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ABSTRACT. We survey some results about annulus twists which are related

to Dehn surgery on knots, knot concordance, and 4‐manifold theory.

1. INTRODUCTION

Lickorish [15] and Wallace [22] proved that every closed con‐

nected orientable 3‐manifold can be obtained by Dehn surgery on

some link in S^{3} In other words, every closed connected orientable

3‐manifold is described by a framed link in S^{3} Our interest is in

uniqueness of framed link descriptions of a given 3‐manifold. \mathrm{A}

natural question is the following.

Question 1. If two framed links \mathcal{L} and \mathcal{L}' give the same 3‐

manifold, then are \mathcal{L} and \mathcal{L} isotopic as framed links?

It is well‐known that the answer of Question 1 is NO. Indeed,
for a given framed link \mathcal{L} and a 1/n‐framed unknot \mathcal{O}

, two framed

links \mathcal{L} and \mathcal{L}\sqcup \mathcal{O} give the same 3‐manifold. A modified question
is the following.

Question 2. If two framed knots \mathcal{K} and \mathcal{K} give the same 3‐

manifold, then are \mathcal{K} and \mathcal{K} isotopic as framed knots?

The answer of Question 2 is again NO [16] (see also [8, 9, 17,
20 The remaining questions are the following.

(1) Under what conditions, are framed knot descriptions of a 3‐

manifold unique?
(2) To what extent, are framed knot descriptions of a 3‐manifold

far from unique?

For the question (1), for example, see [12, 13, 14, 18]. We con‐

centrate on the question (2). More precisely, we consider Clark�s

problem in Kirby problem list [10]:
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Problem 3.6(D). Fix an integer n . Is there a homology 3‐sphere
(or any 3‐manifold) which can be obtained by n‐surgery on an

infinite number of distinct knots?

In [19], Osoinach solved Problem 3.6(D) for the case n=0

by constructing knots using the method of twisting along an an‐

nulus, which we call an annulus twist. After Teragaito�s work

[21] (see also [7, 11 Jong, Luecke, Osoinach, and the author

[3] solved Problem 3.6(D) affirmatively, where they generalized
annulus twists.

In [4], a4‐dimensional extension of Problem 3.6(D) was pro‐

posed as follows:

Problem 1. Let n be an integer. Find infinitely many mutually
distinct knots K_{1}, K_{2}, \cdots such that  X_{K_{i}}(n)\approx X_{K_{j}}(n) for each

i, \dot{j}\in \mathbb{N}.

Here X_{K}(n) denotes the smooth 4‐manifold obtained from the

4‐ball B^{4} by attaching a 2‐handle along K with framing n
,

and

the symbol \approx stands for a diffeomorphism. Due to Akbulut [5,
6], there exists a pair of distinct knots  K_{n} and K_{n}' such that

 X_{K_{n}}(n)\approx XKń(n) for each  n\in \mathbb{Z} , which is a partial answer to

Problem 1. In [4], Jong, Omae, Takeuch, and the author solved

Problem 1 for the case n=0, \pm 4 . In [3], Jong, Luecke, Osoinach,
and the author also solved Problem 1 affirmatively.

2. OSOINACH�S RESULT

In this section, we recall Osoinach�s result in [19]. Let K_{n} be

the knots in Figure 1, which is isotopic to the knots in the page
731 in [19]. One of the main results in [19] is the following.

Theorem 2.1 (Osoinach [19]). We have the following.
(1) The 3‐manifold obtained by 0 ‐surgery of K_{0} is toroidal.

(2) The sequence \{K_{n}\} contains infinitely many distinct hyper‐
bolic knots.

(3)  S_{0}^{3}(K_{0})\approx S_{0}^{3}(K_{1})\approx S_{0}^{3}(K_{2})\approx S_{0}^{3}(K_{3})\approx\cdots ,
where  S_{n}^{3}(K)

denotes the 3‐manifold obtained by n ‐surgery of a knot K in S^{3}
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FIGURE 1. The definition of the knots K_{n}.

Note that we can check that K_{n} and K_{-n} are isotopic, and

Takioka proved that the knots K_{n}(n\geq 0) are mutually distinct

by calculating the Gamma polynomial which is a specialization
of the HOMFLYPT polynomial.

Let V be the solid torus standardly embedded in S^{3} and V � the

3‐manifold as in Figure 2. The main observation in [19] is the

following.

FIGURE 2. The definitions of V and V�.

Lemma 2.2 (cf. Theorem 2.1 in [19]). There exists a (natural)
diffeomorphism

$\varphi$_{n}:V\rightarrow V

such that $\varphi$_{n}|_{\partial V'}=id.

Remark 2.3. 0soinach [19] considered the diffeomorphism $\varphi$_{n}^{-1}
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Figure 2 explains a proof of (3) in Theorem 2.1. Note that,
by Lemma 2.2, the picture on the bottom‐left is diffeomorphic to

S_{0}^{3} (K0).

FIGURE 3. A proof of (3) in Theorem 2.1.

3. DEHN SURGERY AND KNOT CONCORDANCE

We recall a terminology in knot concordance. Two knots K and

K �
are concordant if they cobound a properly embedded annulus

in S^{3}\mathrm{x}I . In this paper, we do NOT consider orientations of a

given knot.

Dehn surgery on knots and knot concordance are closely related.

A motivating question is the following.
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Question 3.1 (A.Levine [24]). IfK is concordant to K'
,

then for
all n, S_{n}^{3}(K) is homology cobordant to S_{n}^{3}(K Is the converse

true 9

The following conjecture is due to Akbulut and Kirby (see Prob‐

lem 1.19 in the Kirby�s problem list [10]).

Conjecture. If 0‐framed surgeries on two knots give the same

3‐manifold, then the knots are concordant.

Tagami and the author [2] proved that Akbulut‐Kirby�s conjec‐
ture is false if the slice‐riuUon conjecture is true. Subsequently,
Yasui [23] proved that Akbulut‐Kirby�s conjecture is false by con‐

structing knots K and K' satisfying

(1) X_{K}(0) and X_{K'}(0) are exotic (i.e. homeomorphic but non‐

diffeomorphic).
(2) K and K' are not concordant.

Note that X_{K}(0) and X_{K'}(0) are related by a cork twist. For

the details, see [23]. The remaining conjecture is the following.

Conjecture. Let K and K � be knots. If X_{K}(0) and X_{K'}(0) are

diffeomorphic, then K and K' are concordant.

K_{\mathrm{O}} K_{1}

FIGURE 4. The definition of K_{0} and K_{1}.

Remark: Let K_{0} and K_{1} be the knots in Figure 4. By the re‐

sult in [4], the 4‐manifolds X_{K_{0}}(0) and X_{K_{1}}(0) are diffeomorphic.
Furthermore, if the slice‐riuUon conjecture is true, K_{0} and K_{1} are

not concordant (see [2]).
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