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Abstract

This note reports on an extended sharp‐interface model for two‐phase
flows with mass transfer which accounts for the effect of interface con‐

tamination with surface active agents (surfactants). Besides the influence

on mass transfer mediated by the back‐effect of the adsorbed surfactant

onto the hydrodynamics via changes in interfacial tension, this model also

describes the local hindrance of mass transfer due to interface coverage
in a thermodynamically consistent way. Depending on the interfacial free

energy, the latter is closely related to Langmuir�s energy barrier model.

Keywords: Mass transfer hindrance, soluble surfactant, interface chemical po‐

tentials, interfacial entropy production, jump conditions.

In continuum mechanical descriptions of mass transfer across fluid interfaces

one common approach employs the sharp‐interface assumption, i.e. the inter‐

face between the contacting bulk phases is a surface of zero thickness. Assum‐

ing constant density or small Mach number flows, the standard sharp‐interface
model is then based on the incompressible two‐phase Navier‐Stokes equations
for fluid systems without phase change. Inside the fluid phases the governing
equations are

\nabla\cdot \mathrm{v}=0 , (1)

\partial_{t}( $\rho$ \mathrm{v})+\nabla\cdot( $\rho$ \mathrm{v}\otimes \mathrm{v})+\nabla p=\nabla\cdot \mathrm{S}^{\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{c}}+ $\rho$ \mathrm{g} (2)
with the viscous stress tensor

\mathrm{S}^{\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{c}}= $\eta$(\nabla_{\mathrm{V}}+\nabla \mathrm{v}^{\mathrm{T}}) , (3)

where the material parameters depend on the respective phase. The standard

interfacial jump conditions for total mass and momentum are

[\mathrm{v}\mathrm{I}=0, [-\mathrm{s}\mathrm{I}\cdot \mathrm{n}_{ $\Sigma$}= $\sigma \kappa$_{ $\Sigma$}\mathrm{n}_{ $\Sigma$}+\nabla_{ $\Sigma$} $\sigma$ , (4)

where \mathrm{S}=-p\mathrm{I}+\mathrm{S}^{\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{c}} is the stress tensor, $\kappa$_{ $\Sigma$}=-\nabla\cdot \mathrm{n}_{ $\Sigma$} is twice the mean

curvature of the interface and \nabla_{ $\Sigma$} denotes the surface gradient. Here \mathrm{n}_{ $\Sigma$} is the

unit normal at the interface directed into one of the bulk phases and

[ $\phi$ \displaystyle \mathrm{J}(\mathrm{x})=\lim_{h\rightarrow 0+}( $\phi$(\mathrm{x}+h\mathrm{n}_{ $\Sigma$})- $\phi$(\mathrm{x}-h\mathrm{n}_{ $\Sigma$})) (5)
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denotes the jump of a field  $\phi$ across the interface.

The local molar concentration  c_{ $\iota$} of a chemical species A_{ $\iota$} is governed by the

balance equation

\partial_{t}c_{ $\iota$}+\nabla\cdot(c_{ $\iota$}\mathrm{v}+\mathrm{J}_{ $\iota$})=r_{i} , (6)

where the molecular fluxes \mathrm{J}_{i} are typically modeled according to Fick�s law as

\mathrm{J}_{\mathrm{t}}=-D_{i}\nabla c_{ $\iota$} (7)

with constant diffusivity. The source term on the right‐hand side in (6) accounts

for chemical reactions. At the interface, the diffusive fluxes in normal direction

are usually supposed to be continuous, i.e.

[\mathrm{J}_{ $\iota$}\mathrm{I}\cdot \mathrm{n}_{ $\Sigma$}=0 . (8)

Another jump condition is needed to determine the concentration profiles of A_{ $\iota$},
which is not a balance but a constitutive relation. The standard relation is to

assume continuity of the chemical potentials at the interface, i.e.

[$\mu$_{ $\iota$}\mathrm{I}=0 . (9)

Employing specific assumptions on the $\mu$_{ $\iota$} , for instance dilute transfer component
A_{i} ,

this leads to Henry�s law, i.e.

c_{k}^{-}=c_{k}^{+}/H_{k} ; (10)

here the Henry coefficient H_{k} is usually assumed to be constant. Throughout
this paper, the superscripts \pm are used to distinguish between the two bulk

phases. Equations (1)-(4) and (6)-(10) comprise what we call the �standard

model This standard model, sometimes with further simplifications like con‐

stant surface tension, homogeneous gas phase concentrations or even constant

liquid‐sided concentration at the interface, is the basis of almost all detailed

numerical simulations of mass transfer across fluid interfaces up to now; see [4]
and the extensive list of references given there.

If a constituent A_{i} of the fluid mixture is surface active, it adsorbs on the

interface and, typically, lowers the surface tension. For such a surfactant, \mathrm{a}

non zero area‐specific concentration has to be accounted for. Hence the mass

balance for A_{i} on the interface becomes more involved and reads

\partial^{\sum_{t}}c_{i}^{ $\Sigma$}+\nabla_{ $\Sigma$}\cdot(c^{\sum_{l}}\mathrm{v}^{ $\Sigma$}+\mathrm{J}_{ $\iota$}^{ $\Sigma$})+[c_{i}(\mathrm{v}-\mathrm{v}^{ $\Sigma$})+\mathrm{J}_{i}\mathrm{I}\cdot \mathrm{n}_{ $\Sigma$}=\mathrm{r}_{l}^{ $\Sigma$} , (11)

where \mathrm{v}^{ $\Sigma$} denotes the interface barycentric velocity, \mathrm{J}_{l}^{ $\Sigma$} the interfacial diffusive

flux and r_{l}^{ $\Sigma$} is the total molar rate of change of A_{ $\iota$} due to interface chemical re‐

actions between the species. Furthermore, \partial_{t}^{ $\Sigma$} denotes the time derivative taken

along a path which follows the interface�s normal motion; this is sometimes
called Thomas derivative. Note that even for vanishing interface concentrations

and without interface chemistry, equation (11) does not reduce to (8), but the

resulting jump condition contains a term related to the relative motion of the

interface to the bulk matter. This is crucial, for example, to model the conden‐

sation of a vapor bubble or the dissolution of a pure gas bubble.

While the interface contributions in the partial mass balances are of crucial

importance, their inertia can often be neglected. Assuming, in addition, that no
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intrinsic interface viscosities appear, the interfacial momentum balance becomes

a momentum transmission condition which reads as

[\dot{m}\mathrm{v}\mathrm{J}=[\mathrm{S}\mathrm{I}\cdot \mathrm{n}_{ $\Sigma$}+ $\sigma \kappa$_{ $\Sigma$}\mathrm{n}_{ $\Sigma$}+\nabla_{ $\Sigma$} $\sigma$ (12)

and generalizes (4). If surfactant is present, the surface tension depends (strongly)
on the interfacial concentrations. This is described by a surface equation of state,
i.e.  $\sigma$= $\sigma$(c_{1}^{ $\Sigma$}, \ldots, c_{N}^{ $\Sigma$}) in the isothermal case‐in general,  $\sigma$ also depends on tem‐

perature. Then the last term in (12), which represents the so‐called Marangoni
stress, becomes

\displaystyle \nabla_{ $\Sigma$} $\sigma$=\sum_{i=1}^{N}\frac{\partial $\sigma$}{\partial c_{ $\iota$}^{ $\Sigma$}}\nabla_{ $\Sigma$}c_{ $\iota$}^{ $\Sigma$} . (13)

Now note that for stagnant fluids, (12) reduces to

[p\mathrm{J}\mathrm{n}_{ $\Sigma$}= $\sigma \kappa$_{ $\Sigma$}\mathrm{n}_{ $\Sigma$}+\nabla_{ $\Sigma$} $\sigma$ . (14)

The normal component of (14) implies the Young‐Laplace law, i.e.

 p^{+}-p^{-}=\displaystyle \frac{2 $\sigma$}{R} (15)

in case of spherical bubbles or droplets of radius R , while the tangential part im‐

plies constant surface tension (individually on connected interface components),
since there is no term to balance the tangentially acting Marangoni stress. The

important consequence of this is that a non‐zero Marangoni stress induces a

flow at the interface, the so‐called Marangoni convection, which usually has a

significant impact on mass transfer processes.

Up to here, mass transfer hindrance due to surface coverage is not yet in‐

cluded in the model. For this to be done, the crucial step is to include for every

transfer component, i.e. any A_{ $\iota$} with non‐zero concentrations on both sides of

the interface, a possibly non‐zero interfacial concentration. For better under‐

standing of this point note that in the sharp‐interface model, the interface in fact

represents a thin layer in which the partial mass densities change from one to the

other (local) bulk value along a distance  $\delta$ in the order of a few Angström. Since

every transfer component  A_{i} of the mixture, in principle every constituent, is

also present in this layer, it has a non‐zero interface concentration c_{ $\iota$}^{ $\Sigma$} , hence its

modeling requires the extended mass balance as used for soluble surfactant. For

every constituent we therefore include the corresponding partial mass balance

\partial_{t}^{ $\Sigma$}$\rho$_{l}^{ $\Sigma$}+\nabla_{ $\Sigma$}\cdot($\rho$_{ $\iota$}^{ $\Sigma$}\mathrm{v}^{ $\Sigma$}+\mathrm{j}_{ $\iota$}^{ $\Sigma$})+[$\rho$_{ $\iota$}(\mathrm{v}-\mathrm{v}^{ $\Sigma$})+\mathrm{j}_{ $\iota$}\mathrm{I}\cdot \mathrm{n}_{ $\Sigma$}=M_{i}r_{ $\iota$}^{ $\Sigma$} , (16)

where $\rho$_{l}^{ $\Sigma$}=M_{i}c_{i}^{ $\Sigma$} and \mathrm{j}_{ $\iota$}^{ $\Sigma$}=M_{l}\mathrm{J}_{ $\iota$}^{ $\Sigma$} with M_{i} denoting the molar mass. It is now

helpful to write out the jump‐bracket, i.e.

[$\rho$_{ $\iota$}(\mathrm{v}-\mathrm{v}^{ $\Sigma$})+\mathrm{j}_{i}\mathrm{J}\cdot \mathrm{n}_{ $\Sigma$}=-($\rho$_{ $\iota$}^{+}(\mathrm{v}^{+}-\mathrm{v}^{ $\Sigma$})+\mathrm{j}_{i}^{+})\cdot \mathrm{n}^{+}-($\rho$_{l}^{-}(\mathrm{v}^{-}-\mathrm{v}^{ $\Sigma$})+\mathrm{j}_{ $\iota$}^{-})\cdot \mathrm{n}^{-} (17)

with \mathrm{n}^{\pm} denoting the outer unit normals to the respective bulk phases. We

abbreviate the terms on the right‐hand side by letting

\dot{m}_{i}^{\pm, $\Sigma$}=($\rho$_{ $\iota$}^{\pm}(\mathrm{v}^{\pm}-\mathrm{v}^{ $\Sigma$})+\mathrm{j}_{ $\iota$}^{\pm})\cdot \mathrm{n}^{\pm} , (18)
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and further split the one‐sided mass transfer terms into an adsorption and a

desorption term according to

\dot{m}_{l}^{+, $\Sigma$}=s_{ $\iota$}^{ad,+}-s_{l}^{de,+}, \dot{m}_{ $\iota$}^{-, $\Sigma$}=s_{ $\iota$}^{ad,-}-s_{ $\iota$}^{de,-} (19)

The crucial point is that now, i.e. in case that the interface can carry also a

transfer component A_{ $\iota$} , the transfer of A_{ $\iota$} from bulk phase + to bulk phase −,

say, is modeled as the sequence of a sorption process from phase + onto the

interface followed by another sorption process from  $\Sigma$ to bulk phase −. The

one‐sided sorption rates need to be modeled using constitutive, i.e. material‐

dependent, relations. We skip the details and refer to [2] and the references

given there, while for fundamentals on continuum mechanical modeling of two‐

phase fluid systems in general we refer in particular to [7, 6, 1, 9]. Let us

only report that, if kinetic and viscous terms in the entropy production due to

mass transfer are ignored, and if a nonlinear closure as for chemical reactions is

applied, the resulting closure relations read as

In \displaystyle \frac{s_{ $\iota$}^{ad,\pm}}{s_{i}^{de,\pm}}=\frac{a_{l}^{\pm}}{RT}($\mu$_{$\iota$'}^{\pm}-$\mu$_{i}^{ $\Sigma$}) with a_{ $\iota$}^{\pm}\geq 0 . (20)

Now one of the rates, either the ad‐ or the desorption rate, has to be modeled

based on a micro‐theory or experimental knowledge, while the other rate then

follows from (20). Skipping again the detailed derivation which can be found in

[2], we only report the resulting relation if desorption is modeled as s_{l}^{de}=k_{ $\iota$}^{de}x_{ $\iota$}^{ $\Sigma$}
with x_{l}^{ $\Sigma$}=c_{ $\iota$}^{ $\Sigma$}/c^{ $\Sigma$} denoting the interfacial molar fraction and under the assump‐

tion of ideal mixtures both in the bulk phase and on the interface. Employing
a_{i}^{\pm}=1 in (20) and assuming

[\dot{m}_{i}\mathrm{I}=0 \Leftrightarrow \dot{m}_{ $\iota$}^{+, $\Sigma$}+\dot{m}_{l}^{-, $\Sigma$}=0 (21)

which corresponds to negligible accumulation of the transfer component on the

interface (while still accounting for the interfacial concentration in the ther‐

modynamics), one obtains the closure relation for the mass transfer rate of A_{i}
as

\dot{m}_{ $\iota$}^{+, $\Sigma$}(=-\dot{m}_{l}^{-, $\Sigma$})=k_{ $\iota$}\exp (- \displaystyle \frac{g_{l}^{ $\Sigma$}}{RT})(\exp(\frac{g_{ $\iota$}^{+}}{RT})x_{l}^{+}-\exp (\displaystyle \frac{g_{ $\iota$}^{-}}{RT})x_{ $\iota$}^{-}) (22)

with a transfer rate constant k_{i} which depends on the sorption rate constants.

In (22), the quantity g_{ $\iota$} is the Gibbs free energy of the pure substance A_{ $\iota$} but

under the temperature and pressure as locally present in the respective bulk

phase or on the interface. For comparison, let us report that the analogous
modeling but without interface concentrations yields

\dot{m}_{ $\iota$}^{+, $\Sigma$}(=-\dot{m}_{ $\iota$}^{-, $\Sigma$})=k_{ $\iota$}\exp (- \displaystyle \frac{g_{l}^{-}}{RT})(\exp(\frac{g_{i}^{+}}{RT})x_{ $\iota$}^{+}-\exp (\displaystyle \frac{g_{l}^{-}}{RT})x_{ $\iota$}^{-}) . (23)

The most important difference is that in (22) the mass transfer rate is influenced

by the surface tension via the surface Gibbs free energy, which accounts for the

effect of surfactants on the mass transfer of the considered transfer component.
Concrete forms of the mass transfer relation (22) of course depend on the

employed model for the free energies. For example, assume the surface equation
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of state to be given as

p^{ $\Sigma$}=RT\displaystyle \sum_{i=1}^{N-1}c_{ $\iota$}^{ $\Sigma$}+K^{ $\Sigma$}(\frac{c_{N}^{ $\Sigma$}}{c_{\mathrm{r}\mathrm{e}\mathrm{f}}^{ $\Sigma$}}-1) . (24)

The idea behind (24) is that the interface with its surface tension in the clean

state is built by component A_{N} (the solvent, say) as the phase boundary between

a liquid and a vapor phase. The phase boundary is modeled as a compressible
interface phase with compressibility K^{ $\Sigma$} . Then a consistent interface free energy

is given by

$\rho$^{ $\Sigma$}$\psi$^{ $\Sigma$}=-p^{ $\Sigma$}+(K^{ $\Sigma$}+p^{ $\Sigma$})\displaystyle \ln(1+\frac{p^{ $\Sigma$}}{K^{ $\Sigma$}})+RT\sum_{ $\iota$=1}^{N}c_{i}^{ $\Sigma$}\ln x_{i}^{ $\Sigma$}. (25)

Under these assumptions, (22) yields

\displaystyle \dot{m}_{ $\iota$}^{+, $\Sigma$}=\frac{k_{ $\iota$}}{1+p^{ $\Sigma$}/K^{ $\Sigma$}} (\displaystyle \exp(\frac{g_{i}^{+}}{RT})x_{l}^{+}-\exp (\displaystyle \frac{g_{ $\iota$}^{-}}{RT})x_{ $\iota$}^{-}) . (26)

Taking the clean surface as the reference state, this yields

\dot{m}_{ $\iota$}^{\mathrm{c}}
ontam =\displaystyle \frac{1+p_{\mathrm{c}1\mathrm{e}\mathrm{a}\mathrm{n}}^{ $\Sigma$}/K^{ $\Sigma$}}{1+p_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{m}}^{ $\Sigma$}/K^{ $\Sigma$}}\dot{m}_{ $\iota$}^{\mathrm{c}1\mathrm{e}\mathrm{a}\mathrm{n}}=\frac{K^{ $\Sigma$}-$\sigma$_{\mathrm{c}1\mathrm{e}\mathrm{a}\mathrm{n}}}{K^{ $\Sigma$}-$\sigma$_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{m}}}\dot{m}_{ $\iota$}^{\mathrm{c}1\mathrm{e}\mathrm{a}\mathrm{n}} (27)

for the mass transfer in a system contaminated by surfactant, given as a mul‐

tiple of that in the clean system. The specific relation (27) evidently results

from strong assumptions which are not realistic in particular for high surfactant

concentrations. To account for the (different) area demands of the adsorbed

species, a possible surface equation of state is

p^{ $\Sigma$}=-K^{ $\Sigma$}+\displaystyle \frac{RT}{1- $\theta$}\sum_{ $\iota$=1}^{N}$\alpha$_{\mathrm{t}}c_{ $\iota$}^{ $\Sigma$} with  $\theta$=\displaystyle \sum_{i=1}^{N}c_{ $\iota$}^{ $\Sigma$}/c_{ $\iota$}^{ $\Sigma$,\infty} , (28)

where  $\theta$ is the total coverage of the interface. Then the surface analog of the

construction of a consistent free energy as explained in §15 in [3] yields the

corresponding interface free energy as

 $\rho$^{ $\Sigma$}$\psi$^{ $\Sigma$}=-(1- $\theta$)p^{ $\Sigma$}+RT\displaystyle \sum_{i=1}^{N}$\alpha$_{i}c_{i}^{ $\Sigma$} In (1+\displaystyle \frac{p^{ $\Sigma$}}{K^{ $\Sigma$}})+RT\sum_{ $\iota$=1}^{N}c_{ $\iota$}^{ $\Sigma$}\ln x_{ $\iota$}^{ $\Sigma$} . (29)

The corresponding (molar based) chemical potentials then are

$\mu$_{i}^{ $\Sigma$}=g_{l}^{ $\Sigma$}(T,p^{ $\Sigma$})+RT\ln x_{i}^{ $\Sigma$} for i=1 ,
. . .

,
N-1 (30)

with

g_{ $\iota$}^{ $\Sigma$}(T,p^{ $\Sigma$})=\displaystyle \frac{p^{ $\Sigma$}}{c_{i}^{ $\Sigma$}'\infty}+RT$\alpha$_{ $\iota$}\ln(1+\frac{p^{ $\Sigma$}}{K^{ $\Sigma$}} I for i=1 , . . .

,
N-1 . (31)

Insertion of (31) into (22) implies the relation

\displaystyle \dot{m}_{i}^{+_{)} $\Sigma$}=\frac{k_{l}}{(1+p^{ $\Sigma$}/K^{ $\Sigma$})^{$\alpha$_{l}}}\exp(\frac{-p^{ $\Sigma$}}{c_{ $\iota$}^{ $\Sigma$,\infty}RT})(\exp(\frac{g_{ $\iota$}^{+}}{RT})x_{i}^{+}-\exp (\displaystyle \frac{g_{ $\iota$}^{-}}{RT})x_{l}^{-}) . (32)
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Taking again the clean surface as the reference state, this yields

\displaystyle \dot{m}_{ $\iota$}^{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{m}}=(\frac{K^{ $\Sigma$}-$\sigma$_{\mathrm{c}1\mathrm{e}\mathrm{a}\mathrm{n}}}{K^{ $\Sigma$}-$\sigma$_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{m}}})^{$\alpha$_{ $\tau$}}\exp(-\frac{$\sigma$_{\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{n}}-$\sigma$_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{m}}}{c_{l}^{ $\Sigma$}'\infty RT})\dot{m}_{l}^{\mathrm{c}1\mathrm{e}\mathrm{a}\mathrm{n}} . (33)

The additional mass transfer reduction in (33) as compared to (27) corresponds
to an exponential damping factor of Boltzmann type, i.e. a factor of the form

k\exp(-ap^{ $\Sigma$}/RT) ,
in accordance with the energy barrier model due to Langmuir;

see [8], [5] and the references given there.

Experimental data for the transfer of \mathrm{C}\mathrm{O}_{2} from Taylor bubbles under the in‐

fluence of different surfactants in [10] supports the fact that the surface pressure

of the contaminated system‐ not, in the first place, the surfactant concentration
‐ determines the mass transfer reduction.
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