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Global well-posedness for free boundary problem of the
Oldroyd-B Model fluid flow

Sri MARYANI *

1 Introduction

Let Q be a bounded domain in N-dimensional Euclidean space R (N > 2) occupied by a compressible:
viscous barotropic non-Newtonian fluid of Oldroyd-B model. We assume that the boundary of €2 consists
of two parts I' and S, where ' NS = ). Let €; and I'; be time evolutions of  and T, while S be fixed.
We assume that the boundary of € consists of I'; and S with I'; NS = 0. Let p : @ x [0,7) — R,
v:Qx[0,T) = RY and 7 : [0,00) x & — RY*N be the density field, the velocity field, and the elastic
part of the stress tensor, respectively. Then the problem is described by the following system:

Op+div(pv) =0 in €y,
p(Oyv +v - Vv) —DivT(v,p) = fDivr in Q,
T+ v VT +97 =D(V) + go(Vv,T) in Q,
(T(v,p) + Br)ny = —P(ps)m on T, (1.1)
v=0 on S,
(p, v, 7)lt=0 = (px + b0, Vo, 0) in €0,
Qlt—0 = Qo, Tift=o =T,

for 0 <t < T. The mass density of the reference domain §2 that is p, is a positive constant, T(v, p) the
stress tensor of the form

T(v,p) =S(v) — P(p)I with S(v) = pD(v) + (v — p)div vI, (1.2)

D(v), v = (v1,...,vn), the doubled deformation tensor whose (i, j) components are D;;(v) = 0;v; +0;v,
(8; = 8/0z;), I the N x N identity matrix, u, v, 8, v and ¢ are positive constants (¢ and v are the first
and second viscosity coeflicients, respectively), n; is the unit outer normal to I'y, P(p) a C* function
defined for p > 0 which satisfies that P’(p) > 0 for p > 0. Moreover, the function go(Vu,7) has a form

9o(VV,7) = W(v)T — TW(V) + a(rD(v) + D(v)7), (1.3)

where « is a constant with —1 < a < 1 and W(v) the doubled antisymmetric part of the gradient Vv
whose (4,7) components are W;;(v) = 8;v; — 0;v;. Finally, for any matrix field K whose components are
K, the quantity Div K is an N vector whose i-th component is E;V=1 0;K,;, and also divv = Z;V=1 0,v5,
and v - Vv is an N vector whose i-th component is Z;V=1'Ujajvz-

Aside from the dynamical system (1.1), a further kinematic condition for I'; is satisfied, which gives

I :‘{x eRN |z =x(¢,t) (EeD)}, (1.4)
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where x = x(§,t) is the solution to the Cauchy problem:

dg’tf —v(x,t) (t>0), Xleo=EcT. (15)
This fact means that the free surface I'y consists of the same fluid particles, which do not leave it and
are not incident of it from inside € for t > 0. Tt is clear that Q; = {z ¢ RY |z = x(&,t) (€ € D)}

Several recent studies investigating the Oldroyd-B model have been carried out by researchers. Pre-
liminary work on incompressible case was undertaken by Oldroyd [5]. He introduced the set of equations
in (1.1) in the incompressible viscous fluid case, that is p is a positive constant in (1.1). This equation
system describe the flow of viscoelastic fluids, which provides a simple linear viscoelastic model for dilute
polymer solutions, based on the dumbbell model. After worth, the set of equations in (1.1) is called the
Oldroyd-B type fluid.

On the other hand, concerning the study for the compressible case we know only the result about the
local wellposedness of non-Newtonian compressible viscous barotropic fluid flow of Oldroyd-B type with
free surface due to Maryani [3] in the maximal L,-Ly regularity class in a bounded domain and some
unbounded domains which satisfy some uniformity. This paper is the continuation of Maryani [3] and
the global wellposedness of problem (1.1) is proved in the bounded domain case.

Morever, Shibata [8] proved the global well-posedness in a bounded domain also in the maximal L,-L,
regularity class, assuming that the initial data are small enough and orthogonal to the rigid space. Our
idea of proof follows Shibata [8].

The purpose of this paper is to prove the global well-posedness for problem (1.1) in the maximal L,-L,
regularity class in a bounded domain 2 with 2 < p < 0o and N < ¢ < oo, assuming that initial data are
small enough and orthogonal to the rigid motion when S = (). To prove it, we use the Lagrange coordinate
instead of the Euler coordinate and prolong the local in time solutions in the Lagrange coordinate to any
time interval. To do this, the decay properties of solutions play an essential role, which is proved in the
case where the velocity field is orthogonal to the rigid motion in the Euler coordinate when S = . And
we formulate this fact in the estimates of solutions to the linearized equations.

Since Q; should be decided, we formulate problem (1.1) in the Lagrange coordinates. In fact, if the
velocity field u(¢,t) is known as a function of the Lagrange coordinates & € 2, then in view of (1.5) the
connection between the Euler coordinates z € Q; and the Lagrange coordinates £ € Q is written in the
form:

x:§+/0 u(, s)ds = Xqu(é,t) (1.6)

where u(¢, t) = (u1(&,t),...,un(&, 1)) = v(Xu(€, t),t). Let A be the Jacobi matrix of the transformation
z = Xyu(&,t) whose (i, ) element is a,; = 6;; + f(f (g—‘g; (&, s)ds. There exists a small number o such that
A is invertible, that is det A # 0, provided that

¢
sup || [ Vu(,s)ds|p @) <o (1.7)
o<t<T Jo

In this case, we have V, = A71V, = (I+V0(f0t Vu(é, s)ds)) Ve, where V(K) is an N x N matrix of C*®
functions with respect to K = (X,;) which defined on |K| < 20. Here, K;; is the corresponding variable

to ft(a—“l)(~, s)ds. We have V(0) = 0. Let n be the unit outward normal to S, and then we have
o\3e,

A-ln

= Am] (18)

ny

Let p(z,t), v(z,t) and 7(z,t) be solutions of (1.1) and let

Px + e(é:t) = p(Xu(€7t)vt)7 u(ﬁ,t) = V(Xu(gv t)’t)7 w(éat) = T(X“(é',t),t). (1'9)
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And then, problem (1.1) is written in the form:
0t + pidiva = f(6,u,w) inQx(0,7),
psu; — DivS(u) + P'(p.)V8 — fDivw = g(f,u,w) in Q x (0,T),
wy +yw — 0D(u) = L(f,u,w) inQx (0,T),

1.10
(S(u) = P'(ps)01 + pw)n = h(f,u,w) onT x(0,T), (1.10)
u=0 on S % (0,T),
(6, n,w)|¢=0 = (fo,vo,70) in .
Here, f, g, L and h are nonlinear functions define by

¢

F(0,10,0) = — 0div — (ps + 0)Vas ( / Vuds)Vu (1.11)
0

g(6,u,w) = — fu; + Div (,uVD(/O Vuds)Vu+ (v — u)Vaiyv (/0 Vuds)VuI)
+ Vaiy (/0 Vuds)V (,u(D(u) + VD(/O Vuds)Vu) + (v — p)(divu + Vgiv (/0 Vuds)Vu)I)
¢ ¢ 1
- P'(p + G)VD(/0 Vuds)VO + Vaiy (/0 Vuds)w — V(/O P (ps+ £0)(1 — é)dZQZ)
L(6,u,w) :5VD(/t Vuds)Vu + go(Vu,w) + go((Vw(/t Vuds)Vu,w)
0 0
h(f,u,w) = — {,uVD(/0 Vuds)Vu + (v — u)(Vaiy (/0 Vuds)Vu)I}n — ﬂwVD(/O Vuds)n
— {u(D(u) + Vi /  Tuds)Vu) + (v — ) (div u + Vs / ' Yuds) Vu) I Vi / ' Yuds)n
0 0 0

+ (/1 P (py 4 £0)(1 — £)de6%)n + (P(ps + 6) — P(p*))VD(/t Vuds)n. (1.12)
0 0

Here Vp(K), V,(K), and Vg, (K) are some matrices of C* functions with respect to K defined on
|K| < o, which satisfy the null condition:
VD(O) =0, Vw(o) =0, Vaiy (O) =0.
To state our main results, at this stage we introduce our notation used throughout the paper.

Notation N, R, and C denote the sets of all natural numbers, real numbers and complex numbers,
respectively. We set Ng = NU{0}. Let Sym(R"™) and ASym(RY) be the set of all N x N symmetric and
anti-symmetric matrices, respectively. For 1 < ¢ < oo, let ¢’ = ¢/(¢ — 1), which is the dual exponent of

g and satisfies 1/g +1/¢' = 1. For any multi-index x = (k1,...,xx) € NI, we write |k| = k1 + - + K
and 9% = 9" ... A% with x = (21,...,2n). For scalar function f and N-vector of functions g, we set

Vf=(0if,...,Onf), Vg=(8ig;|4,5=1,...,N),
Vi ={0"f|lal =2}, V’g={0%gi|la|=2,i=1,...,N}
For Banach spaces X and Y, £(X,Y") denotes the set of all bounded linear operators from X into Y, and
Hol (U, £L(X,Y)) the set of all £(X,Y) valued holomorphic functions defined on a domain U in C. For
any domain D in RN and 1 < p,q < 00 Ly(D), W™(D), B} ,(D) and HZ(D) denote the usual Lebesgue
space, Sobolev space, Besov space and Bessel potential space, while || - ||z (p), || - ”qu(D), I ||B§,p(D)
and || - ll715(p) denote their norms, respectively. We set W (D) = Lq(D) and Wg (D) = Bg (D).
C>(D) denotes the set all C* functions defined on D. Ly((a,b), X) and W*((a,b), X) denote the usual
Lebesgue space and Sobolev space of X-valued function defined on an interval (a,b), while || - ||z, ((a,5),x)
and || - |l ((a,b),x) denote their norms, respectively. Moreover, we set

b 1/p
I ey o = E1O1r)  for1<p< oo
a



The d-product space of X is defined by X* = {f = (f,...,fs) | f, € X (i = 1,...,d)}, while its norm is
denoted by || - || x instead of || - || xa for the sake of simplicity. We set

W;4(D) = {(f,&,H) | f € W"(D), g € Wj(D)N, He W D)N*V},
I(f, 8 ) llywme ) = I0F E)llwp ) + lI8llwe o)-

Fora = (ay,...,an)and b = (by,...,b,), weseta-b =< a,b >= E;;l a,b;. For scalar functions f, g and

N-vectors of functions f, g we set (f,9)p = [, fgdz, (f,8)p = [, f-gdz, (f,9)r = [.. fgdo, (f,g)r =
J-f-gdo, where o is the surface element of I'. For N x N matrices of functions A = (4,;) and B = (By;),
we set (A,B)p = [, A : Bdz and (A,B)r = [LA: Bdo, where A: B = Zi\,/j=1 A,y B,;. The letter
C' denotes generic constants and the constant C,p, .. depends on a,b,.... The values of constants C
and C,p,... may change from line to line. We use small boldface letters, e.g. u to denote vector-valued
functions and capital boldface letters, e.g. H to denote matrix-valued functions, respectively. But, we
also use the Greek letters, e.g. p, 8, 7, w, to denote mass densities, and elastic tensors unless the confusion
may occur, although they are N x N matrices.

To state the compatibility condition for initial data 6y, vg, and 79, we introduce the space Dgy,p(12)

defined by

Dyp() = {(007‘/077'0) € qu(Q) X Bg’(]}-l/p)(Q)N « qu(Q)NxN |
(1.13)
(S(vo) = (P(px +800) — P(p))I+ Bro)n =0 on T, wvolg = 0}.

For the notational simplicity, we set
160, vo, o), , 2 = [Gollwp) + IVoll p2ii-1/m ) + ITollwz @)
The following theorem about the local well-posedness of problem (1.10) was proved by Maryani [3].

Theorem 1.1. Let N < ¢ < 00,2 <p < o0 and R > 0. Assume thatI' and S are Wq?_l/q compact hyper-
surfaces. Then, there exists a time T = T(R) > 0 such that for any initial data (8y,vo, 7o) € Dgp(2)
satisfying the conditions:

2 4
Fla +6(x) < 3P (xeQ) (1.14)

and
(60, vo, 7o), i) <R (1.15)

problem of (1.10) admits a unique solution (6,u,w) with
0.€ Wy((0,7), Wy (), we Wy((0,7), Lg(R)) N Lp((0,T), Wi (),  w € W, ((0,T), Wq ()

satisfying (1.7), the range condition: %p* < pe+0(z,t) < %p* for any (z,t) € Q@ x (0,T) and possessing
the estimate:

161wz (0,0,wr ) + allwzo.n,Lo@) + 1z, 00,w2@) + lwlwgo.nwie) < CR)

Remark 1.2. (1) The range condition (1.14) follows from [|6o||1 () < &

(2) The local well-posedness was proved under the assumption that Q is a uniform W,? =1/ domain in

[3]. And, if T" and S are compact qu ~1/a hyper-surfaces, then € is a uniform qu ~19 Jomain.

(3) By using the uniqueness of solutions, we see that if 7o(z) € Sym(R") for almost all z € Q then
w(z,t) € Sym(RN) for almost all (z,t) € Q x (0, 00), too.
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In order to state the global well-posedness of problem (1.10), we introduce the rigid space R4 which
is defined by

Ra={Az+b|A € ASym(R") and b € RV}. (1.16)
Let {p¢}?£, be the system of orthonormal basis of Rg.
The following theorem is our main result concerning the global well-posedness of problem (1.10).

Theorem 1.3. Let N < q < 0o and 2 < p < co. Let £, be a number such that £, = 3 when S # 0 and
£y =2 when S = 0. Assume that S and T are Wfb_l/ 9 compact hyper-surfaces and that T' # 0. Assume
that the wviscosity coefficients p and v satisfy the stability condition:

N -2
N I
Then, there exist positive numbers € and 1 such that for any initial data (6o, vo, 7o) € Dq,p(Q) satisfying

the condition that To(x) € Sym(RY) for any x € Q, the smallness condition: ||(60,vo,0)|p, @) < €
and the orthogonal condition:

((p« + 00)vo, pe)o =0 for=1,...,M when S =, (1.18)
problem (1.10) with T = oo admits unique solutions 0, u and w with

0 € Wz}((()’ 00)7 qu(Q))7 ue LP((O» OO), qu(Q)N) n WP((Ov OO), LQ(Q)N)7 we WI}((07 OO), qu(Q))

pn>0, v> (1.17)

Moreover, there exists a positive constant vy such that (6,u,w) satisfies the estimate:
€72(050, ), (0,00, W)y + 1€ 05l (0,60, 2o () + €70l 2, (0,60, w2 (2))
+ 1€ (Fsw, W)l L, (0,0,w (@) < Coe
for any t >0 and v € (0,7v9) with some positive number C,, independent of € andt.

Remark 1.4. Using the argumentation due to Strohmer [10], we see that the map x = Xy(§,t) is
bijective from £ onto Q; = {z = X, (&, t) | £ € Q} with suitable regularity. Therefore, from Theorem 1.3
we have the global well-posedness for problem (1.1).

2 Some decay properties of solutions to the linearized problem

Let Q be a bounded domain and let both of its boundaries S and T' be W} - hyper-surfaces with
N < r < oo, and let ¢ be an exponent such that 1 < ¢ < oo and max(g,¢’) < r. In this section, we show
some exponential stability of solutions to the following problem :

00 + pudivu = f in @ x (0,7),
p«Opu — DivS(u) + P'(p, )V — BDivr =g in Q x (0,7,
1 +y7—6D(u) =H in 2 x (0,7), 2.1)
u=0 on S x (0,71,
(S(u) — P'(ps)01+ Br)n =k onI' x (0,T),
(8,u,7)|t=0 = (B0, ug, ) in Q.
For this purpose, first we analyze the coresponding generalized resolvent problem:
A+ pudiva=f in Q,
p«Au — DivS(u) + P'(p,)V0 — fDivr =g in £,
AT+ 47 —6D(u) = H in , (2.2)

u=0 on S,
(S(u) — P'(ps)01+ fr)n =k onT.

138
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Weis operator valued Fourier multiplier theorem.
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Definition 2.1. A family of operators 7 C L(X,Y) is called R-bounded on £(X,Y), if there exist
constants C' > 0 and p € [1,00) such that for any n € N, {T3}7_; C T, {f,}}=1 C X and sequences
{rj}7; of independent, symmetric, {—1, 1}-valued random variables on [0, 1], we have the inequality:

([ gmuﬂmu’; du}w <ol [ gmu)xjnsz )

The smallest such C is called R-bounded of 7, which is denoted by R (x,y)(T)-

1/p

Let D(R, X) and S(R, X) be the set of all X valued C* functions having compact support and the
Schwartz space of rapidly decreasing X valued functions, respectively, while S'(R, X) = £L(S(R,C), X).
Given M € L110c(R\{0}, X), we define the operator T : F~!D(R,X) = S'(R,Y) by

Tu¢ = F ' [MF[¢)], (Fl¢] € D(R,X)). (23)
The following theorem is obtained by Weis [11].
Theorem 2.2. Let X and Y be two UMD Banach spaces and 1 < p < oo. Let M be a function in
CYR\{0},L(X,Y)) such that
d
Reaen({(T ) M(r) [ 7 €R\{0}}) <k < oo (£=0,1)

with some constant . Then, the operator Tar defined in (2.3) is extended to a bounded linear operator
from Ly(R,X) into L,(R,Y). Moreover, denoting this extension by Tar, we have

ITall ez, @.x),L,@®y)) < Ck
for some positive constant C depending on p, X and Y.

Remark 2.3. For the definition of UMD space, we refer to a book due to Amann [1]. For 1 < ¢ < oo,
Lebesgue space Ly(€2) and Sobolev space W*(£2) are both UMD spaces.

The resolvent parameter A in problem (2.2) varies in ¢ », with B¢y, = {A € C | |argA| < 7—e¢, || >
Mo} (e €(0,m/2), A0 > 0). To quote some unique existence theorem for problem (2.1), we introduce the
space W7 1(Q). Let ¢ be the extension map ¢ : Ly joc(€2) = L1 10c(RV) having the following properties :

1. For any 1 < ¢ < oo and f € W}(Q), of € WHR"), ¢of = f in © and lefllw:@ny < Clifllw; (@) for
1= 0,1 with some constant C depending on ¢, r and .

2. Foranyl <g<ooand f € W,}(Q), ”"(vf)”H;l(RN) < O£l (e with some constant C depending
on g, r and .

Then, W () is defined by
W(;I(Q) = {f € Ll,loc(Q) | ”f”w,,"l(s‘z) = HLf”H;‘(RN) < OO}

According to Maryani [3], we have

Theorem 2.4. Let1 < g < o0, 0<e<m/2 and N <1 < o0o. Assume that r > max(q,q’). Let Q be a
bounded domain in RY , whose boundaries S and T are both W2~ r compact hyper-surfaces. Let

Yero ={AeC\ {0} | |arg| <m—¢ [A] > Ao}
Let

Xo(Q) ={(f,8:HK) | (f,8,H) € W °(Q),k e W ("},
Xg(Q) = {(F1,F2,F3,Fy,F5) |
Fy € WHS),Fz € Ly()N,F3 € L(Q)V,Fy € LN, Fs € WHQ)V').



Then, there exists a Ao > 1 and an operator family R(X) € Hol(E¢ ,, L(Xq(), WE2())) such that
for any (f,g,H, k) € X (Q) and X € = ., (p,u,7) = RO)(f, 8, A%k, Vk, H) is a unique solution to
problem (2.2).

Moreover, there exists a constant C' such that

R, wio@)y LTI ARMN) [ A€ Zp ) <C (€=0,1

R w0 @) LTI (YR(N) [ A€ Zepn,}) <C - (£=0,1

R, @), 0o @n?) LTI NPVPR(N) [ A€ S }) <C (£=0,1
Ry @),1 ) {(TOT (VPPR(N) [ A € Sepp ) <C - (£=0,1

3

' (2.4)

)

— — — —

k]

with \ = v +i7. Here, P, is the projection operator defined by P,(p,u,7) = u.

Remark 2.5. (1) The Fi, Fy, Fs, Fy and Fy are variables corresponding to f, g, \'/2k, Vk, and H,
respectively.

(2) Theorem 2.4 was proved in [3], where the same problem was treated even in the unbounded domain
case.

As was shown in [3], applying Theorem 2.4 with the help of Theorem 2.2, we have

Theorem 2.6. Let 1 < p,g < 00, N <r < oo and T > 0. Assume that max(q,q’) < r. Let Q be
a bounded domain in RY, whose boundaries S and I are both W —ur compact hyper-surfaces. Then,
there ewists a positive number 19 such that for any initial data (69,10, 70) € W}(Q) x B2I-MP ()N
W,}(Q)N *N and right-hand sides f, g, H and k with

(f,8,H) € Ly((0,T), W, (), k€ Ly((0,T), Wy (™) nW,((0,7), W' (DY) (25)
satisfying the compatibility condition:

(S(uo) — P'(ps)0ol + Bro)n = k|0 on T, ug=0 on S, (2.6)

problem (2.1) admits unique solutions 0, u, and T with

0 € Wy((0,7), W3 (), ue Ly((0,T), WZ(@Q)™) N W, ((0,T), Le()™), 7€ Wp((0,7), Wq()M*M)

possessing the estimate:

01wz (0,60,w2 () + 105ll L, ((0,0),L,02)) + [0l 0,0, w2@)) + 7 lwao,0,w2 @)
< Che™ {60l waa) + l[woll gza-1/m gy + I70llwz <)

+ 1B K, 0.0,w; @) + 18,0, 2q@) + 195Kl L 0,0,w7 @)
for any t € (0,T) with some constant C independent of t.

To prove the global well-posedness of problem (1.10), we need some decay properties of solutions to
(2.1), which is stated as follows:

Theorem 2.7. Let 1 < p,g < 0o, N <7 < 00 and T > 0. Assume that max(q,q') < r. Let £ be
the number defined in Theorem 1.1. Let Q be a bounded domain in RN, whose boundaries S and T' are
both W™ compact hyper-surfaces. Then, for any initial data (6o, ug, 7o) € WhQ) x BRI ()N
qu(Q)N *N and right-hand sides f, g, H and k satisfying (2.5), the compatibility condition (2.6), and
the symmetric condition: 1o(z) € Sym(R{V ) for almost all z € Q, problem (2.1) admits unique solutions
0, u, and T with

0 € Wy ((0,7), Wg(Q)), e Ly((0,T), W (™) nWp((0,T), Ly()Y), 7€ W, ((0,T), Wi (2)V*)
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possessing the estimate :

lle™*6llwa 0,0, W) + €72 0suall 1, ((0,6), L, 0y + €™l L, (0,00, w20 + lle™ Tllwa(o,.0,w2 ()

< C{I|90||W;(n) F ol g2a-1/m gy + I7ollwz @) + 1€™°(f, 8 Bl 1, (0,00, w20 (27)

M t
1
+ ”emsknL,,((o,t),W;(n)) + He"lsask”L,,((o,t),W;l(n)) +4d(S) ezl(/o (em*|(u(-, s),pz)ﬂ|)l’ds)p}

for any t € (0,T) with some positive constants C and 1y. Here, d(S) is the number such that d(S) =1
when S =0 and d(S) =0 when S # 0.

Remark 2.8. The symmetric condition: 7(z) € Sym(RY) for almost all z € Q implies that 7(z,t) €
Sym(RN) for almost all (z,t) € Q x (0,77).
To prove Theorem 2.7, first we consider problem (2.1) with f =0, g =0, H=0 and k = 0. And
then, the corresponding resolvent equation is:
A+ pdiva=f in €,
psAu — DivS(u) + P'(p,)VO — fDivr = g in Q,
A4y —0D(u) =H in Q, (2.8)
u=20 on S,
(S(u) — P'(ps)fI+ T)n =0 onT,
where 6y, up and 79 have been renamed f, g and H, respectively. We consider problem (2.8) on the

underlying space Hq(€2) which is the set of all (f,g, H) € W}°(Q) such that g satisfies the orthogonal
condition:

when S = ). Note that any solution (8, u,7) of problem (2.8) satisfies the orthogonal condition:
(w,pelo=0 (£=1,...,M) (2.10)

when S = ). In fact, by the divergence theorem of GauB, we have
PN, P = (8, Po)a + (k. pe)r — 5(D(w), D(pr)a

— (v = mdivu— P'(p)f,divpe)a — 2 (7, D(po)a.
Since it holds that
D(p) =0, divp,=0 ((=1,...,M), (2.11)

(2.9) implies (2.10).
Let W2(Q)N be the set of all u € W2(Q)" which satisfies (2.10). And also, we introduce an operator
A and a space Dy (A) by

A(f,u,7) = (—p.div u, py {(DivS(u) — P'(p.)V8 + ADiv 1), —y7 + 6D()) for (8,u,7) € Dy(A),
Dy(A) = {(6,u,7) € Hy(Q) | u e W)Y, uls =0, (S(u) - P'(p.)61+ r)n|r = 0}.
By using A, problem (2.1) with f =0, g =0, H=0 and k = 0 is written in the form:
0¢(6,u,7) — A(f,u,7) = (0,0,0) for t >0, (8,u,7)|t=0 = (6o, 0,70)- (2.12)

Since R boundedness implies the usual boundedness by choosing n = 1 in Definition 2.1, for any € €
(0,7/2) there exists a constant A; > 0 such that for any A € X, 5, and (f, g, H) € H,(Q) problem (2.8)
admits a unique solution (8, u,7) € Dy(2) possessing the estimate:

A, llwo @ + Iallway < CICE 8 Bllwpo) (2.19)

for any A € X 5,. Here, we used the fact that (2.9) implies (2.10).
By (2.13), we know that there exists a continuous semigroup {I'(t)}:>0 on Hq(S2) associated with
problem (2.12) which is analytic. To prove the exponential stability of {T'(t)}:>0, it is sufficient to prove
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Theorem 2.9. Let 1 < g < 0o, N <1 < oo and A\; > 0. Assume that max(q,q') < r. Let £, be the
number given in Theorem 1.1 and let \; be the number given above. Let Q be a bounded domain in RY,
whose boundaries S and T' are both Wf”_l/ " compact hyper-surfaces. Assume that

-2

uw>0, v> I (2.14)

Then, for any A € C with Re A > 0 and |A| < A\ and (f, 8, H) € Hq(Q), problem (2.2) with k = 0 admits
a unique solution (6,u,7) € Dy(A) possessing the estimate:

16,0, T)llwp2 ) < Cl 8 H)llwro - (2.15)
We postpone the proof of Theorem 2.9 to Sect. 3. By Theorem 2.9, we have

Corollary 2.10. Let 1 < g < 00, N <r < 00 and A\; > 0. Assume that maz(q,q’) < r. Let &, be the
number given in Theorem 1.1. Let  be a bounded domain in RN, whose boundaries S and T' are both

W™ compact hyper-surfaces. Assume the condition (2.14) holds. Then, the semigroup {T'(t)}+>0 is
exponantially stable on Hq,(QY), that is,

IT() (£, & H)llwpo) < Ce™™I(f, 8 H)lwpoq) (2.16)

for any (f,g,H) € Hy(Q) and t > 0 with some positive constants C and 1;.

Now, we are in position to prove Theorem 2.7. To reduce the problem to the semigroup setting, first
we consider the time shifted equations :

040 + Aof + pidivu = f in Q x (0,7),
p«(0pu + Aou) — DivS(u) + P'(p«)VO — BDivr =g in Q@ x (0,7,
T +T+ AT —6D(u) = H in @ x (0,7, (2.17)
: u=0 on S x (0,7),
(S(u—P'(p«)01+p7) -n=k onI'y x (0,7,

(97 u, T)It:U = (907 g, TO) in Q’

with large Ag > 0. For example, in the case (6o, uo,70) = (0,0,0), by using the R-bounded solution
operators R(\) given in Theorem 2.4), the solutions of (2.17) is written by the Laplace inverse transform
of RO+ o) (F(N), &(A), H())), where f(A), &(A), and H()) denote the Laplace transform of f, g and H
with respect to time variable ¢. Thus, using Theorem 2.4 with the help of Theorem 2.2 and employing
the same argumentation as in Sect.4 of Shibata [7], we have

Theorem 2.11. Let 1 < p,q < 00, N <1 < 00, max(q,q’) <r and T > 0. Let Q be a bounded domain

in RN, whose boundaires S and T are both W7 —ir compact hyper-surfaces. Then, for any initial data
(60,10, 70) € W () x BXI-1P ()N x WH)N*N and right-hand sides f, g, H, and k satisfying (2.5)
and (2.6), problem (2.17) admits a unique solution (6,u,T) with

8.€ W,y ((0,7), W (), ue Ly((0,7), W2 (™) nW,((0,T), Ly()™), 7€ W,y ((0,T), Wy (@)*N).
Moreover, there exsits a positive constant 1y such that 8, u, and T possess the estimate:
€™ 0llwz o,y wp ) + €™ 0sullz, (0,1),,@) + lle™ullL,0,r),w2c0)) + €™ Tllw o, w2 )

< {100ty o) + ol g0 )+ Il (218)
e (8Bl o,mwro ey + €7 Kllz, 0,1, w @) + ||e"$ask||L,,((o,T>,WJ‘(n»}}

for any n € (0,n2] with some positive constant C depending on ne but independent of T'.
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Under the above preparations, we finish proving Theorem 2.7. We look for a solution (6, u,7) of the
form § = k+w, u = v +w and T = ¢ + ¢ where (k,v,9) and (w,w, p) are solutions to the following
problems :

Otk + Aok + paudivv = f in Q% (0,7,
p+(8:v + Agv) — Div S(v) + V(P'(p.)k) — BDivey = g in Qx(0,7)
O+ Aoty + v —6D(v) =H in  x (0,7, (2.19)
v=0 in §x(0,T),
(S(v) = P'(p«)sI 4 Bb) - n=k inT x (0,7),
(8, v, ¥)|t=0 = (fo,u0,70) in Q,
Ow + pedivw = Aok in Q x (0,7),
pxOw — Div S(w) + V(P'(p)w) — BDivy = pAov in Q x (0,T),
Oup + v — 6D(W) = Ao in Q x (0,7, (2.20)
w=0 in § % (0,T),
(S(w) — P'(p.)wI + Bp)n =0 inT x (0,7),

(w, w,9)|t=0 = (0,0,0) in €,

respectively. By Theorem 2.11 we know the existence of k, v and v that solve (2.19) and possess the
estimate :

le™ &llwz o,y W) + €705V || L, (0,1,2,(2)) + 1€Vl L, (0,),w2(0)) + €™ Pl 0,1),w2 (2))

< ooy + ol gz 00 + Il (.21)

+ 1€ (B Kl 0m), wp @) + €78 Ly 0,7, L, (2)) + He"sask”Lp«o,T),w#(IRN>)}’
For the sake of simplicity, we set
Ip.a = 0ollwi) + Woll g2a-1/m ) + 170l ()
+ ™ (F B Kz, 0,m),wp @) + €78z, (0,7), ) + €05kl L 0y, wr @)

where n = min(ny,12)/2, and 7y and 7y are the positive numbers appearing in Corollary 2.10 and
Theorem 2.11, respectively. Let {T'(t)}+>0 be the semigroup associated with (2.12) and let z(z,s) =

v(z,s) — d(S) Eej\il(v(~,s),p2)gpe. Defining @, w and ¢ by

t
(Jj(a t)r ‘i’(v t)y @(7 t)) = )\0 /0 T(t - 8)("{'('7 5)7 P*Z(‘» 8)7 ¢(7 8))d8 (222)
by the Duhamel principle we see that &, W and ¢ satisfy the equations
@ + podivw = Aok in Q2 x (0,7),
P — Div S(W) + V(P'(p.)0) — ADiv @ = pudo(v — d(8) T, (v(-, ), pedape) in @ x (0,7),
P +yp — dD(W) = Aot in Q x (0,7),
w=0 in S (0,7),
(S(W) = P'(p.)o1 + B) -n =0 inT x (0,7),
(@, W, @)|t=0 = (0,0,0) in Q.
(2.23)

Since (z(-, s),pe)o =0 for any £ =1,..., M and s € (0,T) when S = @, by Corollary 2.10 we have

||(&)(',t),\i/'(-,t), ‘ﬁ('vt))”qu'D(Q) < C/(; e_m(t_‘g)”(ﬁ("3)7z('73)7¢('73))|]W;'0(Q) ds.
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Thus, by Holder’s inequality and the change of the integral order, we have
T
| @I, 5.0, Dl

T
< Cn_pA (ens”(ﬁ('as)vz('vS)7¢(’7s))llw‘;'o(ﬂ))pds’

which, combined with (2.21), furnishes that

le™ (@, w, ‘;’)”L,,((O,T),W;'O_(Q) <CJp g (2.24)
Since @, ¢ and W satisfy the shifted equations:

Wt + Ao + pudivw = Ao(@ + K) in Qx (0,7,
k(Wi + XoW) —DivS(W) + V(P'(p.)@) — BDiv @

= pAo(W +v —d(S) X)L, (v(- 8), Pe)ape) in Q x (0,T),
P + AP + P — D(W) = Ao (@ + V) in 2 x (0,7), (2.25)
W =0 in S x (0,7T),
(S(W) — P'(p)@I+ @) -n=0 inT x (0,T),
(va w, Qb)lt:O = (07 0, O) in Q,

by Theorem 2.11, (2.21) and (2.24) we have
le”@lwz o,m),wi () + 1€ 0 WL, ((0.1),Lq ) + 1€ WL, (0,7), w2 ()
+ e”llwzom.wre) < Cpg- (2.26)

When S # 0, setting w = &, ¢ = ¢ and w = W, we have Theorem 2.7.
Finally, we consider the case S = . Let

Mt
Ww=a, p=¢@, W=W+ Apd(S) Z/ (v(+,8), Pe)ads pe-
‘ =170

Since (2.11)holds and py is the first order polynomial, we have div u = divv+divw, S(u) = S(v)+S(w),
D(u) = D(v) + D(W), and V?u = V%(v + W). Thus, by (2.22) and (2.25) we see that 6, u and 7 satisfy
the equations (2.1). Moreover, by (2.21) and (2.26), we have

”e"sellwpl((())T)qul(Q)) + ||€T’Sasul|Lp((O,T),Lq(Q)) + HensD(u)”L,,((O,T),’Lq(ﬂ))
+ e V2ull L, 01, o) + €™ Tlwa0m),wi@) < CIpa- (2:27)

Using the first Korn inequality, we have
M

llul, $)llwz ) < C{ID(; )z, @) + Z [(u(-, s), Pe)al}s
=1

which, combined with (2.27), furnishes that

M t 1/p
e a9z, 005310 < CUPDC Sl 0rtao + Y- [ @ Iuts),paras) )
=1

M t 1/
<0t ([ e icatonponpras) ) (2.29)

Thus, combining (2.27) and (2.28), we have

le™Ollwy o.my Wi + €7 0sullL, (0,1), Lq(0)) + l€™ 0z, (0,1), w2 @)
M t 1/p
e g amrsin < O+ ([ (@105 paalyds) ).
£=1

This completes the proof of Theorem 2.7.
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3 A proof of Theorem 2.9

In this section, we prove Theorem 2.9. For this purpose, first we consider problem (2.2) with A = 0, that
is
prdiva = f in Q,
—DivS(u) + P'(p,)V8 — BDivr =g in Q,
vr—6D(u) =H in Q, (3.1)
u=0 on S,
(S(u) — P'(ps)01+ prin =k onT.
With the help of the following Lemma, we start to prove Theorem 2.9.

Lemma 3.1. Let 1 < g < 00, N <7 < 00 and Ay > 0. Assume that maz(q,q') < r. Let ¢, be the
number defined in Theorem 1.1. Let 2 be a bounded domain in RY, whose boundaries S and T' are both
WY compact hyper-surfaces. Then, for any (f,g,H) € WH(Q) and k € WH)N satisfying the
condition:

(8 pe)a+ (kp)r=0 ((=1,...,M) (3.2)

when S = 0, problem (3.1) admits unique solutions § € W (Q) and u € qu(Q) possessing the estimate:
(6, w, 7)) < CUIS 8 H)llyro gy + ikllwg @)- (3:3)

Remark 3.2. Recall that W2(Q) is the set of all u € W2(Q)™ which satisfies (2.10).
Proof. The technical proof of the Lemma can be seen in [4]. O

In the sequel, we prove Theorem 2.9. In Viéw of Lemma 3.1 by the small perturbation argument,
there exists a small A\g > 0 such that problem (2.2) can be solved with A € C and |A| < )A¢. Namely,
Theorem 2.9 holds for A € C with |A\] < Ag. Furthermore, we consider the case where Re A > 0 and
Ao < [\ < A1. In this case, setting @ = A71(f — pudivu) and 7 = (A + )" }(6D(u) + H) in (2.2), we
have a generalized Lamé system:

psdu—DivSy(u)=g' inQ, u=0o0nS, Sp(un=k onT, (3.4)
where we have set
Sa(u) = (1 + BA+7)71O)D(w) + (v — 1) + P'(ps)pur™ ) div u,

g =g— (P(p)A"'Vf - B(A+~) 'DivH),
K =k+ (P (p)N I - 8(A+~)"H)n.

Since Ag < [A] € Aq, by ||hn||W(;(n) < Clhllwzey (i=0,1), we have
18"z, + 1K wi@) < Cron (1(F, 8 H)llwroq) + Ikllwae)-
To solve (3.4), first for fixed A we consider the equations:
psku—DivSy(u)=g' inQ, u=0onS, S)(uyn=k' onT, (3.5)

with new resolvent parameter x € R. Note that if (g, k) satisfies (3.2), then (g’,k’) also satisfies
(3.2). Employing the same argumentation as in Shibata and Tanaka [9] or Enomoto, von Below and
Shibata [2], we see that there exists a large kg > 0 depending on A such that for any x > kg and
(8, K) € Lo()N x W)V satisfying (3.2) problem (3.5) admits a unique solution u € W2(Q)N.
Since the solution operator of problem (3.5) with s = g is compact, by the Riesz-Schauder theory we
see that the uniqueness implies the existence in problem (3.4). Thus, we examine the uniqueness. Let
uc W,IZ(Q)N be a solution of the homogeneous equation:

pAu—DivS)(u)=0in, u=0ons, S)(uyn=0onT, (3.6)



First we consider the case 2 < ¢ < co. In this case, u € W22(Q)N . Thus, multiplying the first equation
(3.6) by u and using the divergence theorem of Gau8, we have

1 _ _ .
0= poMullf ) + 506+ BO+ ) OID@E 0y + (v = 1) + P (pped vl oy (37
When Re A >0, Rep,A™! > 0 and Re B(\ + 7)~1d > 0, so that taking the real part of (3.7), we have
0> p.ReA[ull?, o) + g”D(u)”%z(n) + (v = wlldiv ul|7, q)- (3.8)

Since ||div u”%z(n) < (N/4)||D(u)||%2m), by (3.8) we have

N-2\, .
0> (V - TH) [divul|Z, )

provided that Re A > 0. Since we assume that v — N—A_,Z—u > 0, we have divu = 0, so that by (3.8) and
the assumption that y > 0, we have D(u) = 0 provided that Re A > 0. When S # ), we have u|g = 0, so
that the first Korn inequality: ||Vul|z,q) < C||D(u)]|z,(q) does hold. Therefore, Vu = 0, which implies
that u is constant. But, u|s = 0, so that finally we arrive at u = 0. On the other hand, when S =0, u
satisfies (2.10), so that u = 0 too. Therefore, we have the uniqueness, which implies the unique existence
of solutions to problem (3.4) for each \ with Mg < Al < A1 when 2 < ¢ < co. When 1 < ¢ < 2, the
uniqueness follows from the existence for the dual problem, so that in this case we also have the unique
existence of solutions. If we know the unique exstence of solutions to (3.4) for one Ao, by the small
perturbation argument there exists a small number ¢ depending on Ay such that the unique exstence of
solutions to (3.4) holds for A € C with |A — Ag| < 4. Since the set {A € C|ReA >0, Ao < [N < Ai}is
compact, we have the unique existence theorem holds for any {A € C| ReA >0, A¢ < |A] < A1} with
uniform constant C' in the estimate (3.3). This completes the proof of Theorem 2.9.

4 A proof of Theorem 1.3

To prove Theorem 1.3, we start with

Lemma 4.1. Let1 < p,q < oo, let T be any positive number and let Q be a bounded domain in RN, whose
boundary T' is a w2-ur compact hyper-surface with N < r < oo. Then, the following two assertions
hold:

(1) We have
i [w(®)]l g21-17m gy < CLllu( 0)l g2a-1/m () + Lu(T)}

for any u € Ly((0,T), Wf(ﬂ)) n WI}((O, T), La()) with some constant C independent of T. Here,
we have set
L(T) = [0l L, 0,1),L,)) + lullz, 0,1, w2(0)

(2) Assume that max(q,q’) <r. Then, we have

||vu|lwq-1(n) < COllullz, @ for any u € Ly(Q),
luvllv, 10y < Cllulw; o) lvlwz @) for any u e Wil(Q), v e Wy(9), (41)
|]uvj|wq_1(ﬂ) < C”U”Lq(Q)HUHLq(Q) for any u, v € Ly(2).

Proof. Lemma, has been proved in [3] (cf. also in [6]), so that we may omit the proof. O

From now on, we prove Theorem 1.3. Let € be a small positive number and we assume that initial
data (6o, Vo, 70) € Dy () satisfies the conditions:

2 < px + 6, <4
3P* Px 0 3p*7

90llwz @) + [luoll g2a-1/m () + ITollwia) < € (42)
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and the orthogonal condition (1.18). Since we choose an € small enough eventually, we may assume that
0 < € < 1. Thus, by Theorem 1.1, there exists a Tp > 0 such that problem (1.10) admits a unique
solution with T = Tp. Let T be a positive number and we assume that problem (1.10) admits a solution
(8, u,w) with

0 € W,y ((0,T), W, (Q)), ue Ly((0,T), WZ(Q)™N) N W, ((0,00), Ley(Q)), w € Wp((0,T), W, (€2)"M)

satisfying the condition:
1 5 ¢
=px < ps +0(z,t) < Zp, forany (z,t) € Qx (0,7), sup || [ Vu(,s)ds||L ) <o (4.3)
3 3 0<t<T  Jo

where ¢ is the positive number appearing in (1.7). We may assume that 0 < ¢ <1 and T > Tp. Let
I(t) = [le"8llw (0,0,w2 (@) + €705l (0,6),2,(0)) T €™ ul|L, (0,0, wz(0)) + € wllw(0,0,wp ()
with some positive constant 7 for which Theorem 2.7 holds. Our main task is to prove
I(t) < Mi(e +1(1)*) (44)
with some constant M; independent of € and T. To prove (4.4), we start with
16C,)llwz @) < Cllfollw, o) +1(2)),
[aC, B)ll gza-1/m gy < Cllloll g2a-1/m ) + (1)),
lw( Ollwie) < Climollwy @) +1(t)) (4.5)
In fact, writing 0(57, t) =6+ fot 050(-,s)ds and w(z,t) = Oy + fot Osw(-, s)ds, we have the first and third
inequality in (4.5). The second inequality in (4.5) follows from Lemma 4.1 (1). Hereinafter, the letter

C stands for generic constants independent of T' and e. Its value may differ even in a single chain of
inequalities. By Holder’s inequality, we have

t t , 1/p’ t 1/p
/0||u(-,s>||wg(mdsgc( /0 e-st) ( /0 (e“||u<-,s>||wgm>)f’ds) <oI).  (46)

To estimate the products, we use the Sobolev embedding theorem:

m m
ITT Hlwee <CTT 1AW  1flw@ < Clflwie (4.7)
=1 =1
because IV < ¢ < 0o. Since 2 < p < oo, we have Bgf,}‘l/”’(“) C W), that is

Iflwz) < Cllfll gza-1m gy (4.8)

Recall the definition of nonlinear terms f(6, u,w), g(6, u,w), h(6, u,w) and L(6, u,w). Using ||hnllyw; @) <
Clhllw:@y (i =0,1), (4.3), (4.5), (4.6), (47), and (4.8) and noting that Vy (0) = 0, Vp(0) = 0,
Vbiv (0) and V5(0) = 0, we have

7 (£(6,u,w), h(8, u,w), L(6, u,w))l| 1, ((0,0,wz () + lle°8(6, U, w)l|z,((0,0),L,0) < Cle+ I(t)?). (4.9)

By (?7), (4.1), (4.3), (4.5), (4.6), (4.7), and (4.8) and noting that Vg, (0) = 0, Vp(0) = 0, Vpiy (0) and
V6(0) = 0, we also have

le*0sh(8, w,w)]ll ., (0.0, w;t @y < Cle+1(1)%). (4.10)

To obtain (4.9) and (4.10), we used the fact that (e + I(¥))I(¢) < (1/2)e? + (3/2)I(t)% < 2(e + I(2)?),
because of 0 < ¢ < 1.
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Applying Theorem 2.7 to problem (1.10) and using (4.9) and (4.10), we have

, M + 1/p
1(t) < Ofe + 1(¢) +d(S)f§< [ @ ic.s)p00 ds) }. (4.11)

Now, we consider the case where S = {}, namely d(S) = 1. According to the argumentation due to
G. Strohmer [10], the Lagrange transform z = Xy (§,t) = £+ fot u(, s)ds is a bijection from £ onto
Q= {z = Xu(&t) | € € Q} and from T onto I'y = {z = Xu(&,t) | € € S}, so that denoting the
inverse map by Y(z,t), by (1.9) we see that p(z,t) = p« + 6(Y (z,1),t), v(z,t) = u(Y(z,t),t), and
7(x,t) = w(Y(x,t),t) satisfy the equations (1.1). Since we assume that 7o € Sym(R"), we know that
7 € Sym(RYN), too. Let J be the determinant of the Jacobi matrix of the transformation: z = Xy (¢, ),
and then noting that p(¢ + f[f u(g, s),t) = p« + 0(&,t) and v(€ + f[f u(&, s),t) = u(&,t) we have

d

dt /nt(ﬂ(n (1), pe)de

t
- [a [<p,« L oe D)ule, t)] pele+ [ ule9pds) e 0 ds
Q 0
+ [+ o6 a0 [Pé(& + [ ute s)ds)} J(E, 1) de
t
+ /ﬂ (P + 06, ) u(, 1) - pe(€ + /0 u(e, s)ds),T (6, 1) de.

Since 8;J (€, t) = (divv(z,t))J(,t), by (1.1) we have

F((px + 0(&, 1))u§, 1)) J (&, 1) + (o« + 0(6, )0, )0 T (€, 1)
= (Div T(v, p) + BDiv 1)J(£,t).

Moreover, representing py(z) = (Z;V:I ATy, Z;\;l anjz;) + b with a,; + aj; = 0. we have
t N N
1
u(§, ) - at(pz(§+/ w(g,s)ds) = Y aiuwi(€ )i (€,1) = 5 Y (any + aji)ua(&, thuy (6,8) = 0.
0 i\j=1 255

Summing up these two facts and using the symmetry of 7 and (2.11), we have
d . .
% | (¢ 0v(.0).po)de = (Div (v, ) + BDiv 7, po)n,
t

= D), D(po)n, ~ (v~ 1)(div v, divpeda, + (Plp), div b2)a, — & (r, D(pe))a, = 0.

Thus,
/ﬂ(ﬁ* +0(& ))u(s, t)pe(§ + /OtU(& 8)ds)J (€, t)dE = ((px +00)vo, Pe)a =0 (£=1,...,M) (412)

for any ¢ € (0,T). Since J(&,t) = det(I +V0(f0t Vu(¢, s)ds)) and Vo(0) = 0, we may write J(&,t) in the
form:

T(E,1) = 1+ vo( /0 Vu(e, s) ds)

where vy = v9(K) is a C*° function with respect to K defined on |K| < ¢ with v9(0) = 0. Moreover, we
write

pel€ + / u(€, 5) ds) = pe(€) + Ae / u(é, s) ds
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with some constant matrix A,. And then, by (4.12) we have

(u(- 1), pe) = —p5" (Muc,t),pm( | vutessna

t . (4.13)
+pu(uC0), e [ a5 s+ [ o6 uenpee+ [ utes) e dﬁ)-
Thus, using (4.3) and (4.13) we have
[(u(,t), Pl < C(ll6ollwp (o) +IENIC Dz, @) (4.14)
which furnishes that
M t 1/p )
> ([ it opoapis) < cter 1) (4.15)

Combining (4.11) and (4.15), we have (4.4).

Finally, using (4.4), we show that solutions can be prolonged to any time interval beyond (0,T). Let
ri(e) = (2M;)~" £ \/(2M1)~2 — € be the two roots of the quadratic equation: M;(z? +¢) —z = 0. If
0<e< (2M;)"2 then 0 < r_(¢) < 74 (¢) and r_(€) = Mie+ O(e%) as € — 0+0. Since I(t) + 0ast —0
and I(t) is continuous with respect to ¢ as long as solutions exist, there exists an ¢y € (0,1) such that

I(t) < r_(e) < 2Me (4.16)
for any t € (0,T) and € € (0,¢0). By (4.5),
106G ) wz e + 1Tl g2 -17m g + - Tl < Moe < My (817)

with some constant M» independent of €. By (4.7), |0(:, T)llz.2) < Cl10(-, T)lwie) < CMae, so that
choosing € so small that CMaze < (1/3)p«, we have

2 4
3P < P +6(z,T) < Flas (4.18)
We consider the nonlinear equations:
8,0 + podiva = f(0,7,@) in Qx (T, T+ 1)
P-4t — DivS(a) + P'(p.)VH — fDive = g(d,a,o) inQx (T,T +T1)
B + y@ — 6D(a) = L(4, 1,@) in Qx (T,7T +Ty) (4.19)
(S() — P'(p)01 + B@)n = h(f, @, ) on Ty x (I, T + 1) '
0 on S x (T,T+Th)

(e_vﬁa‘_‘)”t: =(9('7T)vu('vT)vw('7T)) in Q

which is the corresponding equations to main problem for time interval (T',T + T1). Here, f (8,a,m),
&(0,1,®), L(6,1,®) and h(f,q,o) are nonlinear functions defined by replacing 6, u, w and fot Vuds
by 0, @, @ and fOT Vuds + f; Vids in (1.12), respectively. Since fOT [IVu(:, s)||z..ds < Ce as follows
from (4.7) and (4.16), employing the same argumentation as in the proof of the local well-posedness for
problem (1.10) due to Maryani [3] or the local well-posedness for the compressible barotropic viscous
fluid flow due to Enomoto, von Below and Shibata [2], we can choose positive numbers ¢ and T} so small
that problem (4.19) admits unique solutions 8, @, and @ with

0 € Wy((T,T +T1), W} (Q), u€L,(T,T+Ty), W) nWp((T,T +T4), Ly(Q)™),
w € WE((T,T + T1), W, ()



satisfying the estimates
T+Ty 1 ~ 5
/ IVa(, )|z @dt <o/2, 3P < ps+0(z,t) < Pl ((z,t) € A x (T, T + T1)). (4.20)
T

If we define 6, wy and u; by

0(z,t) for0<t<T,
0(z,t) forT<t<T+1Ty,

u(z,t) for0 <t <T,

7t:
ui(®,1) {ﬁ(z,t) for T<t<T+Th,

91(:1},t) = {

iz, t) = w(z,t) for0<t<T,
OV T G(@, ) for T'<t< T 41T,

then 61, w; and u; solve (1.10) in (0,7 + T1) and

01 € Wo((0,T +T1), W), u1 € Ly((0,T + Ty), WR)N) n W2((0,T + T1), Lo (™),
wi € Wp((0,T + Ty), W} (2)).

Moreover, by (4.16), (4.7) and (4.20) we have %p. < p, + 61(x,s) < $p, and

t T T4+T:
sup ||/ Vuy(-,8) ds|| L. (@) S/ ||Vu('y8)l|Loo(n)d3+/ IVac, s)llz. @ds
0<t<T+T 0 0 T

< Mze+o/2

with some constant M3 independent of e. Choosing € > 0 so small that Mze < /2, we see that 6; and
u; satisfy (4.3) replacing T by T + T;. Therefore, we can prolong 6, u, and w to (0,7 + T3). It follows
from (4.17) that 7} is independent of €, so that we can prolong 6, u, and w to time interval (0, 0o) finally
with I{oo) < ri(e), which completes the proof of the existence part of Theorem 1.1. But, the uniqueness
follows from the local in time unique existence theorem (Theorem 1.1), which completes the proof of
Theorem 1.3.
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