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1 Introduction

This is a survey of the joint work [13] with Atsuhiko Mizusawa.

A handlebody‐link [11, 27] is a disjoint union of embeddings of handlebodies in the

3‐sphere S^{3} (Figure 1). Two handlebody‐links are equivalent if there is an ambient iso‐

FIGURE 1. A handlebody‐link.

topy which transforms one to the other. An HL‐homotopy is an equivalence relation on

handlebody‐links, which is analogous to link‐homotopy of links. Here, link‐homotopy is

generated by ambient isotopies and self‐crossing changes. In [22] ,
Mizusawa and Nikkuni

showed that the HL‐homotopy classes of 2‐component handlebody‐links were classified

completely by the linking numbers for handlebody‐links, which was defined by Mizu‐

sawa in [21]. In [13], we construct HL‐homotopy invariants for handlebody‐links by us‐

ing Milnor�s \overline{ $\mu$}‐invariants for links. We then give a necessary and sufficient condition of

that a handlebody‐link is HL‐homotopic to a separable one by the extended Milnor�s

\overline{ $\mu$}‐invariants. Here, a handlebody‐link is separable if there exists a disjoint union of 3‐

balls such that each component of the handlebody‐link is contained in a distinct 3‐ball.

Moreover, we give a bijection between the set of HL‐homotopy classes of n‐component

handlebody‐links with some assumption and a quotient of a tensor product of \mathbb{Z} ‐modules

by the action of the general linear group.
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2 Preliminaries

J. Milnor defined a family of invariants for an ordered oriented link in S^{3} as a gen‐

eralization of the linking numbers, in [19, 20]. These invariants are called Milnor�s \overline{ $\mu$}-

invariants. For an ordered oriented n‐component link L , Milnor�s \overline{ $\mu$}‐invariant is specified

by a sequence I of indices in \{ 1, 2, . . . , n\} and denoted by \overline{ $\mu$}_{L}(I) . If the sequence is with

distinct indices, then this invariant is also link‐homotopy invariant and called Milnor�s

link‐homotopy invariant.

We introduce the definition of Milnor�s link‐homotopy invariants, and to give invariants

for handlebody‐links, we show that these are additive under a bund sum for components.

Let L=L_{1}\cup\cdots\cup L_{n} be an ordered oriented n‐component link in S^{3} . Consider the link

group  $\pi$=$\pi$_{1}(S^{3}\backslash L_{1}\cup\cdots\cup L_{n-1}) of L_{1}\cup\cdots\cup L_{n-1} and denote the i‐th meridian by m_{i}

for i(1\leq i\leq n-1) .

Given a finitely generated group G ,
the reduced group \overline{G} is defined to the quotient of G

by its normal subgroup generated by [g, hgh^{-1}] for any g, h\in G ,
where [a, b] means the

commutator of a and b . Then \overline{ $\pi$} is generated by the meridians m_{1}, m_{2} ,
. . .

, m_{n-1}.

Let \mathbb{Z}[[X_{1}, . . . , X_{n-1}]] be the non‐commutative formal power series ring generated by

X_{1} , . . .

, X_{n-1} . Denote by \hat{Z} its quotient ring by the two‐side ideal generated by all mono‐

mials in which at least one of the generators appear at least twice. The Magnus expansion

 $\varphi$ is a homomorphism from the free group  F(m_{1}, \ldots, m_{n-1}) generated by m_{1} ,
. . .

, m_{n-1}

into \mathbb{Z}[[X_{1}, . . . , X_{n-1}]] , defined by sending m_{i} to 1+X_{i} and m_{i}^{-1} to  1-X_{i}+X_{i}^{2}-\cdots . It

induces a homomorphism from \overline{F(m_{1},\ldots,m_{n-1})} into \hat{Z} . Let w_{n}\in F(m_{1}, . . . , m_{n-1}) be a

word representing L_{n} in \overline{ $\pi$} . We then define $\mu$_{L}(i_{1}i_{2}\ldots i_{r}n) for distinct indices i_{1}, i_{2} ,
. . .

, i_{r}, n

as the coefficient of the Magnus expansion of w_{n} in \hat{Z} :

 $\varphi$(w_{n})=1+\displaystyle \sum$\mu$_{L}(i_{1}i_{2}\ldots i_{r}n)X_{i_{1}}X_{i_{2}}\ldots X_{i_{r}},
where the summation is over all sequences i_{1}i_{2}\ldots i_{r} with distinct indices between 1 and

n-1 . Similarly, we define $\mu$_{L}(i_{1}i_{2}\ldots i_{s}) for any distinct indices between 1 and n . We

define \overline{ $\mu$}_{L}(i_{1}i_{2}\ldots i_{r}n) as the residue class of $\mu$_{L}(i_{1}i_{2}\ldots i_{r}n) modulo the indeterminacy

\triangle_{L}(i_{1}i_{2}\ldots i_{r}n) which is the greatest common divisor of $\mu$_{L}(j_{1}j_{2}\ldots j_{s})' \mathrm{s} ,
where j_{1}j_{2}\ldots j_{s}

ranges over all sequences obtained by deleting at least one of the indices i_{1}, i_{2} ,
. . .

, i_{r}, n

and permuting the remaining ones cyclicly. Moreover we define \triangle_{L}(i_{1}n)= O. Similar

to this, for any n‐component link L
,

we can define \overline{ $\mu$}_{L}(I) for any sequence I of distinct

indices in \{ 1
, 2, . . .

, n\}

Theorem 2.1 ([19, 20 If L and L' are link‐homotopic, then \overline{ $\mu$}_{L}(I)=\overline{ $\mu$}_{L},(I) for any

sequence I with distinct indices.
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Lemma 2.2 ([20]). Let L be an ordered oriented link. Then the following relations hold.

(1) \overline{ $\mu$}_{L}(i_{1}i_{2}\ldots i_{m})=\overline{ $\mu$}_{L}(i2. . . i_{m}i_{1})
(2) If the orientation of the k‐th component of L is reversed, then \overline{ $\mu$}_{L}(i_{1}i_{2}\ldots i_{m}) is multi‐

plied by+1 or-1 according as the sequence i_{1}i_{2}\ldots i_{m} contains k an even or odd number

of times.

The following lemma is used for Proposition 3.4. This lemma is showed by using the

definition of Milnor�s link‐homotopy invariants.

Lemma 2.3. Let L=L_{1}\cup L_{2}\cup\cdots\cup L_{n-1} be an (n-1) ‐component link in S^{3} . Let K and

K' be disjoint knots in S^{3}\backslash L . Let I be a sequence with distinct indices in \{ 1, 2, . . .

, n\}.
If I contains the index n,

 $\mu$ L\cup(K_{b}\# K')(I)\equiv$\mu$_{L\cup K}(I)+$\mu$_{L\cup K'}(I) mod \mathrm{g}\mathrm{c}\mathrm{d}(\triangle_{L\cup K}(I), \triangle_{L\cup K'}(I)) ,

where K\#_{b}K' is a band sum of K and K' with respect to any band, and L\cup(K\#_{b}K') ,

L\cup K and L\cup K' are n ‐component links whose n‐th components are K\#_{b}K', K and K',

respectively.

Remark 2.4. By a property of the \overline{ $\mu$}‐invariant, we can obtain the same result for a band

sum of the i‐th component instead of the n‐th component.

Remark 2.5. In [14], V. S. Krushkal showed Milnor�s \overline{ $\mu$}‐invariants are additive under

connected sum for links which are separated by a 2‐sphere.

3 \mathrm{M}\mathrm{i}\mathrm{l}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{s}\overline{ $\mu$}‐invarinats for handlebody‐links

In this section, we define the HL‐homotopy, which is an equivalence relation on handlebody‐
links and construct HL‐homotopy invariants for handlebody‐links by using Milnor�s \overline{ $\mu$}-

invariants.

Definition 3.1 (HL‐homotopy). Let H_{0} be n handlebodies and H_{i}(i=1,2) two n‐

component handlebody‐links obtained by embedding H_{0} to S^{3} by f_{i} . Two handlebody‐
links H_{1} and H_{2} are called HL‐homotopic if there is homotopy h_{t} from f_{1} to f_{2} where the

components of h_{t}(H_{0}) are mutually disjoint at any 0\leq t\leq 1.

Remark 3.2. In [22], the notation of neighborhood homotopy of spatial graphs was in‐

troduced. A spatial graph is an embedding of graph in S^{3} . We can represent the HL‐

homotopy of handlebody‐links by the neighborhood homotopy of spatial graphs.

Let H=L_{1}\cup\cdots\cup L_{n} be an n‐component handlebody‐link with genus g_{i} for each i.

Let \{e_{1}^{i}, . . . , e_{g}^{i_{i}}\} be a basis of H_{1}(L_{i};\mathbb{Z}) and \mathcal{B}=\{e_{1}^{1}, . . . , e_{g_{1}}^{1}, . . . , e_{1}^{n}, . . . , e_{g_{n}}^{n}\} . We can
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regard an element of B as an embedded closed oriented circle in S^{3} . So the disjoint union

e_{k_{1}}^{1}\cup e_{k_{2}}^{2}\cup\cdots\cup e_{k_{n}}^{n} can be regarded as an ordered oriented link for each k_{i}(1\leq k_{i}\leq g_{i}) .

Let I be a sequence of length m(m\leq n) with distinct indices in \{ 1, 2, . . .

, n\} . For each

I
, we define an element M_{H,\mathcal{B}}(I) of tensor product space (\mathbb{Z}/\triangle_{I}\mathbb{Z})^{g_{1}}\otimes\cdots\otimes(\mathbb{Z}/\triangle_{I}\mathbb{Z})^{g_{n}} as

\mathbb{Z}/\triangle_{I}\mathbb{Z}‐module defined by

M_{H,B}(I):=\displaystyle \sum_{k_{1},.,k_{n}=1}^{g_{1}.'.\cdot,g_{n}}\overline{ $\mu$}_{e_{k_{1}}^{1}\cup\cdots\cup e_{k_{n}}^{n}}(I)e_{k_{1}}^{1}\otimes\cdots\otimes e_{k_{n}}^{n},
where \overline{ $\mu$}_{e_{k_{1}}^{1}\cup\cdots\cup e_{k_{n}}^{n}}(I) is in \mathbb{Z}/\triangle_{I}\mathbb{Z}, \triangle_{I} is the greatest common divisor of all \triangle_{e_{k_{1}}^{1}\cup\cdots\cup e_{k_{n}}^{n}}(I)
for all k_{1} ,

. . .

, k_{n} , where \triangle_{e_{k_{1}}^{1}\cup\cdots\cup e_{k_{n}}^{n}}(I) is indeterminacy of the original Milnor�s invariant

for the link e_{k_{1}}^{1}\cup e_{k_{2}}^{2}\cup\cdots\cup e_{k_{n}}^{n} and e_{k_{i}}^{i} is the canonical basis (0, \ldots, 0,\check{1}, 0, \ldots, 0)k_{i} of

(\mathbb{Z}/\triangle_{I}\mathbb{Z})^{9i} as \mathbb{Z}/\triangle_{I}\mathbb{Z}‐module.

Remark 3.3. If the first homology group of each component of H is \mathbb{Z} , the M_{H,B}(I) is

identified with the original Milnor�s link‐homotopy invariant for a link, essentially.

We consider a natural action of GL(g_{1}, \mathbb{Z})\times\cdots\times GL(g_{n)}\mathbb{Z}) on (\mathbb{Z}/\triangle_{I}\mathbb{Z})^{g_{1}}\otimes\cdots\otimes
(\mathbb{Z}/\triangle_{I}\mathbb{Z})^{g_{n}} and denote by M_{H}(I) the residue class of M_{H,I3}(I) by the action for (\mathbb{Z}/\triangle_{I}\mathbb{Z})^{g_{1}}\otimes
. . . \otimes(\mathbb{Z}/\triangle_{I}\mathbb{Z})^{g_{n}}.

Proposition 3.4. Let H be an n ‐component handlebody‐link. Then M_{H}(I) is independent

of a basis \mathcal{B} of H_{1}(H, \mathbb{Z}) and an HL‐homotopy invariant.

Proof. The proof is by induction on the length m of sequence I . We can show it by using

properties of \overline{ $\mu$}‐invariants for links (Lemma 2.2 and 2.3). See [13] for details. \square 

Example 3.5. Let H be a handlebody‐link which are the regular neighborhood of graph
illustrated in Figure 2. Let I=123 . Then, \triangle_{e_{1}^{1}\cup e_{1}^{2}\cup e_{1}^{3}}(I)=\triangle_{e_{1}^{1}\cup e_{1}^{2}\cup e_{2}^{3}}(I)=2 and

\triangle_{e_{k_{1}}^{1}\cup e_{k_{2}}^{2}\cup e_{k_{3}}^{3}}(I)=0 in other cases. So \triangle_{I}=2 and

M_{H}(I)=1e_{1}^{1}\otimes e_{1}^{2}\otimes e_{1}^{3}+1e_{2}^{1}\otimes e_{2}^{2}\otimes e_{2}^{3}\in(\mathbb{Z}_{2})^{2}\otimes(\mathbb{Z}_{2})^{2}\otimes(\mathbb{Z}_{2})^{2}
We can show the following corollary by using clasper theory introduced by Habiro [8].

Corollary 3.6. An n‐component handlebody‐link H is HL‐homotopic to a separable handlebody‐
link if and only if M_{H}(I)=0 for any I.

Remark 3.7. T. Fleming defined a numerical invariant $\lambda$_{ $\Phi$}(H) of a pair of a spatial

graph  $\Phi$ and its subgraph  H under component homotopy in [3]. Now, we define  $\Phi$ as a

handlebody‐link instead of a spatial graph and  H as its component instead of a subgraph.
We then can naturally extend this invariant to a pair of a handlebody‐link and its com‐

ponent under HL‐homotopy. Then, the value of $\lambda$_{ $\Phi$}(H) is the length of first non‐vanishing
for M_{ $\Phi$}(I) such that I contains the component number of H.
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FIGURE 2. Handlebody‐link H.

4 Main Theorem

Let \mathbb{H}[g_{1}, g_{2}, \cdots, g_{n}] be the set of n‐component handlebody‐links with genus g_{i} for each

1\leq i\leq n such that its any (n-1)‐component subhandlebody‐link is HL‐homotopic to a

separable handlebody‐link. By Corollary 3.6, this condition is equivalent to that its any

M(I) �s of length less than n vanishes.

Let S be a permutation group on \{2, 3, . . . , n-1\} . For any element a in S , we define

I_{ $\sigma$} as a sequence 1 $\sigma$(23\cdots n-1)n.

Theorem 4.1. For any element  $\sigma$ in  S , the map

 $\varphi$:\mathbb{H}[g_{1}, \cdots , g_{n}]\rightarrow\oplus_{ $\sigma$\in S}(\mathbb{Z}^{g_{1}}\otimes\cdots\otimes \mathbb{Z}^{g_{n}})

H\mapsto(M_{H}(I_{ $\sigma$}))_{ $\sigma$\in S}

induces a bijection between the set of HL‐homotopy classes of \mathbb{H}[g_{1}, g_{2}, \cdots, g_{n}] and the

residue class of\oplus_{ $\sigma$\in S}(\mathbb{Z}^{g_{1}}\otimes\cdots\otimes \mathbb{Z}^{g_{n}}) by diagonal action of general linear group.

We give two examples.

Example 4.2. Let I=123 . Let H_{1} and H_{2} be two handlebody‐links which are the

regular neighborhood of graphs depicted in Figure 3. Then, \triangle_{I}=0 and

M_{H_{1}}(I)=1e_{1}^{1}\otimes e_{1}^{2}\otimes e_{1}^{3}+1e_{1}^{1}\otimes e_{2}^{2}\otimes e_{1}^{3}+1e_{1}^{1}\otimes e_{3}^{2}\otimes e_{1}^{3}
+2e_{1}^{1}\otimes e_{1}^{2}\otimes e_{2}^{3}+2e_{1}^{1}\otimes e_{2}^{2}\otimes e_{2}^{3}+2e_{1}^{1}\otimes e_{3}^{2}\otimes e_{2}^{3}

\in \mathbb{Z}^{2}\otimes \mathbb{Z}^{3}\otimes \mathbb{Z}^{2}.

M_{H_{2}}(I)=1e_{1}^{1}\otimes e_{1}^{2}\otimes e_{1}^{3}+1e_{1}^{1}\otimes e_{2}^{2}\otimes e_{1}^{3}+1e_{2}^{1}\otimes e_{1}^{2}\otimes e_{1}^{3}+1e_{2}^{1}\otimes e_{2}^{2}\otimes e_{1}^{3}
1 e_{1}^{1}\otimes e_{1}^{2}\otimes e_{2}^{3}+1e_{1}^{1}\otimes e_{2}^{2}\otimes e_{2}^{3}+1e_{2}^{1}\otimes e_{1}^{2}\otimes e_{2}^{3}+1e_{2}^{1}\otimes e_{2}^{2}\otimes e_{2}^{3}

\in \mathbb{Z}^{2}\otimes \mathbb{Z}^{3}\otimes \mathbb{Z}^{2}.

We have that M_{H_{1}}(I) is transformed to M_{H_{2}}(I) by the diagonal action of general linear

group. Therefore H_{1} and H_{2} are HL‐homotopic.
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FIGURE 3. Handlebody‐links H_{1} and H_{2}.

Example 4.3. Let I=123 . Let H3 and H_{4} be two handlebody‐links which are the

regular neighborhood of graphs depicted in Figure 4. Then, \triangle_{I}=0 and

M_{H_{3}}(I)=1e_{1}^{1}\otimes e_{1}^{2}\otimes e_{1}^{3}+1e_{1}^{1}\otimes e_{2}^{2}\otimes e_{1}^{3}+1e_{2}^{1}\otimes e_{1}^{2}\otimes e_{1}^{3}
+1e_{2}^{1}\otimes e_{2}^{2}\otimes e_{1}^{3}+1e_{1}^{1}\otimes e_{3}^{2}\otimes e_{2}^{3}+1e_{2}^{1}\otimes e_{3}^{2}\otimes e_{2}^{3}

\in \mathbb{Z}^{2}\otimes \mathbb{Z}^{3}\otimes \mathbb{Z}^{2}.

M_{H_{4}}(I)=2e_{1}^{1}\otimes e_{1}^{2}\otimes e_{1}^{3}+2e_{2}^{1}\otimes e_{1}^{2}\otimes e_{1}^{3}+1e_{1}^{1}\otimes e_{2}^{2}\otimes e_{2}^{3}+1e_{2}^{1}\otimes e_{2}^{2}\otimes e_{2}^{3}
\in \mathbb{Z}^{2}\otimes \mathbb{Z}^{3}\otimes \mathbb{Z}^{2}.

We can show that H_{1} is not HL‐homotopic to H_{2} by using some invariants for the action

of general linear group \mathrm{o}\mathrm{n}_{3}\mathrm{t}\mathrm{h}\mathrm{e} tensor product space. See [13]\mathrm{f}\mathrm{o}\mathrm{r}3 details.

H_{3} :

FIGURE 4. Handlebody‐links H3 and H_{4}.
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