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1 Introduction

Let \mathbb{R} be the set of real numbers, and \mathbb{F} a set of floating‐point numbers conforming to IEEE

standard 754. The relative rounding error unit of floating‐point arithmetic is denoted by
u . In binary64 (double precision) arithmetic, u=2^{-53}\approx 1.1\times 10^{-16} . Throughout this

paper, we assume that neither overflow nor underflow occurs. For A\in \mathbb{R}^{n\times n} , define

 $\kappa$(A) :=\Vert A\Vert\cdot\Vert A^{-1}\Vert as the condition number of  A
,

where \Vert\cdot\Vert stands for spectral norm

for matrices and Euclidean norm for vectors. It is well‐know that  $\kappa$(A) indicates the

difficulty of the problem.
In this paper, we consider to treat the case where A is symmetric, positive definite

and extremely ill‐conditioned such that

 $\kappa$(A)>u^{-1} (1)

This means no correct digit can be expected in an approximate solution \tilde{x} when solving a

linear system Ax=b in working precision u . However, in [1], Ogita and Oishi presented
an iterative algorithm to calculate a good approximate inverse of the exact Cholesky
factor. In the previous works, in about 1984, Rump [2] derived a method for inverting an

extremely ill‐conditioned matrix, which is based on the accurate dot product algorithms.
In 2007, Oishi et al. [3] presented a proof why a modified version of the Rump�s method

works so well. In 2009, Rump [4] has shown the mechanism of his method by himself. In

2010, Ogita [5] presented algorithms for accurately calculating inverse LU and inverse QR
factorizations. As mentioned before, in 2012, Ogita and Oishi [1] derived an algorithm
for accurately calculating inverse of the exact Cholesky factor. However, why the Ogita‐
Oishi�s algorithm is so efficient for ill‐conditioned matrices has not yet been known.

Recently, in [6, 7], we analyzed the behavior of the algorithm in detail and explained
its convergency by the use of numerical error analysis. We presented a detailed analysis
showing that if we can use high precision computations for dot product, then the condition

number of a preconditioned matrix is reduced by a factor around n^{2}u in each iteration

until convergence, which is consistent with the numerical results.

For the case (1), Cholesky factorization sometimes breaks down by the presence of

an imaginary root due to the accumulation of rounding errors, even if the matrix is

symmetric and positive definite. To avoid the break‐down, a diagonal shift is applied to

A in the Ogita‐Oishi�s algorithm. The Ogita‐Oishi�s algorithm gives a sum of m matrices

X=\displaystyle \sum_{i=1}^{m}X_{i}, X_{ $\iota$}\in \mathbb{F}^{n\times n} ,
which is an accurate inverse of \hat{R} such that A=\hat{R}^{T}\hat{R} satisfying

n^{2}u<\sim\Vert I-X^{T}AX\Vert<1 . (2)
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The reason why n^{2}u is the lower bound is due to the diagonal shift. To overcome it,
we find the condition such that Cholesky factorization of a preconditioned matrix never

breaks down without the diagonal shift. In this paper, we propose a modified version

of the Ogita‐Oishi�s algorithm for calculating a more accurate inverse X of \hat{R} than the

original one. Namely, the proposed algorithm provides X satisfying

\Vert I-X^{T}AX\Vert\approx u.

The rest of the paper is organized as follows: in the following section, we explain
the notation and state the definitions used in this paper. In Section 3, we introduce the

algorithm for an accurate inverse Cholesky factorization and propose a modified algorithm.
In Section 4, we present some numerical results for comparing the proposed algorithm with

the original one in terms of both the accuracy on X.

2 Notation and definitions

For A=(a_{ij}) , B=(b_{i_{J}})\in \mathbb{R}^{n\times n}, |A|=(|a_{ $\iota$}J|)\in \mathbb{R}^{n\times n} denotes a nonnegative matrix

consisting of entrywise absolute values, and an inequality A\leq B is understood entrywise,
i.e., a_{ $\iota$ j}\leq b_{i_{J}} for all (i, j) . The notation A\geq O means that all elements of A are

nonnegative. Similar notation applies to real vectors. Let I denote the identity matrix.

Let A=A^{T}\in \mathbb{R}^{n\times n} . The trace of A is defined by

\displaystyle \mathrm{t}\mathrm{r}(A):=\sum_{i=1}^{n}a_{ii}.
The sum of the absolute values of off‐diagonal elements in the i‐th row of A is denoted by

r_{i}(A)=\displaystyle \sum_{i\neq J}|a_{i_{\dot{J}}}|.
Computing an approximate inverse of an upper triangular matrix R\in \mathbb{F}^{n\times n} is denoted by

T :=triinv(R) ,

which solves a matrix equation RT=I for T using a standard numerical algorithm (e.g.,
xTRSV in BLAS and xTRTRI in LAPACK) in working precision such as binary64.

For readability  $\varphi$( $\gamma$) denotes a constant such as  $\varphi$( $\gamma$)=c\cdot $\gamma$ where  c :=\mathcal{O}(1) with

0<c\ll u^{-1}.
Let fl denote that an expression inside the parentheses is evaluated by floating‐point

arithmetic in rounding to nearest. Let \mathbb{F}_{[l]} be a set of sum of floating‐point numbers such

that

\displaystyle \mathbb{F}_{[l]}:=\{x\in \mathbb{R}:x=\sum_{i=1}^{l}x_{i}, x_{i}\in \mathbb{F}, l\in \mathbb{N}\}.
Note that \mathbb{F}=\mathbb{F}_{[1]}\subseteq \mathbb{F}_{[l]}\subset \mathbb{R}.

Let A\in \mathbb{F}_{[p]}^{n\times n} and B\in \mathbb{F}_{[q]}^{n\times n} for p, q\in \mathbb{N} . Assume that we have a function of

calculating C\in \mathbb{F}_{[l]}^{n\times n} for any k, l\in \mathbb{N}, l\leq k satisfying

|AB-C|\leq $\varphi$(u^{l})|AB|+ $\varphi$(u^{k}) |A||B|.
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Note that C=\displaystyle \sum_{ $\iota$=1}^{l}C_{i} with C_{i}\in \mathbb{F}^{n\times n}, i=1
, 2, . . .

,
l . Namely, C is an approximation

of AB as if computed in k‐fold working precision and rounded into l pieces of working
precision floating‐point numbers. We write such a function as

C_{1:l}:=\{AB\}_{k}^{l} , (3)

which provides C=C_{1:l} satisfying (2). Such accurate dot product algorithms satisfying
(2) have been proposed in [8, 9, 10]. Moreover, algorithms for accurate matrix multipli‐
cation have been developed in [11].

Let \langle A_{M}, A_{R}\} denote an interval matrix of the midpoint‐radius representation such

that

\{A_{M}, A_{R}\rangle :=\{X\in \mathbb{R}^{n\times n} : |X-A_{M}|\leq A_{R}\}

with a midpoint A_{M}\in \mathbb{F}^{n\times n} and a radius A_{R}\in \mathbb{F}^{n\times n}, A_{R}\geq O . Similar notation in (3)
applies to B^{T}AB

, i.e.,

\langle G, E\}:=\{B^{T}AB\}_{k}^{1}

which provides G=G^{T}, E\in \mathbb{F}^{n\times n} satisfying B^{T}AB\in\langle G, E } with

|B^{T}AB-G|\leq $\varphi$(u)|B^{T}AB|+ $\varphi$(u^{k})|B^{T}||A||B|=: E . (4)

3 Modified algorithm for accurate inverse Cholesky
factorization

In this section, we first introduce the Ogita‐Oishi algorithm for an accurate inverse

Cholesky factorization. After that, we propose a modified version of the Ogita‐Oishi�s
algorithm for calculating a better approximate inverse X of the exact Cholesky factor of

 $\Lambda$.

3.1 Preliminaries

Let A\in \mathbb{F}^{n\times n} be symmetric and positive definite. We say �run to completion�� if no

imaginary root appears in the factorization process. Throughout the paper, the Matlab‐

style notation

R=\mathrm{c}\mathrm{h}\mathrm{o}1(A)

means a floating‐point Cholesky factorization of A using a standard numerical algorithm
(e.g., XPOTRF in LAPACK) such that

A\approx R^{T}R

where R\in \mathbb{F}^{n\times n} is an upper triangular matrix. Then it is known [12] that the computed
Cholesky factor R always satisfies

\displaystyle \frac{\Vert A-R^{\mathrm{T}}R\Vert}{\Vert A\Vert}\leq $\varphi$(u) (5)
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if the floating‐point Cholesky factorization runs to completion. However, it holds only
limited information on the accuracy of the Cholesky factorization can be obtained from

the residual norm \Vert A-R^{\mathrm{T}}R\Vert or its relative norm. Thus we need another criterion.

Instead of (5), we use the following criterion:

\Vert I-X^{T}AX II <$\epsilon$_{tol},

where $\epsilon$_{tol} is a given tolerance, as the accuracy of the Cholesky factors.

As mentioned before, the floating‐point Cholesky factorization of an ill‐conditioned

matrix A sometimes breaks down due to an accumulation of the rounding errors. To avoid

the break‐down, a diagonal shift can be applied to A . To obtain an optimal diagonal shift

of A
,

we utilize the backward error analysis of floating‐point Cholesky factorization in

[13, 14] based on the Demmel�s result [15]: if 2(n+1)u<1 ,
then

\displaystyle \triangle :=A-R^{T}R, \Vert\triangle\Vert\leq c_{n}'u\cdot \mathrm{t}\mathrm{r}(A) , c_{n}' :=\frac{n+1}{1-2(n+1)u} . (6)

If (n+1)(n+3)u<1 ,
then we define a diagonal shift of A by

shift (A) :=c_{n}u\cdot \mathrm{t}\mathrm{r}(A) with c_{n}=\displaystyle \frac{n+2}{1-(n+1)(n+3)u} . (7)

Let Ã :=ft(A+ $\delta$ I) where  $\delta$ :=shift(A) . Let \tilde{R} = chol(Ã). From [13, 14, 15] and Theorem

1 in [16], if A is positive definite, then chol(Ã) runs to completion.
The following is an algorithm for an accurate inverse Cholesky factorization:

Algorithm 1 (Ogita‐Oishi [1]) For a symmetric matrix A=(a_{lj})\in \mathbb{F}^{n\times n} with a_{i $\iota$}>0
for all i and a specified tolerance $\epsilon$_{tol} satisfying n^{2}u\sim<$\epsilon$_{tol}\leq 1 ,

the following algo‐
rithm calculates an upper triangular matrix X_{1:m_{k}}^{(k)}\in \mathbb{F}_{[m_{k}]}^{n\times n} for some k\in \mathbb{N} such that

\Vert X_{1:m_{k}}^{(k)T}AX_{1:m_{k}}^{(k)}-I\Vert<$\epsilon$_{tol}.

1: k=0, G^{(0)} :=A, E^{(0)} :=O, X_{1:1}^{(0)} :=I

2: repeat
3: k=k+1

4: Compute S^{(k)}\in \mathbb{F}^{n\times n} with S_{ $\iota \iota$}^{(k)}\geq G_{i $\iota$}^{(k-1)}+\Vert E^{(k-1)} S_{ $\iota$}^{(k)}J=G_{i_{J}}^{(k-1)} for i\neq j
5: $\delta$_{k}:=shift(S^{(k)})
6. \tilde{S}^{(k)}:=fl(S^{(k)}+$\delta$_{k}I)
7: R^{(k)}:=chol(\tilde{S}^{(k)})
8: T^{(k)}:= triinv ( R^{(k)})
9: X_{1:m_{k}}^{(k)}:=\{X_{1:m_{k-1}}^{(k-1)}T^{(k)}\}_{m_{k}^{k}}^{m} //m_{k}:=\displaystyle \lceil\frac{k}{2}\rceil+1

10: \langle G^{(k)}, E^{(k)}\rangle:=\{(X_{1:m_{k}}^{(k)})^{T}AX_{1:m_{k}}^{(k)}\}_{k+1}^{1}
11: until \Vert G^{(k)}-I\Vert+\Vert E^{(k)}\Vert<$\epsilon$_{tol}

Remark 1 In Step 4 and 5, we slightly shift the diagonal part of G^{(k-1)} to ensure the

positive definiteness of \tilde{S}^{(k)} with taking care of the rounding errors [16]. For Step 4, in

practice, S^{(k)} can be obtained by calculating  G_{ii}^{(k-1)}+\Vert E^{(k-1)}\Vert in rounding upwards.
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Remark 2 Assume \Vert E^{(k-1)}\Vert\approx u\Vert G^{(k-1)}\Vert . Then

$\delta$_{k} = c_{n}u\cdot \mathrm{t}\mathrm{r}(S^{(k)})\approx nu\cdot \mathrm{t}\mathrm{r}(G^{(k-1)}) .

Therefore, it holds that

nu\Vert G^{(k-1)}\Vert\sim<$\delta$_{k}\sim<n^{2}u\Vert G^{(k-1)}
Define $\alpha$_{k}:=$\delta$_{k} (X^{(k-1)})^{T}AX^{(k-1)}\Vert . Then \Vert(X^{(k-1)})^{T}AX^{(k-1)}\Vert\approx\Vert G^{(k-1)}\Vert and

 nu<$\alpha$_{k}<n^{2}u\sim\sim.

If  $\kappa$(S)_{\sim}u^{-1} ,
then

 $\kappa$(\displaystyle \tilde{S}^{(k)})\approx $\kappa$(S^{(k)}+$\delta$_{k}I)\approx\frac{\Vert S^{(k)}\Vert}{$\delta$_{k}}\approx\frac{\Vert G^{(k-1)}||+u\Vert G^{(k-1)}\Vert}{$\alpha$_{k}||G^{(k-1)}\Vert}\approx$\alpha$_{k}^{-1}.
0therwise,  $\kappa$(\tilde{S}^{(k)})\approx $\kappa$(G^{(k-1)}) . Therefore, \tilde{S}^{(k)} is not too ill‐conditioned in any case and

 $\kappa$(R^{(k)})\approx $\kappa$(\tilde{S}^{(k)})^{\frac{1}{2}}\approx $\kappa$((X^{(k-1)})^{T}AX^{(k-1)})^{\frac{1}{2}}.

Thus, we have

 $\kappa$(R^{(k)})\approx\sqrt{\min( $\kappa$((X(k-1))^{ $\tau$}AX(k-1)),$\alpha$_{k}^{-1})}.
In [7], we explained that

 $\kappa$((X^{(k)})^{T}AX^{(k)})\displaystyle \sim<1+\prod_{i=1}^{k}$\alpha$_{ $\iota$}\cdot $\kappa$(A)_{\sim}<(n^{2}u)^{k} $\kappa$(A) . (8)

Namely, the condition number of a preconditioned matrix (X^{(k)})^{T}AX^{(k)} is reduced by a

factor around n^{2}u in each iteration and eventually converges to 1 after some iterations

in Algorithm 1. Moreover, we show it is important to choose adequate computational
precision for calculating dot products in Algorithm 1, which is sufficient for convergence
and almost optimal in terms of computational effort.

3.2 Proposed algorithm

The following is a modified algorithm for an accurate inverse Cholesky factorization:

Algorithm 2 For a symmetric matrix A=(a_{ij})\in \mathbb{F}_{ $\Sigma$}^{n\times n} with a_{ $\iota \iota$}>0 for all i
,

the

following algorithm calculates an upper triangular matrix X_{1:m_{M}}^{(M)}\in \mathbb{F}_{ $\Sigma$}^{n\times n} where M :=k+1

for some k\in \mathbb{N} such that \Vert X_{1:m_{M}}^{(M)T}AX_{1:m_{M}}^{(M)}-I\Vert\approx u.
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1: k=0, G^{(0)} :=A, E^{(0)} :=O, X_{1:1}^{(0)} :=I

2: repeat
3. k=k+1

4. Compute S^{(k)}\in \mathbb{F}^{n\times n} with S_{ $\iota$ i}^{(k)}\geq G_{i $\iota$}^{(k-1)}+\Vert E^{(k-1)} S_{i_{J}}^{(k)}=G_{i_{J}}^{(k-1)} for i\neq j
5. $\delta$_{k}:=shift(S^{(k)})
6: \tilde{S}^{(k)}:=fl(S^{(k)}+$\delta$_{k}I)
7. R^{(k)}:=chol(\tilde{S}^{(k)})
8. T^{(k)}:= triinv ( R^{(k)})
9: X_{1:m_{k}}^{(k)}:=\{X_{1:m_{k-1}}^{(k-1)}T^{(k)}\}_{m_{k}^{k}}^{m} //m_{k}:=\displaystyle \lceil\frac{k}{2}\rceil+1

10: \langle G^{(k)}, E^{(k)}\rangle:=\{(X_{1:rn_{k}}^{(k)})^{T}AX_{1:m_{k}}^{(k)}\}_{k+1}^{1}
11:  $\beta$ :=\displaystyle \min(G_{ii}^{(k)}-r_{i}(G^{(k)}))
12.  $\mu$:=c_{n}'u\cdot \mathrm{t}\mathrm{r}(G^{(k)}) //c_{n}':=\displaystyle \frac{n+1}{1-2(n+1)u}
13. until  $\beta$>\displaystyle \max( $\mu$, \Vert E^{(k)}
14: R^{(M)} :=chol(G^{(M-1)}) //M :=k+1
15. T^{(M)}:= triinv ( R^{(M)})
16. X_{1:m_{M}}^{(M)}:=\{X_{1:m_{k}}^{(M-1)}T^{(M)}\}_{rn_{M}}^{m_{M}} //m_{M}:=\displaystyle \lceil\frac{k+1}{2}\rceil+1

Compared with Algorithm 1, we add the condition such that Cholesky factorization

of G^{(k-1)} never breaks down without a diagonal shift. In the following, we explain how to

determine it. For readability, G^{(k)}, X_{1:m_{k}}^{(k)} and X_{1:m_{M}}^{(M)} where M :=k+1 are abbreviated to

G, X and X'
, respectively. Let R' be a computed Cholesky factor of G

, i.e., R'=chol(G) .

Define

\triangle_{1}:=G-X^{T}AX , (9)
\triangle_{2}:=G-R^{JT}R' , (10)
T :=triinv(R') , (11)
\triangle_{3}:=X'-XT . (12)

By the definition (10), it is necessary to satisfy

$\lambda$_{n}(G-\triangle_{2})>0.

By (6) and a Weyl�s theorem (e.g. Corollary 4.9 in [17]) for (10), it holds that

$\lambda$_{n}(G-\triangle_{2})\geq$\lambda$_{n}(G)-\Vert\triangle_{2}\Vert , \Vert\triangle_{2}\Vert\leq c_{n}'u\cdot \mathrm{t}\mathrm{r}(G) . (13)

The Gerschgorin�s circle theorem implies

$\lambda$_{k}(G)\displaystyle \in\bigcup_{i=1}^{n}\{x\in \mathbb{R} : |x-G_{ $\iota$ i}|\leq r_{ $\iota$}(G)\}, k=1
, 2, . . .

,
n

and

 $\lambda$_{n}(G)\geq $\beta$ where  $\beta$ :=\displaystyle \min(G_{ii}-r_{i}(G)) . (14)

From (13) and (14), we have

$\lambda$_{n}(G-\triangle_{2})\geq $\beta$-\Vert\triangle_{2}\Vert . (15)
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Moreover, to ensure the positive definiteness of  A with taking care of the rounding errors,
it is necessary to satisfy

$\lambda$_{n}(X^{T}AX)>0.

By a Weyl�s theorem (e.g. Corollary 4.9 in [17]) for (9), it holds that

$\lambda$_{n}(X^{T}AX)\geq$\lambda$_{n}(G)-\Vert\triangle_{1}

From (14), we have

$\lambda$_{n}(X^{T}AX)\geq $\beta$-\Vert\triangle_{1}\Vert . (16)

Therefore, combining (15) and (16), the sufficient condition to make chol (G) run to

completion and to ensure the positive definiteness of  A is

 $\beta$>\displaystyle \max(\Vert\triangle_{1} \Vert\triangle_{2}\Vert) . (17)

In [16], we explained that if n^{5}u<1 satisfies, then

\Vert I-X^{\prime T}AX'\Vert\approx u . (18)

4 Numerical experiments
In this section we present some numerical results. All computations are done on Matlab

2012\mathrm{b} using IEEE standard 754 binary64 (double precision) on Mac OS X version 10.8

with 2 GHz Intel Core i7 Duo processor, so that u=2^{-53}\approx 1.11\times 10^{-16}.
We present some numerical results for comparing the proposed algorithm (Algorithm

2) with the original one (Algorithm 1), in terms of the accuracy on X . For Algorithms 1

and 2, we adopt accurate matrix multiplication algorithms in [11]. Then the computations
are automatically parallelized in BLAS and LAPACK. From (2), the lower bound of

\Vert I-X^{T}AX\Vert in Algorithm 1 is about  n^{2}u . Thus, we set $\epsilon$_{tol}=10^{\lceil\log_{10}n^{2}u\rceil} as a stopping
criterion for Algorithm 1. We deal with the Rump matrix [18] as an ill‐conditioned

matrix, which is based on the function randmat in INTLAB [19], and surely generates
symmetric and positive definite matrices. We name the function randmatsym(n, cnd).
We set n=1000 with cnd=10^{100} . Then A\in \mathbb{F}^{1000\times 1000} with  $\kappa$(A)\approx 8.297\times 10^{102} is

generated, and the results are shown in Table 1. Let m_{1} and m_{2} denote the number of

iterations for Algorithm 1 and that for Algorithm 2, respectively. Put M=m_{2}+1 . On

Algorithm 1, it can be seen from Table 1 that  $\kappa$(G^{(k)}) is reduced by a factor around n^{2}u in

each iteration until \Vert I-G^{(m_{1})}\Vert\approx n^{2}u ,
which is consistent with (2) and (8) as expected. On

the other hand, \Vert I-G^{(M)}\Vert from Algorithm 2 in Tables 1 is around  u
,

which is consistent

with (18) as expected. Thus, Algorithm 2 gives more accurate results than Algorithm 1.

As can be seen, in Table 1, Algorithm 2 requires less iterations than Algorithm 1. The

reason is that the stopping criterion (17) in Algorithm 2 is satisfied when  $\kappa$(G^{(m_{2})})\approx 1
and the iterations finish, while Algorithm 1 continues one more iteration until satisfying
\Vert I-G^{(k)}\Vert\approx n^{2}u even if  $\kappa$(G^{(k)})\approx 1.
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Table 1: Result for Rump matrix with n=1000,  $\kappa$(A)\approx 8.297\times 10^{102}, n^{2}u\approx 1.11\cdot 10^{-10}
and $\epsilon$_{tol}=10^{-9}.

\overline{\frac{k $\kappa$(G^{(k)})(n^{2}u)^{k} $\kappa$(A)\frac{\mathrm{A}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}.\mathrm{t}\mathrm{h}\mathrm{m}1}{||I-G^{(k)}\Vert}\frac{\mathrm{A}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}.\mathrm{t}\mathrm{h}\mathrm{m}2}{||I-G^{(k)}\Vert 1.0010^{00}}}{11.71\cdot 10^{91}9.22\cdot 10^{92}1.0010^{00}}}
2 1.22\cdot 10^{81} 1.02\cdot 10^{83} 1.00\cdot 10^{00} 1.00\cdot 10^{00}
3 1.11 10^{71} 1.14\cdot 10^{73} 1.00\cdot 10^{00} 1.00\cdot 10^{00}
4 1.10\cdot 10^{61} 1.27\cdot 10^{63} 1.00\cdot 10^{00} 1.00\cdot 10^{00}
5 1.14\cdot 10^{51} 1. 41\cdot 10^{53} 1.00\cdot 10^{00} 1.00\cdot 10^{00}
6 1.21 10^{41} 1.56\cdot 10^{43} 1.00\cdot 10^{00} 1.00\cdot 10^{00}
7 1.31 10^{31} 1.74\cdot 10^{33} 1.00\cdot 10^{00} 1.00 \cdot  10^{00}
8 1.43\cdot 10^{21} 1.93 \cdot  10^{23} 1.00\cdot 10^{00} 1.00 \cdot  10^{00}
9 1.58\cdot 10^{11} 2.15\cdot 10^{13} 1.00\cdot 10^{00} 1.00\cdot 10^{00}

10 1.84 \cdot  10^{01} 2.38 \cdot  10^{03} 9.46 \cdot  10^{-01} 9.46\cdot 10^{-01}
11 1.00\cdot 10^{00} 2.65\cdot 10^{-07} 2.05\cdot 10^{-09} 3.88\cdot 10^{-16}
12 1.00\cdot 10^{00} 2.94\cdot 10^{-17} 1. 11\cdot 10^{-10}
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