + 27 R, (25)
O WM (w - 27R,) = fi;(w), (26)
U (@)of (w + 27 R,) = i (~w), (27)
le(W) Mw =21 Rj1) = flja(w), (28)
DM (W)F (@ + 27 R 41) = figa(~w), (29)
where
) { sin (6 (w)) cos (0; (w)), m(R; — A;j) <w < 7(R, + 4;),
fiy(w) = . (30)
0, otherwise.
Proof. From (22) and (23), 9; bP(w) is represented as
Csin(0(w), 7Ry — Ay) <w < 7(B; +Ay),
. 1, (R +4)) Sw < m(Rjp1 — Ajp),
¥j (w) = (31)

cos (0j+1(w)), T(Rjs1 — Aj) <w < 7(Rjur + By,

0, otherwise.

Then
o, T sin (0; (w)) cos (0, (w)), m(R; — Aj) <w < 7w(R; + 4;),
Py (W)f (W) =

0, otherwise,
— iy @) (32)
From (32), we have (24). In the same manner as above, we have (25)—(29).

g

4 The proofs of orthonormality

In this section, we prove the orthonormality associated with
{4? () : constant b € R, j,n € Z} and {¢?,(t) : constant b € R, j,n € Z}.
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Lemma 4.1. The following equations hold for @Z;;”(w) and ﬁf(w):
o 2 ., 2

62w = 7Ry)| + 97w+ B[ =1,

—7TAj<w<7TAj,j€Z, (33)

2

~ 2 A
'¢]M(w + 7R — 277Rj+1)‘ + lzﬁf(w +7R,))| =1,

T(Rjv1 — By — Aj) <w <7(Rjp1 — B+ Ajia), j € Z. (34)

2 . 2
Proof. From (22), (23) and (13), ‘ + [¢f (w +7TR])‘ within

—mA; <w < 74, is represented as

12’]]\/[(‘-” —R))

94— )| +[F w4 7Ry)|

o (B - (22
o G-+ i )
foe (G0 o (G 0)
1

I

(35)

Note that, replacing %IA—A?L (within —7A; < w < wA;) with y (within 0 <
y < 1) in the 2nd line of (35), the 3rd line is derived, and from (15), v(1—y) =
1 — v(y) and substituting it in the 3rd line of (35), the 4th line is derived.
From (35), we have (33), and in the same manner as above, we have (34). O

4.1 The orthonormality of {},(t) : constant b € R,
J,n €L}

With fixed b € R and j € Z, we prove the orthonormality of {z,b;’n(t) :
constant b € R, n € Z} in the same level j by the following Lemma 4.2:

Lemma 4.2. The following equation holds:

<w?7n11 7’b?,n2> = 5711,7127 b € Ra j1 ny, Ng € 7. (36)
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Proof. (¢}, , %? ) is represented as

b b
<w]‘7nl’ j7n2>
L/ )
= % < jyn17 ¢'an2>

1 . b —ip (nl—l—l)w T.b —1p (nz-{»l)w
=5 N Ul (w)e 2900, (w)e 2)%dw

1 5 _—
B o \Ij?}nl (w) \I’?,nz (w)e’pj(—nl—l—nz)wdw
—00
. oo . 9 . )
: %/ { ‘/‘%M(w)‘ emﬂ](—n1+n2) * ‘¢f(w)|2 ezwﬂ](nl_nz}}elpa(—m-!-nz)de
—00

_ b 1 om 2 iy (~na4ma) (w—rRy) 47, (~na+n2)}
=L | B w—mRy)| et e d
u —00

o/
—00

_; o0 M N . 2 ~p ‘ 2 i'R_J—nLt_%%]‘w
T N
(37)

Note that, considering (21), the 3rd line of (37) is derived, and substituting

(18) in the 4th line of (37) and considering @y(w)v,@f(w) = zﬁf(w)z?sz(w) =0
(w € R) from (22) and (23), the 5th line of (37) is derived, and substituting
(19) and (20) in the 6th and 7th line of (37), the 8th line is derived. From
(22), (23) and (33) in Lemma 4.1, [¢™(w — 7R,)|?> + [¢)F(w 4+ 7R;)|? in (37)
is represented as

(- 2
‘QpJM(w - ij)‘, ~Ap, <w< —Bp,

. 2 . 2 1, Br <w< Bn.
O (= mRy)| + [P+ TR = 4 “Br <w< Dy
ld}JP(w—’_ﬂ-Rj)’a BR] <W<AR3,
0, otherwise,
(38)
where
A, = (B — B+ Bga), (39)

Br, = m(Rj41 — Rj — Ajp).- (40)
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Substituting (38) in (37),

<wgﬂl1’ w?,nz>

-B
1 R] N 2 i —ni+ng w
= VM (w—7R,)| e B dw
2n(Rjp1 — R;) | J-ap,
Bry ; —nying ARy ) 2, nitny
+ e Bri= " dw + Yy (wHTRy)| e B dw
~Bg, Bg,

1
- 2m(Ry41 — Ry)

/ —Br, +27(R; 11— R;)
—Ag, +27(R;+1—R;)

Br, [ —miiny AR, ~p 2 omtng
+ e Fa+1=Ry w4 Y (w +7er)l e fr178% dw
—Br, B,

—njitng

~ 2 ’L‘——l—w
X ¢JM (w—2m(Rj11 — Rj) — WR])} e 178 " dw

1
- 21(Rj — Rj)

Ar,
[
Br,

BR] i —nitng w
e B+1—-Fy " dw

BRJ

~

~ 2 2 §=m +no w
U (w+TR; — 27TRj+1)l + o] (w+ ﬂRj)l }e Eyy1-h, dw]

A —n1+n
= 1 / " ez}w—llthzz_wdw
2n(Rjv1 = R;) J-py,
1 —BRJ+27I’(R]+1—R]) 1, _n1+n2 w
= Bt178 " dw = 0p; e 41
2W(R]‘H_Rj)/_BR By = Gy e (41)
J

. —nj4ng
Note that, considering the period 2 (R, — R;) of ¢ T+1-% " the 5th line of
(41) is derived, and considering —Ag, + 27(R;41 — R;) = Bg, and —Bg, +
2n(Rjy1 — R;) = Ag, from (39) and (40), the 7th and 8th lines of (41) are
derived, and substituting (34) of Lemma 4.1 in 8th line of (41), the 9th line
is derived. 0

With fixed b € R and j € Z, we prove the orthonormality between
{2, (t) : constant b € R, n € Z} of level j and {¢%_,,(t) : constant b €
R, n € Z} of level j — 1 by the following Lemma 4.3.



Lemma 4.3. The following equation holds:
(Wjms Yj10) =0, DER, jimy,my € L. (42)

Proof. Considering (21), (¢%,,,, ¥?_,,,) is represented as

b _ b
< 7,10 wj 1n2> _< Jm1 j—l,n2>

1 =, . iKP
% \I[gru ( )\I/? 1,n2 ( )elK],nl,nzwdw7 (43)
where
1 1
ijm ng — —Pj <n1 + '2’> +Dpj-1 <n2 + 5) . (44)

/\

o (W) \Il] 1np (W) in (43) is represented as

W @, @)
=\/E{¢3M w)e’iﬂ{_ﬁj(nl"‘%)"'(b"‘%)}+,(;f(w)e’iﬂ{ﬁj(nlﬁ-%)—(b_;_%)}}

X\/m {,J}jj\{l(w)eiw{—ﬁg—l(n2+-12-)+(b+%)}_._ 1&]1-3_1(w)eiw{ﬁ"l(n2+%)_(b+%)}}
= \/pjpj_l{lﬁ]M(w) Ajﬂfl(w)eiﬂ{_ﬁa ("1"'%)"'51—1(712-1-%)}

+ PP (w )Tﬂei”{ﬁz ("1+%)—ﬁ1—1("2+%)}}

B B
= \/DjPj— 1{uj(w+27rR) Km1ima +uj(w)e »n1, "2} (45)

K pn= {ﬁ (n1+1) By (ng-i-%)} (46)

Note that, (18) is substituted in the 2nd and 3rd lines of (45), and considering

PM(W)YF | (w) = YT (W)X, (w) = 0 (w € R) from (22) and (23), the 4th and
5th lines of (45) are derived, and (24) and (25) in Lemma 3.1 are substituted

where

40
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in 6th line of (45). Substituting (45) in (43),

< .?"1’ ?1nz>

K°
\/pypa 1/ {,Lt] w+21R,)e” K} s —|-,u](w)e o nz}e'Kfnl m2%dw
_ \/p]pJ—l{/ u](w)e{ sy g (W27 R) 9"1 "2}dw
—o0

2m
[e.¢]
/m.m - oo
= PiPj-1 :&j (w) (Kfm ny +K£ﬂ1ﬂ2)dw ( (27TR K1, "2+2K£n1,"2) + 1)
2m oo
_ \/p;‘ij—l/ ﬂj(w)ei(Kinlmzw-}-K]ﬂYnlynz)dw (e—in(2n2+1) +1)
=0 (47)
B —
Note that, from (19), (20), (44) and (46), we have 27 R; K5, —f—ZKJ iy =
7(2n + 1) and substituting it in the 5th line of (47), the 6th line is derived.
O
The following Theorem 4.4 ensures the orthonormality of {zp;?’n(t) :
constant b € R, j,n € Z}.
Theorem 4.4. The following equation holds:
<¢b1 ny? ¢b2 n2> = 31 ]26711,1127 b S Rv jlaj?a ni,Na € Z. (48)

Proof. When |j; — jo| > 1,
Supp 1, nl(w) N Supp 2, nz(w) = 07 |]1 _]2| > 1; jl)j?anlanQ € 4. (49)
Then we have
(W2 s Vomyy =0, 1= 2| > 1, j1,52,m1,m2 € Z. (50)

From Lemmas 4.2, 4.3 and (50), we have (48). O
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4.2 The orthonormality associated with {¢" () :
constant b € R, j,n € Z}

With fixed b € R and j € Z, we prove the orthonormality of {¢%,(t) :
constant b € R, n € Z} in the same level j by the following Theorem 4.5:

Theorem 4.5. The following equation holds:
<¢?,n17 ¢?,n2> = 5n1,n27 b € Ra ja ni, N2 S Z (51)

Proof. In the same manner as Lemma 4.2, we have (51). O

Next, with fixed b € R and j € Z, we prove the orthonormality between
{42 ,(t) : constant b € R ,n € Z} and {¢’,(t) : constant b € R n € Z} by
the following Lemma 4.6.

Lemma 4.6. The following equation holds:
<¢§,n17 ¢?,n2> = Oa b S ]Ra ja ni,ng S Z (52)

Proof. In the same manner as Lemma 4.3, we have (52). O
From Lemma 4.6, we have the following Theorem 4.7:

Theorem 4.7. The following equation holds:
(ims Phoma) =0, bER, J1 2> ja, i, ja, 1, m2 € L. (53)

Ji,mid Yja2,me

Proof. In the same manner as Theorem 4.4, we have (53). O

5 The PTI theorems

In this section, we introduce the PTT theorems as Theorems 5.4 and 5.5. For
these theorems, we need to define some conditions and prove some lemmas.

Condition A. For the Fourier transform of g(t) € L*(R), there exist con-
stants C' > 0 and € > 0 such that

9(w)] < O+ |w]?) 727 (54)



43

Note that it is obvious that g(t) € L*(R) from (54). With a constant p > 0,
{gn(t) : n € Z} is defined by

gn(t) = g(t —pn), n€Z. (55)

Lemma 5.1. For any f(t) € L*(R) and {g,(t) : n € Z} satisfying Condition
A, there exists a constant C1 > 0 such that

ST f ) 2 < Gl (56)

neZ

Proof. According to Ref. [1], Sec. 3.3.2,

AN / fle

nez nez
- 2
/ D (§+ ) j (§+ ?fk) imé g
0 ez p
(57)
5 AR
2@ % f <§ + ——k) <§ + ;—k) d¢ (58)

m/ Zf(“—'f) (5

keZ

= 2mp Z/ fe WQ (5 + %;l) ¢ (60)

leZ
;m || taterde + Rese( )
< }—)CgllfIIQ + Rest(f), (61)

where

Rest(f %pz / f(©6)F <g+—z> (§+—l> de.  (62)

1£0
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Note that, in (57), considering the period 2m/p of ™, the integral interval
is sliced into pieces of length 27/p, and using the Plancherel theorem for
periodic functions, (58) is derived, and considering that

> ez f (§ + 27Tl) (f + 2“1) in (59) has the period 27 /p, (60) is derived, and
(61) is derived from (54). Next, |Rest(f)| is represented as

7 3 o (o e+ 1)

p;{ w (5|}
e (e 2]

Rest(f
|Res 27rp

/\

(Q>

— AP ;{ (% )ﬂ(—%”l)}m
- §|1f||2§ﬁ (%), (63)
where

B(s) = sup|g(£)g(& + s)I. (64)

£eR

Note that, using the Cauchy-Schwarz inequality, the 2nd and 3rd lines of (63)
are derived, and substituting n = £ + %’l in the 3rd line of (63), the 4th and
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5th lines are derived, and from ((s) = B(—s), the 9th line of (63) is derived.
Next, from (54) and (64), we have

Bls) < sup C2(1 +[€F) (14 [g ) H
eR

< Ch(1+1s) 777 (65)

where Cy > 0 is a constant. Then we have

00 9 —27¢
Zﬁ—l <CQZ(1+ il ) = (5 < 00, (66)
=1
and
2 2
[Rest(f)] <~ ClFII™ (67)
Therefore, with C; = %CQ -+ %Og, we have (56) from (61) and (67). O

Considering (58) in Lemma 5.1, we have the following Corollary 5.2.

Corollary 5.2. For any f(t) € L*(R), g(t) satisfying (54) in Condition A
and a constant p > 0, the following equation holds within 0 < w < 27 /p:

Zf<w+—k:) (w+—k>eL2<O,3{), OSWSE’ (68)
kEZ P P

and the left-hand side of (68) has the period 2m/p in w € R.

Lemma 5.3. For any {a, : n € Z} € (*(Z) and {gn(t) : n € Z} satisfying
Condition A, the function G(t) is defined by

G(t) = Z angn(t)' (69)

neZ

Then we have

G(t) € L*(R). (70)



Proof. We define GV (t) (N € N) by
GN(t)= > angn(t), N€N. (71)
In|<N
Then we have

IGY|| = sup |<GN,h>|
[|hll=1

1/2 1/2
< Y laaf sup | Y [(hgn) |?
In|<N IAII=1\ jnj<n

1/2
S Cl (Z !an‘z) . (72)

Note that, using the Cauchy-Schwarz inequality, the 4th line of (72) is de-
rived. Therefore, {G" } yen is a Cauchy sequence in L*(R), and we have

G(t) = lim_ G (t) € L*(R). (73)
O

Theorem 5.4. We denote by the frame operator Wj, the transform of f (t) €
L%(R) by {gn(t) : n € Z} satisfying Condition A:

W)@ =D (f, gn) ga(t). (74)

neZL

Then we have

Wi f e L*(R), (75)

FVNE) = 230 Y { (- 2k)7 (o= ) } ()

46
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Proof. Since {(f, g,) : n € Z} € ¢*(Z) from Lemma 5.1, we have (75) from
Lemma 5.3. Therefore, the Fourier transform of W f is represented as

FW3 1))

= ; (f5 gn) gn(w)

=3 g [ _f0i@esic sre

3 0)> / i > f (s + —k) (s + —-k) \/? médg \f i

Note that, in the 4th line of (77), considering the period 27 /p of ¢, the
integral interval is sliced into pieces of length 27 /p, and from Corollary 5.2,

Seez f (w + —2177%) g (w + %”k), included in L%(0,27/p) within 0 < w <
27 /p, has the period 27/p in w € R, and additionally, > _, or the later
is the Fourier series expansion of it in [0,27/p) with the orthogonal basis

{,/ {;e"ip"“’ in € Z}, then the 5th line of (77) is derived, and in the 6th line
of (77), —k is replaced with k. O

The next Theorem 5.5 ensures that the transform in L?(R) by a function
set {hn(t)}nez satistying the following Condition B has perfect translation
invariance:|[7, §|

Condition B. The Fourier transform of h(t) € L'(R)NL%*(R) has a compact
support of length €2, as follows:

0 < sup |h(w)] = Ch < o0, (78)
weR
supp h(w) C
0<Qp =wh —wh < 0. (80)

[wi wh] | Wl <wh, (79)
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{hn(t) : n € Z} is defined by
hn(t) = h(t —pan), n€Z, (81)
where
0 < ppQ < 2m. (82)

Note that pp > 0 is a constant real number satisfying (82).

Theorem 5.5. We denote by the frame operator W" | the transform of

Pr’

f(t) € LA(R) by {hn(t) : n € Z} satisfying Condition B:

WEAIE) =D (f hn) h(2). (83)

Then we have
Wi f e L*(R), (84)
FOV: f)(w) = gﬂmw)vf(w). (85)

Proof. Since {h,(t) : n € Z} under the conditions (78)—(82) satisfies Con-
dition A, from Theorem 5.4, we have (84) and

FOVj, 1)) = () > { (= Zx) 7 (o= Zn) } . s0)

When w & supp h(w), we have A(w) = 0 and F (W}, f)(w) = 0, therefore

FOVE fw)=0=—| h(w) |* f(w), w ¢ supp h(w). (87)

1
Pr
When w € supp h(w), as Q < 27/p, from (82), we have h(w — 21k/ps) =

~ “

h(w) for k = 0, and h(w — 27k/py) = 0 for k # 0. Then (86) is represented
as

— Z_)l_hm(w)[?f(w), w € supp h(w). (88)

From (87) and (88), we have (85). O
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6 The construction of a basis

In this section, we prove that {ng,n(t) : constant b € R, j,n € Z} construct a
basis in L2(R). First, we need to define some functions. For any f(t) € L*(R),
f}(t) is defined by

RO =Y _(f ). t), beR, jeZ (89)

nez
From (18) and (21), 4%, (t) is represented as

in(t) = jn(t)e”{'ﬁﬂ"*%”(“a)} + P (1) B D0}

beR, n,jeZ. (90)

where
(1) = /D) (t—pj <n+%>) (91)
yn(t) = /P55 ( <n+;>> (92)

Substituting (90) in (89), f2(t) is represented as

£ =D (F, Upm) 00 + D (fs f) Ural®)

e-i2nbzei2wﬁ, (n+3) <f, 3'\/711> fn(t)
nez
— 2 3 iz (n PV pM(t), beR, j€Z.  (93)
nez

Note that, considering e*™ = —1, the right hand of (93) is derived. The
functions origMJf (1), oringf (), aliasM;] f (t), aliasPJf (t) are defined by

oright!(t) =Y " (f, ¥I%) v} j€z, (94)
neEZ

OI‘lng i <f J€Z, (95)
neZ

ahaSMf Ze’%ﬁ’ (nt3 <f, > i), JELZ, (96)
nez

aliastf(t) = Ze i2nf; (nt3) (f, i) in(t), j €. (97)

neZ



From (93)—(97),

fJb(t) = origM}r (t) + oringf(t) - e—iz’rbaliasMJf(t) - e’ZWbaliastf(t),
beR, j€Z. (98)

6.1 The proof of origM]f(t) + oringf(t)} = f(t)

Lemma 6.1. The following equations hold:

DM ()| fw), jez, (99)

O (W) fw), jeZ (100)

Proof. From (19) and (91), ¥ () is represented as

n(t) =it —pin), (101)

where

1

= —_— 102
p] Rj+1 _ R] ( )

From (91), the Fourier transform of )0(t) is
. R .
Bow) = B ) (@) e, (103)

From (22) and (103), the compact support length Q of 1™ (w) is represented
as

where
supp A%(UJ) = [w1, wy), (105)
wy = —7 (Rjp1+ Aji1), (106)

Wy = —T (R] — Aj) . (107)
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From (102) and (104),
Aj+ A
oM _ ¢ (1 N J—ﬁ)
P Rjp1 — R,
< 27, (108)

Note that, considering (10), the 2nd line of (108) is derived. Since
{¢M(t) : n € Z} satisfies Condition B ( that is, (78)—(82) hold for h(t) =
V0 (t), U = Q) and pj, = p; with fixed j € Z ), from Theorem 5.5 and (94),

7 (oright]) () = % 34| F(w)

. 2
= |62 )] f(w). (109)
Note that (103) is substituted in the 2nd line of (109). From (109), we have
(99), and in the same manner as above, we have (100). O

Theorem 6.2. The following equation holds:
3 {origM]f (t) + origP! (t)} = f(t). (110)
JEL

Proof. From (99) and (100) in Lemma 6.1,

Z {.7-" (origMjf) (w)+F (origPJf> (w)}
- {Z [0 @)+ 3 Jér (w)f} f(). (111)

Considering (22), ?2

. 2
i d)]M (w)‘ (1 < j2, J1,72 € Z) is represented as

4 2
|cos (0,41 (—w))
—T(Rjp1 + Qjp1) <w <=7 (Rjpp1 — Bppp1),

J2 M 2 1 s _W(Rjz-i-l - A,7'2-|—1) Sw< _W(le + Ajl)’
Z % (w)l = . 2
=i |sin (6, (=w))[”,

_W(le + Ajl) <w< _W(RJ' - Ajl))

L0, otherwise,

(112)
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Therefore, considering (6)—(10),

Z "@M (u))’2 = lim lim i .@ZA)]]VI (w)

2
J1——00 ja2—00 ‘

JEZ J=n
0, w >0,
= (113)
1, w < 0.
In the same manner as above,
. p 2 1, w >0,
AGIE (114)
jeZ 0 9 w S 0
From (111), (113) and (114), we have (110). O

6.2 The proofof ., aliasM]f(t) =0
and )., aliastf t)=0

Lemma 6.3. The following equations hold:

F (aliast ) (w)

- iyp(w){@@JM(w - QWRj)f(W —27R;) - lng(w - 27TRj+1)f(w - 27TR]'+1)},
(115)

F <aliastf ) (w)

_ W(w){qz}f(w +27R)) f(w + 27 R;) — P (w +2Rj) f(w + 27rR]+1)}.
(116)

Proof. From (22) and (91), {#}7,(t) : n € Z} satisfies Condition A with fixed
J € Z ( that is, (54) holds for g(w) = A%(w) with fixed j € Z ). Therefore,
from Lemma 5.1, for any f(t) € L?(R), there exists a constant Cy > 0 such
that

STIHAUMY P < CallfI™ (117)

nez



Then we have

Sl B ) (gt | = SO [(Auil < cllfl?, ()

neL neZ

and {em”ﬁ’(’”%) (f, ¥M) ne Z} € (*(Z). Additionally, from (22), (23)

and (92), {¢F,(t) : n € Z} satisfies Condition A, then we have aliasM]f (t)
L*(R) from Lemma 5.3. Therefore, from (91) and (92), the Fourier transform
of aliasM ]f () in (96) is represented as

F (sttt} ) () = 1 3 {00 (7, 1) 67, )
nez
- gfrzz{ er) [ flegpri@en v

X sz 1y (n+3 } (119)

Now, we define F (aliaSMJ{m) (w) (m € N) by

[

F (aliasM]{m> (w) = g—; Z {ez%%fﬂ(n%) /00 f(&) Aéw (g)eip’(”"'%)gdi

nez
X 1[)]]3 (w) e_ipﬂ("J“%)“’}, m € N, (120)
where
[z] =max{n € Z:n <z}, z€R. (121)

Next, replacing n with m xn+1 (0 <1l <m, n,l € Z), F (aliaij{m) (w)
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in (120) is represented as

F (aliasM f ) (w)

_ Z Z{ 227-(-_.1_ mni+1 )/_: f(g) AJM (é-)eip](mn+l+%)5d§

lOnEZ

x 1)@;’3 (w) e—ip,(mn+l+%)w}

m—1
_ p] m[—J—wp( ) —z%in :e—zlp]weiwa—nf]—]l
2m
=0
1 )
XE :/ f zp](l—i—g){ezpjmn{dge—zp]mnw
neZ
i8] ms)] m—1

e m A P _ o [mB,]
— wP (w) e tTw § :6 zlpjwezZﬂ—Lm l
m J

=0

)" Zf<f+—k)W(f+wk)

neZ k€EZ
% eipa (H'%) (§+;;§_"mk) pj zp]mnfd§ —imenu)
2m 27r
in [mB,]

e m ~ _:Pj . o ImB,]
— ¢JP (LU) et w § :6 zlp]wez27r—7——m l
m
=0

& wp w)ZZf( +—k)¢M(w+;—;k) (o),
(122)

Note that, considering e?2"™%I" = 1 the 4th and 5th lines of (122) are de-
rived, and in the 6th-8th lines of ( 122) considering the perlod T of esmnt,

the integral interval is sliced into pieces of the length pf—:%, and since (54) in

Condition A holds for §(w) = ﬁM (w)e"ip’(H%)“’ with fixed j, from Corol-
ip (141) (w22

lary 5.2, Yyep f (w+ Z5E) M (w+ 22k)e (3 (25 nouded in
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L¥(0, pf“ ) within 0 < w < 27 has the perlod ~ in w € R, and additionally,
> nez OF the later is the Fourler series expanswn of it in [0, pf’;n) with the or-

thogonal basis {, [ELemme s € Z}, then the 9th and 10th lines of (122)
are derived. Considering the compact supports of ¥ (w) and ¥ (w) in (22)
and (23), F (aliasM]{ m) (w) in (122) can be represented as a sum of a finite

. e i(2nmAlhy i)
number of compact supported functions, and == 1—0 € ™ m

in (122) is represented as

(mB)]
I ) (<1, k= —[mB)] — kam, ky € Z,
m 1o, otherwise.
(123)
Note that, when k = —[mg,] — kam, ko € Z, we have W € 7Z and
o ImBy]
i 1, and when k # —[mf3;]| — kom, Vky € Z, we have w €7
[mB ]+k

and considering [mg;] + k € Z and m € N, we have Y /" '™ ! = 0,
therefore (123) is derived. From (122) and (123),

7 (aliasMf,, ) (@) = @ () 3 {(_1)k2f (w - i_j (V’:n_ﬁj] " k2))

ko€Z

x M (w—i—j(%—i—kz))}. (124)

We consider the compact supports of @P (w) and 7,&5” (w — i—’; ([m—fll + k2)>
in the following two cases:

1. The case of k; < —1: From (22) and (23), the compact supports of
YF (w) and 4}’ (w) are represented as

supp ¢}’ (w) = [~As,, —Bs,] , (125)
supp ﬁjp (w) = [BSJ,AS]] , (126)

where
As, = m(Rjt1 + Aji1), (127)

st = W(Rj — Aj), (128)



and the compact support of oM (w — f’—" (% + k2)> is represented
J
as

1)

Yo m

- [-—ASJ-i- 2n (M +k2),—Bs]+ o ([ﬁw—ﬂ] +k2)] (129)

D; m bj m

o {5+ 2 (511))
pj m

2w
> 2Bs, — > (B —1)
J

From (128),

=2m(Rjp1 — R; — Ay)
> 0. (130)

Note that, considering m8 < B; and ko < —1, the 2nd line of (130)

m

is derived, and (19), (20) and (128) are substituted in the 3rd line of
(130), and the 4nd line of (130) is derived from (9) and (10). Then, we
have

2 .
Bs, > —Bs, + — (M + kQ) . (131)
bj m

From (126), (129) and (131),

suppzﬁf(w) N supplﬁ;M(w — —22;71 <[m—nfj] + kg)) =0, ky<-1.
j
(132)

. The case of ko > 2 : We consider the condition for mﬂf—ﬂ, in which the
following inequality holds for kg > 2:

—ASJ + 2—7T ([n:n—ﬂ]] + kQ) > ASJ (133)

pj
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If (133) holds for ky = 2, it holds for any ky > 2 (ko € Z). Then,
substituting k; = 2 in (133), the condition of (133) is represented as

—[mﬁj] > &AS] -2
m ™
Rjp1— R; '

Note that (19) and (127) are substituted in the 2nd line of (134). From
(20),
g “Rin T2+ Ajn By — B — A
! Rjt1 — R; Ry11 - R;
> 0. (135)

Note that, from (9) and (10), the 2nd line of (135) is derived. Then we
have
—Ri1 + 2R+ Aj
Ry 11 — R,

Considering 2 < B; and from (134) and (136), the condition for

m
mB)] i represented as
m

— j+1+2Rj+Aj+1 < [mﬁ]] <,6-

. 1
Rj+1 _ Rj m — 7 ( 37)

Considering lim,_.o[m;]/m = B}, there exists M € N such that, for
any m’ > M (m' € N), the following inequality holds:

~Rj1 + 2R + Ajn _ ['5)]

< "> M. 1
R R, VR By, m > (138)

For m = m’, (133) holds, and from (126) and (129),

supp ¥F (w) N supp @Z;M(w _a (M + kz)) =0,
by m

m > M, ko > 2. (139)
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Considering the above two cases, from (124), (132) and (139),
F (aliasM]{ m,) (w)
. ! 2
oo

s ()
(o3 (57 m))]
{ i

e W( 2 [m/@) (w 2 [m'@)

S () o

(140)

Considering lim,_,oo[m’'G;]/m’' = B}, from (119), (120) and (140),
F (aliast) (w)
= lim F (ahasM]fm,)(

m!—o0

sl E) (o)

_¢M(w——(ﬁj+1 (w——ﬁ1+1)>}

/\

= )P (w ){1/3;”((,0—2%]% ) f(w =27 R;) — DM (w —27er+1)f(w—27rRJ+1)}.
(141)

Note that (19) and (20) are substituted in the 5th line of (141). Then we
have (115), and in the same manner as above, we have (116). O

Theorem 6.4. The following equations hold:

> aliasM] (1) = 0, (142)
JEZL
Z aliastf(t) =0. (143)

JEZL
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Proof. Substituting (26) and (28) in (115) of Lemma 6.3,
7 (aliasM] ) (w) = fiy (@) f(w = 27R;) = fiy1 () f(w = 20 Ry11).
= )\j(w) - )\j+1((.d), (144)

where

A

Ai(w) = fj(w)flw—2nR;), j€EL. (145)

From (30) and (145), A;(w) has the following compact support in w > 0:

supp Aj(w) C [7(R, — A,), m(R, + A;)]. (146)
Therefore,
SoF (ahast (w)) =0. (147)

Note that, from (144), {\;j(w) : j € Z} are canceled each other to zero in
(147). In the same manner as above,

Z]: (aliastf(w)) = 0. (148)

O

6.3 The proof of f(t) = Zj,neZ <f, ;’n> ;’n(t)
Theorem 6.5. For any f(t) € L?*(R), we have
FO)y =3 (f &) ¥ha(t), beR. (149)
J,nEL
Proof. From Theorems 6.2 and 6.4,
ft) = Z {origMJf (t) + origP]f (t) — e 2 ™alias M. ]f (t) — ei2”balias]3’3f (t)} :

JEZL
(150)
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From (89) and (98), >,z (f, @b, )P, (t) is represented as

RO A RN

I MEZ
=>_ [
jez
= Z {origMjf (t) + origP]f (t) — e_iQ”baliast (t) — ei2”balia813]f (t)} .
IEZ
(151)
From (150) and (151), we have (149). O

From Theorems 4.4 and 6.5, {«/%,,(¢) : constant b € R, j,n € Z} construct
an orthonormal basis of wavelets.

6.4 The theorem associated with {¢’ (¢) : constant b €
R, j,n € Z}

Lemma 6.6. We denote by the operator 8%, the transform of f(t) € L2(R)
by the scaling function set {¢},,(t) : constant b € R, n € Z} with fized b € R
and j € Z:

(SH1)(1) =D (f, ) $u(0), VER, JEL. (152)

nez
Then we have

FSH ) = 3] )
e () o - 2mRy) + €My (~w) flw + 27 Ry). (159)

Note that fi;(w) is defined by (30) in Lemma 3.1.

Proof. Considering Theorem 5.4, we have (153). O
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Lemma 6.7. The following equation holds for f]l?(t) in (89):

v + i} i
—127b { flw—27R; 3) + g1 (w) flw — 27TRJ+1)}

+ i {—ﬂj(—w)f(w + 21 R;) + fiypr (—w) f(w + 27er+1)} ;
beR, jEZ. (154)

fiw) = {

Note that ji;(w) is defined by (30) in Lemma 3.1.

Proof. Considering (99), (100) in Lemma 6.1 and (115), (116) in Lemma
6.3, we have (154) from (98). O

Theorem 6.8. The following equation folds for any f(t) € L*(R):

Z <f’ 7+1, n ]+1 n Z <f’ ‘,n(t) + Z <f’ ;n> ¢g,n(t)

neZ neL neL

beR, jeZ. (155)

Proof. From (153) in Lemma 6.6 and (154) in Lemma 6.7, we have (155).
O

7 Conclusions

In this paper, we proposed a new type of orthonormal basis of wavelets having
customizable frequency bands and a wide range of wavelet shapes. The main
results can be summarized as follows:

1. We defined the orthonormal basis of wavelets {?,(t) : constant b €
R, j,n € Z} with the scaling functions {¢’ ,(t) : constant b € R, j,n €
Z}.

2. We proved the orthonormality of {@Z)}n(t), ¢g,n(t) : constant b € R, j,n €
Z}.

3. We introduced the PTI theorems, which are useful for designing PTI
wavelet frames and signal quantitative analyses.
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4. Using the PTI theorems, we proved that {wfn(t) :constant b € R, j,n €

Z} constructs a basis in L*(R). Additionally, we also introduced the
theorem representing the relations of the spaces spanned by {ij’yn(t),
b .(t) : constant b € R, j,n € Z}.
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