BRI ST R S B
#2008% 20164 37-46

The proof structure of a proof assistant
Isabelle/HOL

Hidetsune Kobayashi (Institute of Computational Logic)
Yoko Ono (Yokohama City University)

1 Intoduction

In Isabelle/HOL, when a proposition is given, we can try to prove it by
applying propositions stored within Isabelle/HOL[1]. Almost all proof steps
are backward inference, that is “for the conclusion to hold, we ask, which
conditions should be statisfied”. The number of conditions to be satisfied
is not necessarily one, so continueing several backward inference steps, the
number of conditions may become bigger and bigger. But, in our exprience,
we do not have so many conditions to check, provided the original proposi-
tion is not so complicated. '

Therefore we have fortunate cases in which all steps can be given mechan-
ically. However, if a proposition contains some complicated mathematical
properties, we cannot give a complete proof by this step by step mechanical
method, since it has no grand design.

In this report, taking the Bernstein’s theorem[3] as an example, we see
how our automated reasoning system “HPR” works, and we see how the
complete proof in Isabelle/HOL is given partially by HPR.

2 Proof steps

Since Isabelle/HOL stores proved propositions within Isabelle database, it
is not necessary to use database system outside. But it is still useful to store
the propositions within an ourside database system. We use postgreSQL as
a database, in which propositions, types of propositions and some mathe-
matical knowledge are stored.

To choose appropriate propositions to make a proof of a new proposition:

1. look for propositions within DB having similar conclusion to the con-
clusion of the proposition to prove.

2. among selected propositions, we compare premises to omit not suitable
propositions

3. substitute values of the proposition to prove for variables of the se-
lected propositions

4. ask Isabelle/HOL whether a selected proposition with replaced values
can be applied successfully or not. If not, try another.

5. If no applicable proposition from the DB, we return the comment
“Have no idea” and wait for an input by a user.

We are developing an automated reasoning system H-prover which is
based on Isabelle 2011 and using ProofGeneral as an interface. Since Proof-
General use emacs and its source code is written in emacs lisp, so our au-
tomated reasoning system is written in emacs lisp and postgreSQL [2] is
combined together with ProofGeneral and Isabelle. In our automated rea-
soning system, propositions are expressed in trees obtained by automatic
conversion, therefore above steps are executed in emacs and SQL database
system. In emacs codes are written in emacs lisp and in postgreSQL, codes
are written in lisp like language.

3 Propositions in Data base

To avoid confusion, we call “rules” propositions already proved and stored
within a DB, and we call “proposition” a proposition to prove.

As stated in the previous section, we express propositions in tree. We
have two kinds of trees, one is a binary tree in which the root has left child
and right child, and another is a linear tree in which the root has only one
child. In Isabelle/HOL the variables of a rule is marked with preceding ?
like ?x. Those variables preceded by ? should be replaced by corresponding
values in the proposition(to prove).

Here we show some tipical trees:

binary (= (?f ?x) (?g 7x)) ((?f ?’a RarS ?7’b)
(?g 7’a RarS 7°b) (7x 7’a))
(inS (?7c) (7B)) ((?c ?’a) (7B ?’a RarS bool))
linear (?P ?7b) ((?P ?’a RarS bool) (?b 7’a))

(exS! $x dS = ($x) (?7t)) (($x 7’a) (7t 7’a))

38

Above (= (7f 7x) (7g 7x)) isrepresented as ?f ?x = ?g ?xin Proof-
General with X-symbol, and (inS (?c) (?B)) as ?c € 7B, (exS! $x dS
= ($x) (7t)) as 3x. x = t. In Isabelle, each variable has its type which
is listed on the right hand of a tree.

Rules in elementary set theory are contained in files HOL.thy, Set.thy
and FuncSet.thy which are written by L. Paulson and others. The total
number of axioms, definitions and propositions are 678.

Among the rules, the conclusion of which are binary_trees are 523 and
that of linear trees beginning with g_variables are 64, and that of linear
trees beginning with reserved symbols 43 and others 48. Reserved symbols
appearing at the head of conclusions are following 15:

= (394) inS (50) sueS (40) IrarS (15) eqvS (14)
negS (10) orS (6) andS (4) sbS (4) ninS (3)
intS (1) unS (1) leqgS (1) lrarS (1)

where the number in brackets denotes the number of binary trees with the
root. We see the number of conclusions biginning with ’=’ is 394, therefore
if the conclusion of the proposition with ’=’, we have to select appropreate
rules among these 394 rules. Among these 394, having an atom at the first
letter of the left child is 187. Atoms appearing more than 10 times are —
(26), 7f (10), SetS (14), bgS (12), intS (27), invimsS (13), unS (24). Among
tree having ’=’ at the head of the tree and ’intS’ at the head of the left child,
the atom appearing at the head of the right child are — (2), 7A (3), 7B (2),
SetS (6), insert (3), intS (7), unS (2).

Above numbers imply that if we compare head of conclusion, head of left
child, head of right child of rules with that of proposition, we can narrow
down to select candidate rules to apply.

But we have a cumbersome propositions with =’ at the head of the
conclusion tree and both left and right child begin with g_variables:

conclusion types
(= (7) (71)) (%t 7’a))
(= (7 7x) (7g 7x)) ((?f 7’a RarS 7’b) (?g 7’a RarS 7’b)
(7x 7’a))
(= (71) (7)) ((x 7’a) (?f 7’a RarS 7°b)
(7g 7’a RarS 7'b))
(= (7 ?x) (?f 7y)) ((?x 7’a) (?y 7’a) (?f 7’a RarS 7’b))

(= (7 7a %) (7 7b 2d)) ((7a P’a) (?b P’a) (¢ 7’b) (?d 7’b)
(?f 7’a RarS 7’b RarS ?°c))

39

(= (7 7%) (g 7y)) ((?f 7’a RarS 7’b) (?g 7’a RarS ?’b) (?x 7’a) (?y 7’a))

40

(= (?P) (?Q)) ((?P bool) (?Q bool))

(= (7f) (7)) ((? 7a RarS 7’b))

(= (7t) (?t)) ((?t ?a))

(= (?A) (7B)) ((?A ?7’a RarS bool) (?B ?’a RarS bool))
(= (7) (?9)) (75) (7 7))

(= (?r) (7t)) ((7r 7a) (7s 7a) (7t 7’a))

(= (?b) (7a)) ((b 7’a) (7a 7’a))

(= (7r) (7)) ((7r 7a) (7s 7a) (7t 7’a))

(= (%) (?y)) ((?x ?’a) (?y 7’a))

(= (?A) (?B)) (A 7a) (7B 7a))

(= (™) (%)) ((?x 7°a) (%y 7’a))

(= (%a) (b)) (("a 7°a) (b 7’a))

(= (?c) (7d)) ((7a 7’a) (?b 7’a) (?c 7’a) (?7d ?7’a))
(= (?7A) ("B)) ((x 7’a) (?A ?’a RarS bool)

(?B ?’a RarS bool))
((?f 7’a RarS 7’b) (?A ?’a RarS bool)

(?g 7’a RarS 7’b) (x ?’a))
(21 rows)

Among above trees, following 11 have similar types “(’a)”, (= (?t)
(7t)), (= (7t) (7t)), (= (7t) (7s)), (= (7r) (7t)), (= (7b) (7a)),
(= (7r) (7)), (= (7x) (7y)), (= (7A) (7B)), (= (7x) (?y)), (= (7a)
(?0)), (= (?c) (7d)), so comparing conditions of a rule and the propo-
sition, there are some cases types can show distinction, but even checking
types there are some which cannot be seen to be distinct or not. In the last
case, we have to check the premises of the proposition and the rule.

Here similar types, in the simplest case, is like this: types v and v1 is
similar if both

v similar to ’\(\???’ [a-zA-Z] [a-zA-Z0-9]*\)’
vl similar to ’\(\?7’’ [a-zA-Z] [a-zA-Z0-9]*\)’

are true, where the right-hand side of each line is the regular expression (Cf.
[2]) That is, if both v and v1 are similar to the same regular expression of
types, then v and v1 are similar types. In the regular expression, \?? means
with one preceding ? or no ?, therefore even if v and vl are similar, these
two two are not necessarily the same.

Thus if the conclusion of the proposition is a binary tree then we can
narrow down candidate rules only by comparing conclusions except some
special cases.

If the conclusion of the proposition is expressed by a simple linear tree,
we cannot narrow down candidate only by comparing the conclusions.

select name, premises, conclusion, get_typeO(conclusion, types)
from propositions where not binary_treep(conclusion)

41

and slength(conclusion)=1 and q_variablep(car(conclusion))

order by no;

name premises

mp (Qrars (7P) (7Q)) (7P))
iffD2 (= (7P) (7Q)) (7Q))
rev_if£D2 (?Q) (= (?P) (7®))
iffD1 (= (?Q) (?P)) (?Q))
rev_iffD1 (e (= 7Q) (7P)))
iffE (= (7P) (?Q)) (...))
eqTrueE ((= (?P) (True)))

allE ((falS $x dS 7P $x) ---)
all_dupE ((£falS $x dS 7P $x) ---)
FalseE ((False))

False neq True ((= (False) (True)))
notE ((ntS ?P) (7P))

(54 rows)

Here the premises are represented by lists of trees. For example the first
one ((1rarS (?P) (?Q)) (?P)) consists of two trees (lrarS (?P) (?Q))
and (?P). The rules appearing in the table TABLE, are fundamental propo-
sitions concerning logic, and by checking premises, we can obtain a few

candidate rules.

We present next simple case:

select conclusion, get_typeO(car(conclusion), types),
get_typeO(cadr(conclusion), types) from propositions

where

not binary_treep(conclusion) and
slength(conclusion)=2 and
q_variablep(car(conclusion)) and
q_variablep(cadr(conclusion));

conclusion

Q
(?P)
(?P)
(7P)
(?P)
(7R)
(?P)
(?R)
(7R)
(?P)
(7P)
(7R)

get_typeO

(bool)
(bool)
(bool)
(bool)
(bool)
(bool)
(bool)
(bool)
(bool)
(bool)
(bool)
(bool)

conclusion get.typel get_typeQ

(7P 7t) (??’a RarS bool) (?7’a)

(?f 7s) (?’a RarS 7’b) (?’a)

(7P ?t) (?’a RarS bool) (?’a)

(7P 7a) (7’a RarS bool) (7°a)

(?P ?b) (?’a RarS bool) (?’a)

(?P 7x) (?’a RarS bool) (?’a)

(7P 7a) (?’a RarS bool) (77a)

(7P 7x) (?’a RarS bool) (?’a)

(7P ?x) (bool RarS bool) (bool)
(9 rows)

The rule, with the conclusion represented as the first tree (?P ?7t) with
types (7P ?’a RarS bool) and (?t 7’a) respectively, can be applied to
the conclusion (andS (P x) (Q x)) with type ((P ’a RarS bool) (Q ’a
RarS bool) (x (’a))). The last tree can be rewritten as ((lmbS $x dS
and (P $x) (Q $x)) x). In such case, we check whether the conclusion
of the proposition (in this case (andS (P x) (Q x)), has a variable with
type similar to that of ?P or not. After comparing (?P ?t) and (andS (P
x) (@ x)), we substitute (1lmbS $x dS and (P $x) (Q $x)) for ?P and
substitute x for 7t.

Note that to compare expressions of propositions, we have to calculate
types of expressions. For example, let f be a function of type (’a RarS ’b), g
be a function of type ('b RarS ’c) and x be of type (’a), then (go f) x and g
(f x) should be the same element. After type calculation, we see that these
two have the same type (’c). This is a necessary condition that these two
are the same.

4 Lemmas, definitions and a primitive recursion
for the Bernstein’s theorem

Now we focus on the Bernstein’s theorem concerning the cardinality of in-
finite sets. It is impossible to complete the proof with propositions within
the data base. (Note that within DB only propositions in HOL.thy, Set.thy
and FuncSet.thy).

We have totally 43 new propositions for the Bernstein’s theorem. It is
expressed by tree as

43

(11rarS (1rBRK (inS (f) (rarS (A) (B)) sclS inj.on f A
sclS inS (g) (rarS (B) (A)) sclS injon g B)) (exS $h dS
andS (inS ($h) (rarS (A) (B))) (bij_to $h A B)))

In the interface ProofGeneral with X-symbols, this is converted as

[fe A—B;injonfA;g€B— A;injongB|=
Jh. h € A — B A bij.toh A B.

This theorem is reduced to a simpler case:

lemma BernsteinTy3:”[A1 C A;f€ A — Al;injonf A |=
Jg g€ A— Al Abijtog A Al”

The key idea is, by using iteration, make a function g of the last lemma.

primrec itr ::"[nat, ’a = ’a] = (’a =’a)" where
itr 0 : “itr O £ = £" |
itrSuc: "itr (Suc n) f = comp f (itr n £f)"

definition A2set::"[’a =>’a, ’a set, ’a set] = ’a set" where
"A2set £ A A1l == {x. x € A1 A(3y €(A - A1). 3n. itrn f

y =)}

definition Bfunc::"[’a = ’a, ’a set, ’a set] = (’a = ’a)"” where
"Bfunc £ A Al == Ax€A. if (x €(A - A1) U (A2set f A Al1l)) then
f x else x"

The key idea of the proof of Bernstein’s theorem is to introduce a set
A2set f A Al and introduce a function Bfunc f A A1 : A — Al which is a
bijective map. And this shows the existence of g in the lemma BernsteinTr

To show that Bfunc f A A1 : A — Al is injective, we use auxiliary
lemmas as follows:

name contents

Bfunc_fun Bfunc is a function from A to Al
Bfunc_inj.1 a preparatory lemma to show Bfunc f A Al is injective
Bfunc_inj Shows Bfunc is injective. A lemma injective_iff is required

To show that Bfunc f A A1 : A — Al is surjective, we require following
lemmas:

44

name contents

Elem fixed required to show Bfunc_surj
Bfunc_surj Shows Bfunc is surjective. We require lemmas
name contents

surj_to_test to test whether surjective
Bfunc_fun to see Bfunc is a function
BernsteinTr2 show Bfunc is surj_to

A2 set_sub show A2 set is a subset of Al

Bfunc_eq to show Bfunc is a function
Elem _fixed required to see Bfunc is a function
Bfunc_id required to see Bfunc is surjective

We show whole steps of a proof to the lemma “Bfunc_surj” (the steps
are NOT automatically generated).

lemma Bfunc_surj:"[A1 C A; f € A — Al; inj.on f A]
=—> surj-to (Bfunc f A A1) A A1"

apply (rule surj_to test)
Now have two subgoals:
1. [A1 C A; f € A — Al; injon f A|=> Bfunc f A A1 € A — Al
2.][A1 C A; £f € A —» Al; injon f A]J=> V beAl. 3JacA. Bfunc f
AAla=b

apply (rule Bfunc_fun, assumptiont+)
This resolves the first subgoal. Now, the subgoal 2 becomes the subgoal 1.

apply (rule balll)
This is a common way to rewrite the subgoal.

apply (case_tac "b € A2set f A A1")
This is one of the key points. How to find out this automatically? We have
two subgoals. case 1 b € A2set f A Al and case 2 b ¢ A2set f A Al.

apply (frule BernsteinTr2[of A1 A f], assumption+)
Puts surj_to f (A - A1 U A2set f A Al) (A2set f A Al) within premises.

apply (simp only:surj_to.def)
Rewrite the new assumption.

apply (druletac t = "f ¢ (A - A1 U A2set f A A1)" and s = "A2set
f A A1" and P = "Axxx. b € xxx" in ssubst, assumption+)

45

drule_tac adds a new assumption, drule_tac removes some redundant premises.
After execution drule_tac, we cannot use removed one. Frule also adds a new
condition into premises, without removing.

apply (druletac b =b and f = f and A = "A -~ A1 U A2set f A Al1"
in mem_in_image)
Now subgoals are:

1. /\b.[Al CA; £f €A — AlL; injon f A; b € Al; b € A2set
f A Al; JacA - A1 U A2set f A Al. b = f a]= JacA. Bfunc f A Al
b
2. Ab.|[A1 C A; f € A — Al; injon f A; b € Al; b & A2set
f A Al]=> HacA. Bfunc f A Al a=bD

a

apply (erule_tac bexE)
This rewrites the subgoal 1 as

Ab a. |[A1 C A; £ € A — Al; injon f A; b€ Al; b in A2set f
AAl; a€ A- AL UA2set £ AAL; b=f a]J= JacA. Bfunc f A Al
a=>b

apply (rule_tac x = a in bexI)
Try “a” as an element satisfying the conclusion.

apply (subst Bfunc_eq, assumption+)
Substitute Bfunc f A A1 a = f a in the conclusion.

apply (rule sym, assumption)
Rewrite f a = basb = f a.

apply (frule_tac a = a in A2set_sub[of A1 A f], assumption+)
Puts a € A into premises. The subgoal 1 is resolved.

apply (frule_tac a = a in Bfunc_id[of A1 A f], assumption+)
Puts Bfunc £ A A1 b = b into premises.

apply simp
Resolves

1. Ab. |A1 CA; £f €A — Al; injon f A; b € Al; b ¢ A2set
fAA |= b¢gA- Al UA2set £ A Al

apply (rule subsetD[of A1 A], assumption+)
b € A1 and A1 C A thenb € A. Now remaining subgoal is

1. Ab. |[A1 C A; £ € A — Al; inj.on f A; b € Al; b ¢ A2set

46

f A Al [= JacA. Bfunc f A Al a = b.

apply (rule_tac x = b in bexI, assumption+)
F-Pry “b”‘ -

apply (rule subsetD[of Al A], assumption+)
done

References

(1] T. Nipkow, L. Paulson and M. Wenzel, Isabelle/HOL: A Proof Assitant
for Higher Order Logic (Springer, 2010)

[2] PostgreSQL 9.1.1 Documentation (http://www.postgresql.org/)
[3] S. Kametani, Set and Topology (Asakura Shoten, 2004)

