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1 Introduction

This note is a survey of our work [10]. Let £ be a 3-dimensional bounded domain with
O € C*. The motion of a viscous incompressible fluid in €2 is governed by the Navier-

Stokes equations:

ou—Au+u-Vu+Vp=0, divu=0 te(0,T), z€4,
(N-S)
ulogn =0,  ul—o = uo,

where u = (u'(x,t),u?(z,t),u3(x,t)) and p = p(z,t) denote the velocity vector and the
pressure, respectively, of the fluid at the point (z,t) € Qx (0,T) and wy is the given initial
velocity vector field. In this note, we consider Beale-Kato-Majda type blow-up criteria of
classical solutions to (N-S).

Beale-Kato-Majda [1] and Kato-Ponce [7] showed that the L*-norm of the vorticity
w = rot u controls the breakdown of smooth solutions to the Euler and Navier-Stokes
equations if § = R™. To be precise, if the smooth solution w in C([0,T); WsP(R")(s >

n/p + 1) breaks down at a finite time ¢ = T, then / lw(T)||Loo(ydr S 00 ast A T.

0
Chemin [4] and Kozono-Ogawa-Taniuchi [8] proved similar blow-up criteria with ||w||o
replaced by |lul|py,  and [|w|[go . In the case where 2 is a bounded domain, for the 3-D



Euler equations, Shirota-Yanagisawa [13] and Ferrari [6] proved the same result as Beale-
Kato-Majda. See also Zajaczkowski [15]. Ogawa-Taniuchi [11] proved a similar blow-up
criterion with ||wl|pe(q) replaced by [|w|lemo(). However, in [11], the blow-up criterion
via ||w]|emo() Was proven only for 3-D Euler equations. In this note, we prove the same
criterion for 3-D Navier-Stokes equations in bounded domains with smooth boundary.
In order to prove the above-mentioned results, the following Brezis-Gallouet-Wainger

type inequalities play important roles:
(BGW)s  |Ifllz= < CQA+ I fllxlog”(e + I flIv)-

Brezis-Gallouet-Wainger [2, 3] proved (BGW)s with 8 = 1 — 1/p, X = W"PP(R"),
Y = Weted(RY)(C C*)(a > 0). Engler [5] proved the same inquality for general
domains © without using the Fourier transform. We note that Ozawa [12] proved that
1 lliny < Coam)g Vo]l (~A)2 157/ /7 holds for all g € [p,00) and that this
estimate directly yields (BGW)s. When (2 is a bounded domain, in [11], (BGW)gs was
proved for 8 =1, X = bmo(Q) and Y = C*(Q) by using the method given in [12]. We
note that in [1, 4, 5, 6, 7, 8, 9, 12, 13, 15] several inequalities of Brezis-Gallouet-Wainger
type were established. Then, we have one question. What is the largest normed space X
that satisfies (BGW)s with Y = C*()? In this note, we also consider this problem.

2 Function spaces

We first introduce Banach spaces of Morrey type and Besov type which are wider than
L.

DEFINITION. (1) Ms(Q) = {f € L'(Q);[|fllmy < oo} is introduced by the norm

su !
zeRr, Tecs |B(z,t)|log” (e + 1)

1yt 2= [ Bl
B(z,t)
where Ey is the 0-extension operator from functions defined on € to functions on R™ and
B(z,t) :={y e RY; |y —z| < t}.
(2) (Modified Vishik’s space). Let ¢) € S(R™) be a spherical symmetric function with
P(€) = 1 in B(0,1) and ¢(¢) = 0 in B(0,2)°. Va(R") = {f € S'(R");||f|lv, < oo} is
introduced by the norm

17 o= sup A2l ere () 1= 22

45



We note that the space Vj is a modified version of spaces introduced by Vishik[14].
We also note that M;(Q2) D bmo(Q2) D L*(2) and Vi(R™) D B, (R") D bmo(R") D
Lo (R™).

Let CF5,(Q2) = g% denote the set of all C*-real vector fields ¢ = (¢t -+, ¢") with
compact support in Q such that div ¢ = 0. Then L7, 1 < r < oo, is the closure of
Cg%, with respect to the L™-norm || - ||,. Concerning Sobolev spaces we use the notations
Wkr(Q) and Wéc P(Q), k € N, 1 < p < oo. Note that very often we will simply write L"
and WP instead of L"(Q2) and W*P(Q), respectively. The symbol (-,-) denotes the L%
inner product and the duality pairing between L? and L | where 1/p + 1/p/ = 1.

Let us recall the Helmholtz decomposition: L"(Q) = LT & G, (1 < r < oo), where
G, ={Vpe L";p € L; ()}, P, denotes the projection operator from L™ onto L' along
G,. The Stokes operator A, on L! is defined by A, = —F.A with domain D(4,) =
W2 NWy " N L. Since Pou = Pyufor allu € L'NLY (1 < r,q < 00) and since A,u = Ayu
for allu € D(A,)ND(A,), for simplicity, we shall abbreviate P.u, Pyu as Pu for u € L"NL4
and A,u, Aqu as Au for u € D(A,) N D(A,), respectively.

In this paper, we denote by C' various constants.

3 Main Theorems
Now our results read as follows:

Theorem 1. Let Q(C R™) be a bounded domain with 9Q € C*°.

(1) For any o € (0,1) and 8 > 0, there exists a constant C(2, a, B) > 0 such that
(33) Uflliwier < O(1+ 1l 108 e+ fllemey) ) for all F € CX(@)NMy(@).

(2) Let 8 > 0 and X be a normed space. Assume that X satisfies the following conditions:

( (i) L[®— X CL'(Q),
(#7) X s a translation invariant space, i.e.,

AN i) Ifllx < lollx # 1F@)] < lg@)] ae. € 9,
(tv)  there exist constants o € (0,1) and C > 0 such that

Then, X is continuously imbedded in Mg(S2).

[l fllpeo) < C<1 + (| fllx log” (e + ”f”c'a(n))) forall f € C*Q)NX
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Remarks. Since Ms(Q2) satisfies (A), Theorem 1 implies that Mg is the largest normed
space that satisfies conditions (A).

When we do not assume (A)(4iz), there is a normed space wider than Mg if @ = R
as below.

Theorem 2. (1) For any « € (0,1) and B > 0, there exists a constant C(a, f) > 0 such
that

(3:2) Ifllzee(rmy < C(l + 1 Fllvs(rey log” (e+ ||f”(;'a(1Rn))) for all f € C*(R™) N Vp.

(2) Let B > 0 and X be a normed space. Assume that X satisfies the following conditions:
() X — S (R,
i 18 a translation invariant space, i.e.
(1) X ! ‘ pace, i.c.,
£ =wllx = Iflix for ally € R™,

B\ (i) llpx Fllx < ol fllx for all p € S
(iv)  there exist-constants a € (0,1) and C > 0 such that

|l < C(1+ 11flx 1087 (e + 1flemgan) ) for all £ € BC=(R™).

Then, X s continuously imbedded in Vg.

Remark. (i) Since V3(R™) satisfies (B), Theorem 2 implies that Vz(R") is the largest
normed space that satisfies conditions (B).
(ii) Since EoMg(Q2) C V5(R™), V5(R™) can be regarded as a space wider than Mg.

Theorem 3. Let Q(C R3) be a bounded domain with O € C®, p > 3 and u be a solution
to (N-S) on (0,T) in the class

Sp(0,T) = C([0,T); L) N C*((0,T); L) N C((0, T); W>P(Q2) N Wy ().

Assume that. T < oo and T is mazximal, i.e., u cannot be continued to the solution of
(N-S) in the class Sp(0,T") for any T' > T. Then,

¢
/ lw(T)llan@dr oo as t /T for any s € (0,T).

Remark. When 2 = R?, under the same assumptions, we have f; llw(T)llva ey dr 7
ocast /T for any s € (0,7).
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4 Proof of main theorems

Proof of Theorem 1(1). For the proof of Theorem 1(2), see our paper[10]. Here, we
prove only Theorem 1(1). To this end, we use an argument given in Ozawa [12]. See also
[5] and [11]. For the sake of simplicity, we assume n = 3. Since 92 € O, JN2 satisfies
the interior cone condition. Namely there are § € (0,1) and 6 € (n/2,7) depending only
on  with the following property: For any point z € , there exists a spherical sector
Clr)={z+E€R}50<[§] <4, —|¢] < r(z)-& < |€|cosf} having a vertex at & such
that C¢(z) C €, where (z) is an appropriate unit vector from . We note that for each
T € Q, CY(x) is congruent to C¢ = {¢€ € R%0 < |¢] <6, —|¢ < & < |€|cosf}. In
particular, for any boundary point = € 992, C¢(z) can be expressed as Cl(z) = {z + ¢ €
R3%0 < |¢] <9, —|¢] <& v(z) < |€|cosb}, where v(z) denotes the unit outward normal
at z. '

Let 0 < t < & and C?(z) := C¢(z) N B(x,t). For any fixed z € Q and y € CY(x) C Q,

If @) < 1 (@) = FOI+ IF W] < M llewle = yl™ + 1F @] < 1Flleat™ + 1 (9)]

Integrating both sides of above inequality with respect to y over C?(z),

F@NCL)] < ] fllmen | CO@)] + / 1F@)ldy

yeCi(x)

(4.1) < ) lemmICH@) + [ |F(w)ldy

yeB(z,t)NQ

1
< 1% flleao |G (@)] + 1B(z, ) 108" (5 + €| fllmzc0
Since |B(z,t)|/|C%(z)|(< o) is only depending on 6, we have

(12) F@) < 1 ey + Clog” (G + ) s

forall 0 <t < 4.
Then we optimize ¢ by letting ¢ = (UHf”c"a(n))l/a if ||f||c‘a(ﬂ) > 07 and letting t = ¢
if |/l gy < 67 to obtain (3.1).
0

Proof of Theorem 2(1). Here, we prove Theorem 2(1). For the proof of Theorem
2(2), see our paper[10]. We first recall the Littlewood-Paley decomposition. Let 3 be the
function given in Definition (2) and let ¢; € S be the functions defined by

B(€) = h(€) — P(2€) and ¢;(€) := $(£/27) for £ € R
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Then, supp ¢; C {2971 < |¢] < 2/*1} and
(43)  1=1(&/2") + Z HE/2) = hn(€) + Z $i(€) for E € RPN =1,2,--- .
j=N+1 j=N+1

Using (4.3), we decompose [ into two parts such as

(4.4) flz) =y * f(z Z ¢ * (=

j=N+1

We have by Definition (2)
(4.5) [on * flloo < N2 fllvs-
Since Bgo,oo =% for 0 < a < 1, we have
o] oo ) )
Dl # flloo <C Y 299y % flloo2™
J=N+1 j=N+1

(e o]
<Clfllgs . D 27 < Clfllea2™N.

j=N+1

(4.6)

Gathering (4.5) and (4.6) with (4.4), we obtain

(4.7) I£llee < CE7* V[ fllee + N7l £Ilvs)-

alog?2
desired estimate (3.2) O

Now we take N = [log(”f I '°‘+e)] + 1, where [-] denotes Gauss symbol. Then we have the

Proof of Theorem 3. For the sake of simplicity, we prove Theorem 3 only in the case p > 3.
Since u € C((0,T); D(A,)), without loss of generality, we may assume that ug € D(A,).

Since P(u - Vu) = P(w X u), u satisfies the following integral equation:

(I.E.) u(t) = ety — /Ot e AP x u)(s)ds

for all 0 < t < T. Since the local existence time T, of LP-strong solutions can be estimated

from below as

T, > Cp, )/ luoll, ™ #~2,

we observe that if we assume

(4.8) S lu(®)]l, < oo,
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then u can be continued to the solution of (N-S) in the class S,(0,7") for some T" > T.

Hence, in order to prove Theorem 3, it suffices to show that if

T

(4.9 [ le®lands < s,
0
then (4.8) holds. From now on we assume (4.9). By (L.E.) we have
¢
[u@®llp < Clluollp + C/O [l(5)lloo () lpds,
which yields

T

(410) sup (), < Cluollexp (C [ (o))
0<s<t 0

for all 0 < t < T. Therefore, in order to show (4.8), it suffices to show

(4.11) /0 () laadir < 00.

Letting o > 0 and substituting f = % into the Brezis-Gallouet-Wainger type
inequality (3.1) with 8 = 1, we obtain

1
() llow <C(€llo(s) 6 +ogle +l(s)ln, )
1
llo(s) s,
for all € > 0, where C is a constant independent of s and e. Let 0 < o <1 —3/p and

h(t) := sup u(m)lp,

(4.12)
SC’(eHu(s) e + log(e +

g(t) = / () oo

for 0 <t < T. Then, from (4.12), for any positive function e(s) on (0, T) we see that

(4.13) gt) <C / [u(s)llcreae(s)ds + C / log(e ))Hw(s)||M1ds
=: [1(t) + Lx(¢).
Since
le4 llcrsa < C(L+ ¢ 73)] £,
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from (L.E.) we obtain

1+a

lu(s)lore <Cliwollpgay +C / (L+ (s — 1) B8 w x u(r) |dr
(4.14) 0

Hence, for 0 <t < T we have

Ii(t) <Clluol|pa)T sup €(s)
0<s<T
(4.15)

14a

+C/0 h(s)e(s) /03(1+(8—T)_ 775 |w(r)|owdrds

We now choose €(s) such that

)
€(s) :== m’

where § > 0 is a sufficiently small constant. Then, by Fubini’s Theorem we have
¢
(4.16) I(t) < CTé||uol|pea,) + CO(T)5/ lw(T) || codT
0

Since (4.10) yields

e + 1) = log(e + L) < 0(0) (logle + ol +9(6).
we have
(@17 1) £ ) [ (o)l (0g(e + unly) + 9(s)) s

Gathering (4.16) and (4.17) with (4.13) we obtain

9(t) < CT¥luolln(a,) + Co(T)dg(t) + C(9) /O ll(s)llaz, (log(e + [[uollp) + g(s))ds.

Therefore, letting § = 1/(2Co(T)), by the Gronwall lemma, we have

910) < ooy, T, ol exp (CT) [ (sl

for all 0 < t < T, which implies the desired estimate (4.11).

<Clluollp(a,) + Ch(s) /05(1 + (s =) 27 () oot
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