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Abstract It is well known that the numerical solution of stiff stochastic differen-
tial equations (SDEs) leads to a stepsize reduction when explicit methods are used.
However, there are some classes of explicit methods that are well suited to solv-
ing some types of stiff SDEs. One such class is the class of stochastic orthogonal
Runge-Kutta Chebyshev (SROCK) methods. SROCK methods reduce to Runge-
Kutta Chebyshev methods when applied to ordinary differential equations (ODEs).
Another promising class of methods is the class of explicit methods that reduce to ex-
plicit exponential Runge-Kutta (RK) methods when applied to semilinear ODEs. In
the present paper, such explicit methods are considered. As a result, the stochastic
exponential Euler scheme will be derived for strong approximations to the solution
of stiff It6 SDEs with a semilinear drift term. In addition, stochastic exponential
RK methods will be derived for weak approximations.

1 Introduction

While it has been customary to treat the numerical solution of stiff ordinary differential
equations (ODEs) by implicit methods, there are some classes of explicit methods that are
well suited to solving some types of stiff problems. One such class is the class of Runge-Kutta
Chebyshev (RKC) methods. They are useful for the stiff problems whose eigenvalues lie near
the negative real axis. An original contribution is by van der Houwen and Sommeijer [17]
who have constructed explicit s-stage Runge-Kutta (RK) methods whose stability functions
are shifted Chebyshev polynomials T,(1 + z/s?). These have stability regions along the
negative real axis of [—2s% 0]. Note that the methods need to increase the stage number
s for stabilization. Another suitable class of methods is the class of explicit exponential
RK methods for semilinear problems [6, 7]. Note that explicit exponential RK methods are
A-stable.

Similarly, for stochastic differential equations (SDEs) stabilized explicit RK methods have
been developed. An original contribution concerning RKC methods is by Abdulle and his
colleagues [1, 2] who have developed a family of explicit stochastic orthogonal Runge-Kutta
Chebyshev (SROCK) methods with extended mean square (MS) stability regions. Their
methods reduce to the first order RKC methods when applied to ODEs. Note that these
methods also need to increase the stage number for stabilization. Shi, Xiao and Zhang [16]
have considered an exponential Euler scheme for the strong approximation to the solution of
SDEs with multiplicative noise driven by a scalar Wiener process. Exponential integrators
have been also considered for stochastic partial differential equations with a semilinear drift
term and additive noise [8] or multiplicative noise [3]. ‘

The present paper will be composed of two parts. In the first part, we will introduce an
explicit exponential Euler scheme proposed by Komori and Burrage [11] for strong approxi-
mations to the solution of multi-dimensional, non-commutative I1t6 SDEs with a semilinear
drift term. In the second part, we will devote ourselves to deriving stochastic exponential



Runge-Kutta (SERK) methods for weak approximations to the solution of the same type of
It6 SDEs.

2 Explicit exponential RK methods for ODEs

We consider autonomous semilinear ODEs given by

Y1) =Ay() + fly(), >0,  y(0) =y, (2. 1)

where y is an R%valued function on [0,00), 4 is a d x d matrix and f is an R%-valued
nonlinear function on R? or a constant vector. By the variation-of-constants formula, we
have
tni1
pltnn) ety [ e fy(s)ds (2.2)
tn
if y(tn) = y,. Here, y,, denotes a discrete approximation to the solution y(t,) of (2. 1) for an
equidistant grid point ¢, ©nh (n=1,2,..., M) with step size h (M is a natural number).
By interpolating f(y(s)) at f(y,) only, we obtain the simplest exponential scheme for (2.
1) [7]:
Ynt1 = eAhy‘iz + P1 (Ah’)f(yn)h7 (2 3)
def

where ¢, (Z) = Z71(eZ — I) and I stands for the d x d identity matrix. This is called the
explicit exponential Euler scheme.

In addition, higher order exponential RK methods have been proposed in [6, 7]. The
following is a second order exponential RK method [7]:

Yl = e”hAyn + 02h§01(62hA)f(yn)7

2.4
Yoir = My, + B {mhA) - éw(hA)} F(w) + heahA)F V), 24

where ¢, is a parameter and (Z) 2 Z2(eZ — I — Z). The following is a third order
exponential RK method [6]:

Yl = eczhAyn + Czhgpl(CQh’A)f(yn%
Y2 = ec3hAyn +h {03801 (C3hA) - agg(hA)} f(yn) + hagz(hA)f(Yl),

Yoo =y, +h {sol(hA) - 7;1103 wz(hA)} fy,) 2 5)
+ h702 i C3<P2(hA) {vf(Y1) + f(Y2)},

where ¢, c3 and v are parameters satisfying
2(yer + ¢3) = 3 (ve3 + ¢3)

and az»(2) def %SﬁQ(CzZ )+ é@g (csZ) (It should be noted that there is a typographical error
in (5.9) of [6]).
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3 Strong order stochastic exponential Euler scheme

Similarly to the case of ODEs, we are concerned with autonomous SDEs with the semilinear
drift term given by

dy(t) = (Ay() + FO)A + 3 g, )W, (),  t>0,  yO) =y, (3 1)

j=1

where g, j = 1,2,...,m are R%valued functions on R?, the W,(t), j = 1,2,...,m are
independent Wiener processes and y, is independent of W, (t) — W,(0) for ¢ > 0. If a global
Lipschitz condition is satisfied, the stochastic differential equation (SDE) has exactly one
continuous global solution on the entire interval [0, c0) [4, p. 113].

Similarly to (2. 2), we have

tnt1
Y(lnir) = ey, + / eAltn1=9) £ (5y(s))ds

tn

m tnt1
+30 [ g,y o) (3. 2)
=t
if y(t,) =y, (see also [3, 16]). By utilizing this, we can have
Ynir = My £ Fy )b Y g, (4, AW, (3. 3)
g=1

as an approximation to y(tn41), where AW, oo W;(tni1) — Wy(t,). Form =1 (3. 3) is

the same as an exponential Euler scheme proposed by Shi et al. [16] for SDEs with a scalar
Wiener process. When (3. 3) is applied to ODEs, it is equivalent to the Lawson-Euler
scheme [12, 16]. In addition, it has a similar type of approximations in both of the drift and
diffusion terms. Thus, let us call it the stochastic Lawson-Euler scheme.

By utilizing (3. 2), we can also derive other schemes. One of them is

Yoi1 = ey, + @1(AR) Fy, )b+ e D g, (y,)AW,.

J=1

Adamu [3] has proposed this scheme and has called it the SETDO0 scheme (SETD stands for
“stochastic exponential time differencing”). In addition, we can obtain the following scheme
[11]:

m
Y = €Y, + 01 (AR) F(y)h + 01(AR) Y g;(y,) AW, (3. 4)
=1
When (3. 4) is applied to ODEs, it is equivalent to the exponential Euler scheme. In
addition, it has a similar type of approximations in both of the drift and diffusion terms.
Thus, let us call it the stochastic exponential Euler scheme.
In general, when discrete approximations y,, are given by a numerical scheme, we say
that the scheme is of strong order p if there exists a constant C such that

(Elllyn — 9D < Cr?
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with T = Mh and h sufficiently small [9, 15], where || - || stands for the Euclidean norm. If
we assume f,g, € C? for j = 1,2,...,m, then, the exponential schemes mentioned above
are of strong order a half for solving (3. 1) [3, 11, 16]. In [3], another approximation was
considered and it finally led to the square root of a matrix exponential function.

In some problems approximate solutions need to be non-negative and they are often re-
quired to satisfy other boundary conditions. The projection method [5] is very useful to deal
with such problems. However, we cannot use the SROCK methods together with the pro-
jection method because the methods need several intermediate stage values for stabilization.
On the other hand, the pair of the stochastic exponential Euler scheme and the projection
method performs very well for stiff biochemical problems [11].

4 Weak order SERK methods

We derive SERK methods of weak order one or two by utilizing some results in SRK methods.
For this, we give a brief introduction to SRK methods in the first subsection. After it, we
will derive and show SERK methods in the second and third subsections.

4.1 SRK methods

In order to deal with weak approximations for (3. 1), let g,(y) be Ay‘ + f(y) and let us
consider the following SRK method with the stage number s and r < s [10], which is based
on the SRK framework proposed by Rofiler [14]:

S ACA S » R CD

=7 =1
+Zzﬂ(2> 709g. ( m) ] 1)
=T 1
n zsjjzm:ﬂi(B)AW]g] ( (J)) +Zzﬁ(4)\/_ ( ¢ (J))
i=r 7=1 i=r =1
where
HY =y, + if“f?hgo (H?) (<i<n,
kzl
HY =y, + ZA“’) g0 (HY) + S iB,k AWig (HY) (r<i<s)
k 1
HY =y, + ZA(”hgo (H) + S B{Vhg, (HY) (r<i<s),
A =y, + E AP g, (H) + > > B0, (HY) <i<s)

k=1 k=r |=1
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Table 1: Butcher tableau for (4. 1) with r =s—2

A ]

Agcl)l,l Asj—)l 52 Bgi)l,s-z

AR AD,  AD Bi), B,

A, Ao

Agl-)l 1 Agl—)l s—2 A.(sl—)l,s—l B£1—)1 5—2

A AQ,  AQL,  AQ | B, B,

A Ayey A2y AL [ B, B B,

A, Ay AL A2 B2, BE ., B2,

AQ A, AL, AR | B, BY, BY

Q) Q52 Xs—1 Qs 55(1—)2 /3(1-)1 s(l) /Béz-)z ﬁ§2—)1 :85(2)
8% sk 87 A A0 A7

for j = 1,2,...,m and where the oy, 8™, AE,:"), and BZ.(,Z") 1<r,<4and 0 <1y <2)

?

denote the parameters of the method. The random variables involved in the method are
given by 709) = ((AW,)? - h)/(2VR),

() def { (AW, AW, — VRAW,)/(2V/R) (G <),
TUT (AW, AW £ VEAW)VE) (> 1),

the AW, (1 <1 < m — 1) are independent two-point distributed random variables with
P(AW, = £v/h) = 1/2 and the AVV] (1 <j < m) are independent three-point distributed
random variables with P(AW; = £+/3h) = 1/6 and P(AW; = 0) = 2/3 [9, p. 225]. If we
assume r = s — 2, for example, (4. 1) is characterized by the Butcher tableau in Table 1.

Let CE(R% R) be the family of L times continuously differentiable real-valued functions
on R?, whose partial derivatives of order less than or equal to L have polynomial growth.
Whenever we deal with weak convergence of order ¢, we will assume the following on SDEs
[9, p. 474] (also see [4, p. 113]):

Assumption 4.1 All moments of the initial value y, exist and g; (j = 0,1,...,m) are

Lipschitz continuous with all their components belonging to CIQD(‘IH)(Rd,R).
Then, we can give the definition of weak convergence of order ¢ [9, p. 327]:

Definition 4.1 When discrete approximations y,, are given by a numerical scheme, we say
that the scheme is of weak (global) order q if for all G € CET™(RE R), constants C > 0
(independent of h) and & > 0 exist, such that

[E[G(y(ta)] = E[G(ya)]l < CRY, - h e (0,6).
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If we want to derive a scheme of weak order one from (4. 1), for example, we need to
find a set of parameter values satisfying the following nine order conditions [14]:

S s s 2
=1 i=r

i=r

5. iﬁi@):o, 6. Zﬁ“) (ZB ) 0, 7. iﬁ}‘” (iAfi)):O,

=T i=r+1 k=r 1=r k=1

8. iﬂf') (Z B}ﬁ)) =0, z 8 (Z Bf,?)2 =0.
=T k=r

k=r

We will refer to these in the next subsection.

In the case of weak order two we have 59 order conditions including the above nine order
conditions, and we need three stages at least to satisfy them [14]. Let us suppose s = 3. In
order to solve the order conditions in a simple way, we can assume

—1+42 (BZEP)2

() _ (0 _ g0 _ 1 @ _
1 1) 2 ﬂ3 ) 2 1 07
2, (321 ) dey (le )
1 1 1
0 _ _g® _ @) _ _ ®) _ 50 _ @ _
& 2B’ A 2103 7 S debd A ’ (4. 2)
4 4 1 0 1 1 1
B0 = a0 = B9 =0, B =-BY, B =0

2 2 2 2 2 2 2 2 2

Bil) = B§2) = Bi:f =0, 353) B§2>7 Bs = _B§1)7 Brgz) = B§3) = _352)7
1 1 1 1 2 2 2

AR =AY, AR = AR = Al =0, AP =0 =Af, (1<k<3)

def

when le) B(Q) and B(2 are given [10]. Here, & < 11 and by, & Bg) + QB2 Then, only

the following three order conditions remain to be solved [10]:

10. Za,(BfOl)) =2, ZazBf?_,—, 12. Zﬁ(”A(”_

4.2 SERK methods

As preparations, we start with a simple case. Let us assume s = r = 1 in (4. 1) and consider

Y =y, + hgo () + Zm: AW,g, (HY), -
=1

which means
A =m=p"=1 p"=p"=p5"=0



Because Conditions 1 to 9 are satisfied, (4. 3) is of weak order one. Here, note that AW;
is available for weak order one instead of AIW;. On the other hand, since the Euler scheme
and (2. 3) are of order one for (2. 1),

oy + 1(AR) £y, )b = (, + hgo (H) )| = 0(22)

as h — 0. For this, the replacement of y,, + hg, (HEO)) with ety + ¢1(Ah) f(y,)h in (4.
3) does not violate the weak order of convergence. Thus, we can obtain the following SERK
scheme of weak order one:

HY = ey, + oA f(y,)h (1<5<m),

mo (4. 4)
Yir = €y, + 01 (AR) Fy,)h + > AWg, (H EJ)).
=1
It is remarkable that (4. 4) reduces to (4. 3) if A goes to the zero matrix, whereas they
have the same weak order. Taking this into account, now let us consider a way of finding
SERK methods who achieve weak order ¢ (= 1,2) when (4. 1) is of the same weak order gq.
The following lemma will be helpful for us to do this.

Lemma 4.1 Assume that y,,,, is given by (4. 1) and another approzimation Y, ., is given
by

Qnﬂzgnﬂ_'_zs:zm:ﬂl(l)Aﬁ/ng( ) ZZ’B 2~ (u)g ( (]))

T = (4. 5)
+ 38V AWLg, (BY) + 305 89 Vhe, (HY),
i=r j=1 =r j=1

where i{ﬁ”,f{ﬁ’) (i =12...,sand j = 1,2,...,m) and §,,, satisfy the deterministic

conditions
()

|a? - 8D =ow), | - #H| = 0(n7),

Yni1 — {yn + Zaihgo (Hfo))}H — O(hq“/z),

i=1

(4. 6)

the expectation condition

Tnir — {yn + Z aihg, ( Hgm) H ” = O(h**h) @7

i=1

E

and the covariance conditions
o o, s - ) -0
o (- ) -0

as h — 0 for a given ¢ = 1 or 2 under the condition that y,, is gwen. Then, for all
G e CXT (R R)

(4. 8)

|E[G(#,11) = G(yna)]l = O(R**)
as h — 0 under the condition that y,, is given.

134



135

Proof. From (4. 1), (4. 5), (4. 6) and (4. 7), we have

B[S g () (12 - )|

“E [@n+1 - yn+1] ” <

i=r j=1
+ ’E [ZZ,B(” 0 =L g’ ( )(ﬁ?’ _Hgﬂ) +O(hTHY).
i=r j=1
Here,
dg, .
©) O _ @
|2 |ovn g (22) (- )|
d .
= ” AW, 22 (y,) (B —H?’)] H +O(h)
T 0y
because of (4. 1) and (4. 6). This and (4. 8) lead to
99, OANNE= @) a+1
H [AW 50 (E?) (827 - HY) ||| = 0n*)
under the condition that y,, is given. Similarly,
dg -
=(2,0) 291 ) ) _ 270 _ g+l
”E [n 5 (a?) (717 - H )] H O(hT™h).
Hence, we have
”E [@n+1 - yn+1] ” = O(h7*1) (4. 9)

under the condition that y,, is given.
On the other hand,

- yn+1“ = O(hqﬂﬂ)
because of (4. 1), (4. 5) and (4. 6). For all G € C29"V(R4, R), thus,

N oG .
G (yn+1) -G (yn+1) = % (yn+1) (yn+l - yn+l) + O(h2q+1)

oG .
= 5y o) (U1 = Ynpa) + O(RTH).

Consequently, because of (4. 9) we obtain

E[G (#n41) = G (Yns1)] = O(r7)

as h — 0 under the condition that y,, is given. a

This lemma and Theorem 1.2 in [13] give us a way of finding SERK methods. That is,
if y,; given by (4. 1) is of weak order ¢ and @, given by an SERK method satisfies the
assumption in the lemma, then ¢, ,, is also of weak order q.



4.3 Examples of SERK methods

When we set s =r =2 in (4. 1), we have

m
o = ety () + g (HO) + S50, (1Y), (0 10
j=1
where
HY =y, HY =y, + g, (),
HY =y, + A hg, (H) + A3 hg, (HL)
for j = 1,2,...,m. When oy + az = él) = 1, this method is of weak order one because

Conditions 1 to 9 are satisfied.
Taking this and (2. 4) into account, let us consider the following SERK method

_ - ; - 0)
Yni1 = Yni1t Zﬂél)AVngj (sz ) . (4. 11)
7=1
where o o o .
Hi = Y Hg )= et "y, + A by (Aé?iwl) f (Hl )) )
= 1 = (0
HY =y, +h { p1(hA) w<p;,(hA)} 7 (&)
Az
1 ~ (0) . Fr(0)
+ hw‘ﬁz(hA)f (Hz ) ) Yni1 = H,
Asy
for j=1,2,...,m. When Agll) = a; and A%) = ay as well as
1 1
o =1—-——, ay = ——, (4. 12
Ty g )
we have

|7y - Y| = o),

2
Gt — {'yn + Y ahgg (Hgm)}H = O(h®).
=1

Moreover, if 85" = 1, (4. 11) is of weak order one because (4. 10) is of weak order one,
whereas it is of order two for (2. 1). :
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Next, let us suppose s = 3 and r = 1 in (4. 1) and consider

o= e () v (127) 573 10, (1)
i 1

=1

Jj=
m m

+ Zﬂéz)ﬁ(m)gj (Hg)) + Zﬁf)ﬁo ) (H(]))
j=1

(4. 13)
i Zzﬂ(a)AW] g, ( (J))
z—l Jj=1
+ Zﬂg Vhg, ( ) ,+Zﬁ(4)\/ﬁg, (ﬁéj)) :
where
=1
9 s A (H<°>)
H(J) =y, + A(l)hgo (H ) (1) h (ng)) )
Ay =y, + Ahg, (HY),
B =y, + A, (HY) + 33" B0, (1)
i;z;
fori=23and j=1,2,...m
Corresponding to this and (2. 4), let us suppose the following SERK method
(1) Fr(2)
yn+1 yn+1 + Z ZIB AW (Hz )
=1 j5=1
+ i/@f)ﬁ(]ﬂ)g] ( F; ) + iﬂg@ﬂ“ ) ( gj))
=1 (4. 14)
PSS, (51)

zl]l

+25§4)\/_9 (S )7+iﬁ(4>\/—g] (%),

=1



where

a2 =y, B =My AW, (A(“hA) f(ay),

Hy = Ay, AQho (AD0A) £ (1)) + Z By Aing, (),
A = Mty 4 AOhey (A00A) £ (H(O)) + B(l)\/_ hg, (7)),
Y = eAiray | ADpag, (A(2)hA) z BY AWg, (H“’)

=
+ APk (AGRA) £ (H),

HY = "3y, 4 AQhAp (AGhA) S B AT (1))

=1
~ A0
(2)77(] l)gl (Hk )

+ A%her (A%nA) £ (1)) + i
(U)

k=1
g
O S FC R S )

NFMS

Yop1 = "y, + A(D)hAsoz hA)ZBJPAWzgz

=1

forr=23and )=1,2, m
From these,

{2 o) s} o
H 2 {H(]) + = (A(l)h) A(Ay, + f(yn))}“ — O™

fors=2,3and y=1,2, m Let us assume (4 12) Then, we have

2
i/n-l»l - {yn + Z a,hg, (HEO))
of RO g _
+ 6A(0) —ah*A (A + %(%)) ;B V AW,g, ( )}H = O(h%)

In addition, because

”HS” - ( A Aé‘i’) ACR2A (Ay, + Fy)| = 05

212

for2 =1,2,3, let us assume 2 , (
2 0
A§2) = A;2 = A:(u) = 21421)

138
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Then, if (4. 13) is of weak order two, (4. 14) is also weak order two.
Finally, let us find a solution for (4. 13) to achieve weak order two. The substitution of

a3 = 0 into Conditions 10 and 11 yields Bé?) = ¢y and oy = %, which means Agi) =1 due
to (4. 12). Taking into account that Bé?), 52(1) and .@(3) (¢ = 1,2, 3) are multiplied by AW;
(1 <j<m)in (4. 13), we can suppose €; = 1 without loss of generality. Because of (4.
2), Condition 12 automatically holds if AR = Al =1 /2 or we have BiY = £/ from
Condition 12 if 7 & (4% — AY)/(1 — 24%) > 0.

5 Concluding remarks

Corresponding to (2. 3), we have derived the stochastic exponential Euler scheme for strong

approximations to the solution of (3. 1). We have also derived SERK methods, which are

of weak order one or two and which reduce to (2. 3) or (2. 4) if g,, j = 1,2,...,m vanish.
The following are other remarks:

e Similarly, by utilizing Lemma 4.1 we can construct an SERK method, which is of weak
order two and which reduce to (2. 5) if g;, j = 1,2,...,m vanish.

e Using a scalar test SDE with complex coefficients, we can show that our weak first
order SERK methods are A-stable in MS. If the diffusion coefficients are real values in
the test SDE, our weak second order SERK methods are also A-stable in MS.

e One of our future works is to perform numerical experiments to check the performance
of our methods.

References

[1] A. Abdulle and S. Cirilli. S-ROCK: Chebyshev methods for stiff stochastic differential
equations. SIAM J. Sci. Comput., 30(2):997-1014, 2008.

[2] A. Abdulle and T. Li. S-ROCK methods for stiff It6 SDEs. Commun. Math. Sci.,
6(4):845-868, 2008.

(3] I. A. Adamu. Numerical approzimation of SDEs and stochastic Swift-Hohenberg equa-
tion. PhD thesis, Heriot-Watt University, 2011.

[4] L. Arnold. Stochastic Differential Equations: Theory and Applications. John Wiley &
Sons, New York, 1974.

[5] Y. Chen and X. Ye. Projection onto a simplex. e-print, 2011. arXiv:1101.6081v2.

[6] M. Hochbruck and A. Ostermann. Explicit exponential Runge-Kutta methods for semi-
linear parabolic problems. SIAM J. Numer. Anal., 43(3):1069-1090, 2005.

[7] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numer., 19:209-286,
2010.



140

[8] A Jentzen and E Kloeden Overcoming the order barrier in the numerical approxima-
tion of stochastic partial differential equations with additive space-time noise In Proc
R Soc Lond Ser A Math Phys Eng Sci 465, pages 649-667, 2009

9] P E Kloeden and E Platen Numerical Solution of Stochastic Differential Equations
Springer, New York, 1999 Corrected Third Printing

[10] Y Komori and E Buckwar Stochastic Runge-Kutta methods with determimstic high
order for ordnary differential equations BIT, 53(3) 617-639, 2013

[11] Y Komor1 and K Burrage Exponential Euler-Maruyama scheme for simulation of
stiff biochemical reaction systems Technical Report CSSE-40, Kyushu Institute of
Technology, 2013 Preprint of a paper submitted for publication

[12] J D Lawson Generalized Runge-Kutta processes for stable systems with large Lipschitz
constants SIAM J Numer Anal, 4(3) 372-380, 1967

[13] A RofBller Rooted tree analysis for order conditions of stochastic Runge-Kutta methods
for the weak approximation of stochastic differential equations Stochastic Anal and
Appl, 24(1) 97-134, 2006

[14] A RoBler Second order Runge-Kutta methods for Ité stochastic differential equations
SIAM J Numer Anal, 47(3) 1713-1738, 2009

[15] A RoBler Runge-Kutta methods for the strong approximation of solutions of stochastic
differential equations SIAM J Numer Anal, 48(3) 922-952, 2010

[16] C Shi, Y Xiao, and C Zhang The convergence and MS stability of exponential Euler
method for semilinear stochastic differential equations Abstr Appl Anal, 2012, 2012
35040701, 19 pages

[17] P J van der Houwen and B P Sommenjer On the mternal stability of explicit m-stage
Runge-Kutta methods for large m-values 7 Angew Math Mech , 60 479-485, 1980

Yoshio Komori

Department of Systems Design and Informatics
Kyushu Institute of Technology

680-4 Kawazu, lizuka, 820-8502

JAPAN

E-mail address komori@ces kyutech ac jp

JUNTERY VA7 LRSI IAIZER T Bk



