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1 Introduction

This manuscript contains a summary of [3] and new related references. For details
we refer the reader to [3] and [2]. In [3] we consider the initial value problem
Ou—Au+u-Vu+Vp=f, divu=0 in (0,T) x Q (1.1)
ulag = 0, u(0) = uo

in a bounded domain 2 C R3 with boundary 99 of class C%! and a time interval
[0,7),0 <T < co. We define a new type of a strong solution, the ” L% (L4)-strong
solution” as follows.

Definition 1.1. Let ug € L2(Q2) be an initial value and let f = div F with F =
(Fi3)i =1 € L*(0,T; L*(2)) be an external force. A vector field

w € L0, T; LA(Q)) N L2(0, T; Wy 2(R)) (1.2)

is called a weak solution (in the sense of Leray-Hopf) of the Navier-Stokes system
(1.1) with data o, f, if the relation

—(u, w)g  + (Vu, Vw)g 7 — (uu, Vw)g 7 = (uo, w(0))q — (F, Vw)gr (1.3)
holds for each test function w € Cg°([0,T); C5%(2)), and if the energy inequality

SOl + [ Ivular < Sl [ (7,70 dr (14
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is satisfied for 0 <t < T.

A weak solution u of (1.1) is called an LZ,(L7)- strong solution with exponents
2 < 5<00,3<q< oo and weight T in time, 0 < a < 1 5 where%+§=1—2a
such that additionally the weighted Serrin condition

we L0, T5 1), e /0 (r[[u(r) )" dr < o (1.5)

is satisfied. If in (1.5) a = 0 and 2 + % = 1, then u is called a strong solution
(L*(L%)-strong solution).

The existence of at least one weak solution u of (1.1) is well-known since the
pioneering work of 7, 9]. The existence of a strong solution u of (1.1) could be
shown up to now at least in a sufficiently small interval [0,7),0 < T < oo, and
under additional smoothness conditions on the initial data ug and the external force
f. The first sufficient condition on the initial data for a bounded domain seems
to be due to [8], yielding a solution class of so-called local strong solutions. Since
then many results on sufficient initial value conditions for the existence of local
strong solutions have been developed. Recent results in [4, 5] yield suﬂicient and

necessary conditions, also written in terms of (solenoidal) Besov spaces Bq, Q) =

By, "(Q) where 2 s+ E = 1. In this work, we are interested in a weighted Serrin

condition with respect to time and LZ (L?)-strong solutions. Our result in [3] yields
a sufficient condition on initial data and external force to guarantee the existence of
local L#/(L7)-strong solutions. The motivation for this approach is an extension of

_148
the results in [4, 5] where 2 + % =1 to the case ug ¢ IBq,iJrq (), ie.,
=1-2a

T
“Aug ¢ L°(0,T; L9(Q)), but / (Tle" ™ uollg) " dr < 00, =+
0

@ | N
Q| W

with some o > 0. More precisely, for the case a = 0 (classical Serrin class), the
condition e ™y € L*99(0,T; LI(Q)) with 5+ 5 3 = 1 is equivalent to uy €

B

s(qO
~1+
050, 0)(Q) whereas for a with 0 < a < (welghted Serrin class) the condltlon

2
TAuy € LEP(0,T; L)) Q).

Since s(gq, @) > s(q,0), by embeddlng theorems we know IB%q s(a. 0)(Q) C ]Bq s(q 0 (€2).

Therefore, the spaces to yield strong solutions are larger than the classical Serrin

class discussed in the literature, and the theory of [4 5] is extended to the scale of
3

143
qs(: a)(Q) filling the gap between Bq o(a. 0)(Q) and IBq,i:" Q).
We state our main result in [3] in a more precise way as follows.

)_|_3 =1—2ais equwalent toug € Bq s(q a)(

Besov spaces B

Theorem 1.2. ([3, Theorem 1.2]) Let Q C R3 be a bounded domain with boundary
09 of class C*', and let 0 < T < 00,2 < s <00,3<g<00,0 <<z wz’th§+§ =
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1 — 2a be given. Consider the Navier-Stokes equation with initial value ug € L2(Q)
and an external force f = divF where F' € L*0,T; L*(Q)) N Ly2(0,T; LY2(R)).
Then there exists a constant €. = €,(q, s, a, Q) > 0 with the following property: If

He'TAUOHLi(O’T;Lq) + ||F”L;/a2(Lq/2) < €, (16)

then the Navier-Stokes system (1.1) has a unique L2 (L%)-strong solution with data
ug, f on the interval [0,T).

Theorem 1.3. ([3, Theorem 1.3]) Let Q be as in Theorem 1.2, let 2 < s < 00,
3<g<o0,0<a<i with%—l—% = 1— 2« be given, and let ug € L2(Q2) and an
external force f = div F where F € L(0, 00; L*(R)) N L5/2(0, 00; LY2(SY)).

(1) The condition

/ (7'"‘||e_TAuo||q)3dT < 00 (1.7)
0

is sufficient and necessary for the existence of a unique LE,(L?)-strong solution u €
L:(0,T; L9) of the Navier-Stokes system (1.1), with data uo, f in some interval
0.7),0<T < co.

(2) Let u be a weak solution of the system (1.1) in [0,00) x Q with data uy, f,
and let

/OOO(TQHe"TAu()Hq)S dr = oc. (1.8)

Then the weighted Serrin’s condition u € L2(0,T;L9(2)) does not hold for each
0 < T < oo. Moreover, the system (1.1) does not have a L?(LY)-strong solution with
data ug, [ and weighted Serrin exponents s, q, « in any interval [0,T), 0 < T < o0.

Besides, we also prove a restricted Serrin’s uniqueness theorem in [3]. A weak-
strong uniqueness theorem in the sense of the classical Serrin Uniqueness Theorem
seems to be out of reach for LZ(L7)-strong solutions within the full class of weak
solutions satisfying the energy inequality. The reason is based on the algebraic iden-
tities and sharp use of norms and Hoélder estimates in the proof of Serrin’s Theorem,
cf. [10, Ch. V, Sect. 1.5]. However, we prove uniqueness within the subclass of
well-chosen weak solutions describing weak solutions constructed by concrete ap-
proximation procedures. We refer to Assumptions 1.5, 1.8 and Remarks 1.6, 1.7 for
precise definitions.

Theorem 1.4. ([3, Theorem 1.4]) Let Q C R? be a bounded domain with boundary
of class C*' and let 2 < s < 00,3 < g < 00,0 < < 1 with %4—-‘3 = 1—2a be given.

3
Moreover, suppose that ug € L2(Q2) N ]B;:+E and an external force f = div F' where
F € L2(0, 00; L2(Q)) N L*(0, 00; LY2(Q)) are given. Then the unique L (L9)-strong
solution u € L5(0,T; L(Y)) is unique on a time interval [0,1"), T" > 0, in the class
of all well-chosen weak solutions.
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Assumption 1.5. Let Q C R? be a bounded domain with boundary of class C*!.
(1) Givenug € L2() and an external force f = div F where F € L?(0, 00; L2(Q))
we assume the existence of approzimating sequences (uon) C L2(2) of ug such that

Uon — Uy in L2(R)
and (F,,) C L*(0,00; L?()) of I such that
F,— F in L*(0,00; L*(2)) as n — co.

(2) Let (J,) denote a family of bounded operators in E(Lg(ﬂ),D(A;ﬂ)) such
that for each 1 < q < 0o there exists a constant Cq > 0 such that

1 \
| Jnllzcngy + ||EA;/2Jn||£(Lg) <C, and Jyu—uin LI(Q) asn — oo.

(8) For each n € N let u,, denote the weak solution of the approzimate Navier-
Stokes system

Oty — Aty + (Jpup) - Vu, + Vp, =div F,, divu, =0 n (0,7)xQ (1L.9)
unIBQ = O’ un(o) = Uno

Remark 1.6. A typical example of operators (J,,) in Assumption 1.5 is given by the
family of Yosida operators J, = (I + %A;/ 2)_1. It is well known that this family of
operators is uniformly bounded on L1(S2) as well as on D(Aé/ 2) foreach1l < g < o0.
Moreover, Jyu — u in LL(S) as n — co. By analogy, the operators J, = e A/
have the same properties.

We know from [10, Ch. V, Thm. 2.5.1] (with a minor modification in the case
of J, = e A /n ) that there exists a unique weak solution u, € LHr = L®(L*) N
L2(H}) of (1.9) satisfying the uniform estimate

l|tn |l Loo L2y + unll L2y < C(|Jtonllz + |1 Frllz2z2))
< Cllwollz + 1 Fllze@ey + 1)

for all sufficiently large n € N. Therefore, there exists v € LHy and a subsequence
(Un,) of (un) such that

Up, —vin LX(HY), tp, =vin L®(L%), u,, —vin L*(L?).

From the last convergence we also conclude that uy, (to) — v(to) in L*(Q) for a.a.
to € (0,7). Actually, v € LHr is a weak solution of (1.1).

Remark 1.7. (1) Since we do not know whether weak solutions of (1.1) are unique,
v may depend on the subsequence (un,) chosen above. In this case, we say that

v is a well-chosen weak solution of (1.1). (1.10)
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Note that a well-chosen weak solution v is always related to a concrete approzimation
procedure as in Assumption 1.5 and the choice of an adequate (weakly—*) convergent
subsequence of a sequence of approzimate solutions (uy).

(2) The question whether solutions constructed by the Galerkin method fall into
the scope of a modified Assumption 1.5 and yield uniqueness in the sense of The-
orem 1.4 has not been settled. A similar question concerning the property to be a
sustable weak solution, cf. H. Beirao da Veiga [1, p.821], has been answered in the
affirmative, see J.-L. Guermond [6].

Assumption 1.8. Under the assumptions of Assumption 1.5 additionally let 2 <
§<00,3<qg<00,0<a< % with%+% = 1 — 2a be given. Suppose that even
—14-3
Uo, Uon € Bq,s+q and F, F,, € LZf(O, o0; LY%(2)) such that also
;

Ugy — Ug N B;:+E, F,—F in LZQQ(O,OO;L‘W(Q)) as m — oo.

From now on by a well-chosen weak solution of (1.1) we also assume that the
approximation satisfies Assumption 1.8 as well -as Assumption 1.5.

Remark 1.9. In [2], the assumptions on well-chosen weak solutions had been weaken
to improve or extend the restricted Serrin’s uniqueness theorem of [3].

In the next section, for reader’s convenience, we summary the proof for the main
theorems in [3].

2 Proof of Theorems 1.2 and 1.3

Now we are in the position to state the proof of the main theorem in [3].

Proof of Theorem 1.2. Let u be a weak solution of (1.1) with initial value uy € L2
and external force f = div I where I € L2(L?) N Ly/2(L%/?). Furthermore, let B
denote the solution of the Stokes problem

Ov—Av+Vp=f, divv=0
v|ag = 0, v(0) = uo,
ie.
t
Biuo(t) = e ug + / AV2e=C=DAL=2P diy F(1) dr
0

= By (1) + Erol0).

Assume Fy,, € L3(L9), ie. [ [7*e " ugl|; d7 < oo. Since ug € L2 and F €
L*(L?), we know that Ej,, € C°([0,17; L*) N L*(H"), satisfying the energy equality.



Moreover, by using the estimates (3.1) and (3.2) (see Appendix) with 28 + % = -3

with ¢ > 3, i.e. 5=%<§,
t
1Bralt)l, < e [ |AF2etDAATR PP o
0

t
<c [ (=0 FE)ar
0
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q/2

By applying the weighted Hardy-Littlewood-Sobolev inequality (see Lemma 3.1 in
Appendix) with the exponents sy = s, s = @, 81 = §/2, a1 = 22, A = 5-{—% €(0,1),

—%<2a<1—%and—%<a<1—%,wehave

1B 50050 < el gngiarm

(2.1)

provided 2 + (535 +1+2a—a)=1+1 (which is equivalent to 2 + % =1-—2a). We

then set @& = u — Ej,, which solves the (Navier-)Stokes system

Ot — At +u-Vu+Vp=0, divi=0
ttloo = 0, u(0) = 0.

So we can write at least formally

w(t) = — /Ot e~ ¢MAPdiv(u @ u) () dr

t
_ _/ A=A A2 P div)(u @ u) (1) dT.
0

. With g = % as above we get
t
Ja®)ll < e [ 1AFPe A AP i w)y dr
0

¢
<c [ (=0 ular
0
Then the Hardy-Littlewood-Sobolev inequality as above implies that
() g ey < ellCulig) porz = ellullz zay-

Since u = % + Ef,, we have

~ ~ — 2
”u”Li(OyT;Lq) = c(”u”wa(O:T?L") + ”F”L;{f(O,T;LW) + e TAUOHLg(o,T;La)) :

(2.2)

(2.4)

(2.5)
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Asin [5, p. 99] there exists by Banach’s Fixed Point Theorem an €. = €.(q, s, @, Q) >
0 such that we get the existence of a unique fixed point @ € L£,(0,T’; L?) solving

Ot — At + (4 + Efpp) - V(G + Efpe) +Vp=0, divii =0
oo =0, 4(0) =0

provided (1.6) is satisfied, i.e. ”e_TAuOHLg‘(O,T;L‘I) + ||F|}L;éz(Lq/2) < €. Hence u =
i+ By € LL(0,T; L9).

Now we need to prove that this constructed mild solution w is indeed a weak
solution under the following conditions, cf. the assumptions in Theorem 1.2 and
some facts already proved:

u, @ € L3(LY), ug € L2, e ™uy € L3(LY), F € L*(L?) N LY (L),
To this aim we need the following lemmata which had been proved in [3].

Lemma 2.1. ([3, Lemma 3.1]) The mild solution u constructed in the above proce-
dure satisfies Vu € L2(0,T; L*(Q2)).

Lemma 2.2. ([3, Lemma 3.2]) Under the assumptions of Lemma 2.1 we have that
u € L#(0,T; L*(Q)) for all 2 + q% =2,2< 5 <00, 2< g < 6. Moreover,
la()|l, = 0 and u(t) = wo in L*(2) as t = 0+.

Lemma 2.3. ([3, Lemma 3.3]) Under the assumptions of Lemma 2.1,
UE L2518 (0, T5 LHR)).

By Lemma 2.3 we may use that u € L}, g,)(L*). Hence u € L*(¢,T; L*) for
all 0 < e <T. So, by [10, IV. Thm. 2.3.1, Lemma 2.4.2] and for a.a. € € (0,7), u
is the unique weak solution in L*(e, T; L*) on (¢, T) of the linear Stokes problem

Ou—Au+Vp=divF, divu=0
ulon =0, uli=e = u(e)

with external force divF, FF = F —u® u € L*(¢, T; L?) and initial value u(e) €
LA(Q) C L?(2). Therefore, u satisfies the energy equality on (¢, T), i.e.

1 ¢ 1 t
Slu@E+ [ 19l = J1u@l3 - [ (v ar

for all t € (¢,7) and a.a. € € (0,7). Moreover, u € C°[e,T); L?) and hence
u € C°%(0,7); L?), see [10, IV 2.1-2.3]. Furthermore, since by Lemma 2.2 u €
L>=((0,T); L?), it also satisfies the energy equality on [0,7). Hence u is a weak
solution; this completes the proof of Theorem 1.2. O
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3 Appendix

For the reader’s convenience, we explain some well-known properties of the Stokes
operator. Let 2 be as in Theorem 1.2, let [0,7),0 < T < o0, be a time interval
and let 1 < ¢ < oo. Then P, : L1(Q2) — L%(f2) denotes the Helmholtz projection,
and the Stokes operator A, = —P,A : D(A;) — L1(Q) is defined with domain
D(Ay) = W29(Q) N Wy (Q) N LI(2) and range R(A,) = L4(Q). Since Pyv = Py
for v € LI(Q) N L7(2) and Aju = Ay for v € D(Ag) N D(4,), 1 < v < o0, we
sometimes write A, = A to simplify the notation if there is no misunderstanding.
In particular, if ¢ = 2, we always write P = P, and A = A. Furthermore, let
Ay 1 D(Ag) — Li(©), —1 < a < 1, denote the fractional powers of A,. It holds
D(4,) € D(A2) C Li(Q), R(AY) = L2(Q) if 0 < o < 1. We note that (AJ)™"' =
(4;%) and (A,) = Ay where 1 + 1 =1.
Now we recall the embedding estimate

3 3
||v||q < C”A:Ul|7 , vE€ED(A]), 1<y<q, 2a+ p = ;, 0<a<l, (3.1)
and the estimate
||Age—“‘qv||q <ct™e o, , veLi(Q), 0<a<l, t>0, (3.2)

~ with constants ¢ = ¢(2,¢q) > 0, § = §(Q,¢q) > 0.
Then we recall a weighted version of the Hardy-Littlewood-Sobolev inequality.
For o € R and s > 1 we consider the weighted L*-space

La®) = {usulyy = ([ (relutr)ear) ™ < oo},

Lemma 3.1. Let0 < A< 1,1 < 51 < 89 < 00, —ﬁ<a1<1—i, wl<a¢2<1—é

82
and % + At —ay) =1+ i, ag < ay. Then the integral operator

L) = / (t— ) f(r)dr

is bounded as operator Iy : Lg (R) — L2 (R).
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