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Abstract

We report our work on the fluctuation of IDS and level statistics
for the 1d Schrédinger operators with (1) random decaying potential,
and (2) decaying coupling constants, some part of which is the joint
work with Prof. S. Kotani.

-1 Introduction

1d Schrodinger operators with random decaying potential have rich spectral
properties depending on the decay rate and have been studied by many re-
searchers(e.g. [12, 8] and references therein). Recently, there are growing
interests and discussions on the level statistics problem on these operators,
mainly on the context of the random matrix theory. This manuscript is a
survey on our works [9, 10, 17, 19] studying the fluctuation of the integrated
density of states (IDS) and the level statistics problem for 1d Schrodinger op-
erators with random decaying potentials (Section 2) and random stationary
potential with decaying coupling constants (Section 3).

2 Decaying potential model

In this section we consider
2

dt?
where a € C*(R), a(—s) = a(s), non-increasing for s > 0, and

H:= +a(t)F(X;) on L*(R)

'a(s) =s5%1+0(1)), s—o00, a>0..

F € C*(M) for a torus M satisfying

(F) = /M Fa)dz =0
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(Xt)ter is a Brownian motion on M. Since this potential is compact with
respect to —‘%, Oess(H) = [0, 00) which is [12] (i) (o > ) absolutely contin-
uous, (ii) (& < 1) pure point, (iii) (e = %) pure point on [0, E] and singular
continuous on [E;, 00) for some E. > 0. '

2.1 Fluctuation of IDS

The results in this section are in [19]. Let Hy, := Hl|jp,r) be the local Hamil-
tonian of H restricted on [0, L] with Dirichlet boundary condition: And let

N(E) = ngxgo %ﬂ{ eigenvalues of H, < E}, E >0

e the integrated density of states (IDS) of H. Since the potential vanishes
at infinity, we have N(E) = Ny(E) := m~'v/E which is the IDS of the free
Laplacian, so that

Ny (K1, K2) := §{ eigenvalues of H, in (K2,k3)}, 0< k) <kg
satisfies
n
Ny (K1, ko) = ;(nz-— k1)(1+0(1)), n— oo.

The purpose of this section is to study the 2nd term asymptotics. This
problem is often studied in the context of the random matrix theory(e.g.,
[6]). In what follows, we state our results which are divided into three parts,
viz. a >3} a=3 and a < 3.

(1) Super-critical decay (q > 1) : weneed to take suitable subsequences.

Assumption A ,
A subsequence {n;}32, satisfies limy o nx = 00 and

‘{ﬁjnk}ﬁ‘ = + 0(1)3 .? = 13 23 k— oo

where v; € [0,7), [2], := |z/x|, and {2}, := 2 — |z /7] - 7.
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Theorem 2.1 (o > 3) Assume Assumption A. Then we can find random
constants C(ky, k2), ¢1, @2, M (K1, K2) Such that '

N, a.s. g '
Ni, (K1, K2) — f‘(ﬂz —m) = ;(C(M, Ka) + 61 — b2 + Moo(1, K2)).
as k — oo.

Remark 2.1 (1) Let 6;(x) be the Priifer angle defined later. Writing 6;(k) =
Kt + 0,(k), the following limit exists [12] : Ooo(k) := limy_o0 By(k). Then we
have ¢; = {0oo(k;) + Yi}n, § = 1,2. Moreover O(ky, kg) can be explicitly
written down using a(s), F(X;), and 05(k).

(2) Moo (K1, k2) is given by the t — oo limit of a martingale Mt so that it has
the same distribution as a time change of a Brownian motion.

(2) Critical decay (o= 1) :

Theorem 2.2 (o= 1)

Let {G(k)}x>0, G be the mutually independent Gaussian fields with
Cov (G(k),G()) = -2-65,,5:([9,;,?5]), k& >0

Cov (G, G) = ([g, g])
gk = (L + 22.”’)_1Fa g = L—I(F _.(F»,
(f,9]:=Vf-Vg.

Then in the sense of weak convergence of processes on (ky, k2) € (0,00)%,

{N (Hl,ﬁz)__(nz—n) Re (C;liz) 02'175::)) /0”(;(3)%13}.\/1;E
ma( )-—G( V- (5= -5=)C

2TKy 2Ky

as n — 0o, where Cl(n) = —(Fgx).

Remark 2.2 Killip [6] studz‘es the same problem for CMV matrices. But
they do not have constant term of the order of logn due to the rotational
invariance of the system.

(3) Subcritical - decay (a < 3)
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Theorem 2.3 (a < 2)
Set D := min{d € N |2 3 < d-+ 1}. Let {Gi(K)} ey, x>0) {Gt}te[o 1 be the
independent Gaussians such that

Cov (Gu(k), Ga(K)) = %&,x'(g""_’—zﬂj(t A sy

Cov (G, Gs) = i—[‘%]a)(t A )2

Then in the sense of weak convergence of processes on (K1, ka,t) € (0,00)% x
[0,00), we have

{ Noa(r, o) — _(@ ) - ZR (Cj(nz) B C’j(m)) /Ont a(s)j+1d€} n;,a

= 2T Ko 27Ky

1 1
- 27m2 (k2) TKy () 2mKky 2Tk Ge
where Cj(k) ,j=1,2,---, D are deterministic constants.

Remark 2.3 For any fized &1, ko, RHS above has the same distribution as
the linear combination of Brownian motions :

1' 1 1
2Ky Gt(@) B Gt(ﬁl) B (27m2 _ 27m1) Goy

4 1 1([9!92’-9@])3(2) _ 1 1<[gl€1’glc1]>B(1)
2k 2 1—2a P 21k, 2 1—2a BT

1 (9,9) .
(27m2 271%1)\ 1 — 9q De2e

"Remark 2.4 If a(s) satisfies a(s) = s*, s > R for some R > 0, we obtain
the following asymptotic expansion.of Npi(k1, Ka)-

nt .
Npi (K1, Kg) ~ ?(nz — K1) + Co(nt)' 2> + C3(nt) =3
+ -+ Cp(nt) =P+ | 3= Gaussian)

Remark 2.5 To summarize Theorems 2.1, 2.2, 2.8, 2nd order asymptotics
of Npi(K1, k2) 4s (i) (supercritical) O(1), (i) (cmtzcai) O(logn), (iii) (sub-
critical) O(n1 20} which grows as « tends to O reflecting the fact that IDS
for a =0 is entirely different from that of free Laplacian.



“To describe the idea of proof, let z, be the solution to the equation Hyz; =
K2z, 7o = 0 which we write using the Priifer coordinate :

z; \ _ [ sing, _
(mg/n)‘rt<coset)’ % = 0.

“Then by the Sturm oscillation theorem, Ny:(k1,%2) can be represented in
“terms of 8,;. Then it suffices to study the behavior of 8, as t — oo by using
the method introduced in [12].

2.2 Level statistics

The results in this section are from [9, 17, 10]. Let {Ey(L)}x>k, be the set
of positive eigenvalues of Hy,. Take Ey > 0 arbitrary as the reference energy.
To study the behavior of eigenvalues near Ej, we set the point process |

A= k;:o 0L /EnD Vo)

Our problem is to study the behavior of £, as L — o0o. As for the known
results, Killip-Stoiciu [11] studied this problem for CMV matrices and showed
that £ = lim;_,. &1 is equal to the clock process (o > %), Poisson process
(@ < 3), and the scaling limit of the circular S-ensemble (@ = 1). The

motivation of our work is to study the analogue of that for H. For the-

discrete Schrodinger operators, Avila-Last-Simon [2] and Mallik-Dolai [15]
1

showed the convergence to the clock process for a > 5 and Kritchevski-

Valkd-Virdg [13] showed the convergence to the scaling limit of the Gaussian
f3 - ensembles for a = 3.

(1) Super-critical decay (a> 1) :

Theorem 2.4 Assume Assumption A for a subsequence {ni} and v €
[0,7). Then we can find a probability measure p, on [0,7), such that

lim Efeé()] = / " djtog () exp (~ Y flnm— ¢)) :
k—o0 0 .
nezZ ‘
Iy is the distribution of ¢ = {Buo (ko) +Yo}x which also appeared in. Theorem
2.1. ¢ is uniformly distributed on [0,7) for o < %, while it generically is not
foro> 3.
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(2) Critical decay (o= 1) :
We first introduce two (- ensembles in the random matrix.theory.

(i) circular S-ensemble : consider the n-points 6,8, -,0, on T =~ (—m, ]
according to a probability distribution proportional to |A(e®, €%z, . . - | ¢¥n)|#
“and let '

n
C._ 7
G = ,}LI&Z:I‘S”%
J=

be the scaling limit of that. Killip-Stoiciu [11] gave the characterization of
¢§ as follows.

E[e—Cg(f)] =R

/027r % ekp (— Z%f (\Ifl“l(Zmr + 0)))]

where {U;(-)}+»0 is the increasing function-valued process such that
{;(A\)}e>0 is the solution to the following SDE.

dU,(\) = Adt + \/—i-ﬁRe {(€"® ~1)dz,}, (2.1)
To(N\) =0

where Z, is the complex Brownian motion.
(i) Gaussian (-ensemble : this is the ensemble of n points A1, Ag,- -+, A, on
R distributed proportional to exp (—g Shy Ai) A, -+, M) [P Let

Cl? = ,}Lnolo E On;y  Nji=1fdn— BE(A; — pin)
j=1

be the scaling limit of that. Assuming n'/® (2y/n — |p.|) — oo (i.e., apart
from Tracy-Widom region), Valké-Virdg [20] gave the characterization of ¢§

as follows. Let
N(X) := #{ points of ¢§ in [0, X]}

be the counting function of Cg. Then we have
N £ —\1'1 M)

where Uy, t € [0,1) is the solution to the following SDE.
D(Eo)

aW() = Ndt + =R

To(A) =

e [ —1)dz,], (2.2)
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(limyy U,(A) € 27Z, a.s. ) (5 is called the Sineg-process.

Roughly speaking, these two SDE’s correspond to solving the same SDE .

from the opposite side : (2.1) has a singularity at ¢ = 0, but the solution \IIKS

is continuious for ¢ > 0, on the other hand, (2.2) does not have singularity

but its solution approaches to an element of 2nrZ. We showed

Theorem 2.5 .
(1) &7 (F, (2) & "5 ¢§ with B = B(Ey) = 8x3/C (ko) = Y(Bo) ™.

where ¥(E) is a “Lyapunov exponent” in the sense that the solutzon to Hy =

Ev satisfies y(z) ~ |z|~7®) for large |a:|

Then we have B(E) < 2 (resp. B(E) > 2) for E < E, (resp. E > E_) and
B(E.) =2 (Figure 1).

0 p.p. E, s.C.

L 1

B <2 B=2 6>2
Figure 1: Spectrum and corresponding 3.

As for the related works, Dumitriu and Edelman [5] considered the the
following random Jacobi matrices

| No xp
H = L xs N1 Xxeop

where N; = N(0,2), and ; is the chi square distribution of freedom ¢. They
found that the eigenvalues of H, := H|{12...n) obey Gaussian [-ensemble.
Breuer, Forrester, and Smilansky [3] showed that the spectrum of H is pure
point (# < 2) and singular continuous (8 > 2). Similar result also holds
for CMV matrices. This is also consistent with the general belief that the
level repulsion is weaker (resp. stronger) on point spectrum (resp. continuous
spectrum). Moreover B(Ejp) is smooth with respect to Eg and limpg, o 8(Ep) =
0, limg, 00 B(Ep) = 00 so that all B’s are realized as Ey ranges over (0, co).
Therefore as a corollary, we have
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Corollary 2.6 The limits of Cg-ensemble and Gﬁ—ense{mble are equal :

¢ L ¢§
for all B > 0.
Remark 2.6 (1) This fact had previously been known for specific 8’s, e.g.,

B=1,2,4.
(2) Valks-Virdg have a direct proof of this fact (private communication).

Remark 2.7 Valkd-Virdg [20] showed that Sineg-process has a “phase tran-
sition” between at B =2 : :
(i) For 8 < 2, Wy()) approaches to 2nZ from below a.s.

(it) For B > 2, W.(X) approaches to 2nZ from above with positive probability.

Remark 2.8 (1) As 8 1 oo, Sineg > Clock process (p uniform on [0,27])
[14, 18]

(2) Allez - Dumaz [1] showed that as 8 | 0, Smeﬁ <, Poisson ((2m)~1dA),
where Poisson (p) is the Poisson process with intensity measure p.

They are also consistent with the observation in Figure 1.

(3) Sub-critical decay (a < 3)
Theorem 2.7 '

& Poisson(n1d)).

(4) Outline of Proof ‘
Let (ry,6;) be the Priifer coordinate introduced in Section 2.1 and let

\I’L(A) = 91,(&0 + %) — 01,(&0), Ko = \/E';

be the relative Priifer phase. Then we have

exp (—' Y (¥ — (o, L»))}

n2n(L)-m(xo,L)

E[e—&,(f)] =E
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 where m(ko, L) := [01, (0, L], $(50, L) := {81 (i, L)}=. Thus our task is to
study the joint limit of (¥, ¢(ko, L)). We replace L by n, and consider

n 1 10s(x 1 :
U (N) i= One(2) — Oe(Ko) ~ Xt + s Re / a(s) (M%) — X0 P(X,)ds

where k) := kg + %, n>0,t € [0,1]. Here we use “Ito’s formula” :
¥ F(X,)ds = d(¥°g.(X,)) — €***V g, (X,)d X,
where g, := (L + 2ik)~'F, and L is the generator of (X;). We then have

1 t .o (n
T () ~ X+ n%"az_,%Re /0 57N _1)VgdX,

where 1 (resp. —a) in the exponent of n comes from the Brownian scaling
(resp. decay rate of the potential). It is then natural to expect

(1) supercritical case (a > 1) : UM(\) — M, ass.

(2) critical case (a = 1) : T{W()) 4 \I!t()\) : solution to SDE,

(3) subcritical case (o < 1) : ™ (A) 4 Poisson jump process.’

for the proof of (3), we use the idea of Allez - Dumaz[1]. Moreover in the sub-
critical case (3), we also have lim,_co \Il(")(/\) = mwPoissongr2([0,t] x [0, A]),
with intensity measure 719y (s)dsdX. This fact can be regarded as a
counterpart of the fact that in the Anderson model, the pair of eigenvalues
and eigenfunctions jointly converge to the multi-dimensional Poisson process
[7, 16].

3 Decaying coupling constant model

In 1d, the localization length of H = —A -+ AV is typically O(A~?) so that
Hy, := H|jpz) is believed to be (i) extended if L < 5%, (ii) localized if L > 3,
(iii) critical if L ~ ,\% Motivated by this observation, we consider

d?
di? v
with Dirichlet boundary condition. By the discussion above, we expect that
the property of Hy, would be different between o > 7 and a < 1. By the
method described in Section 2, we can study the fluctuation of IDS and level
statistics which we state below. We use the same notation as Section 2.

Hy=—— ,\LF(X,) on L20,L], Ap:=L"% a>0
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3. 1 Fluctuation of IDS
The results in this section are from [19].
Theorem 3.1 Let a > 5 and assume Assumption A. Then we have

Nag(1,12) = 222 = 1) 25 = (61 = 60).

Theorem 3.2 Let o = ; and assume Assumption A. Let {G(k)}x>0, G be
the Gaussian fields given in Theorem 2.2. Then we have '

Nnk(ﬁl, KQ) — %(}’62 — I‘G]) — Re (C;l”fzz) - 02171('22)> — 7}!_‘(¢2 - ¢1)
1 1
27m 2y O (F2) — ——G( 1) = (27m2 - 27m1> G

Theorem 3.3 Let D := min{d € N[5 < d+1}. Let {Gi(k)}iepo,1,x50,
{Gi}epo) be mutually independent Gaussian fields such that

Cov (Gulk), G(K)) = 5 {lgm T A 52
Cov (G, Gs) = ([9, 9) (t A 5)' 2.

Then as the processes on (Ki, kg, t) € (0,00)? x [0, 00),

{Nnt(’fl;K/Z) B %—t-(ﬁg ) - iRe (C’j(nz) B Cj('ﬁ)) (nt)l‘("”)"‘};j—_;

2MKy 2mK, 3

1 .
Gilrn) = (27m2 27m1> G

3.2 - Level statistics

d
- 2Ky Gt(@)

The results in this sections are from [17, 10].

Theorem 3.4 Let o > %, and assume Assumption A. Then we have

én (f) =
klilgoE[e k exp( 7ng(??ﬂf 7))



Theorem 3.5 Let o = 1 and assume Assumption A. Then Cg‘:" =
limy_, 00 &n, Satisfies

Efe$"N) = E [exp‘(_ Sf (\p;l(zmr - 27)))]

nez
where V() is the solution to

d¥,(A) = (27 + Cp) dt + Cy Re &*NdZ, + CydB,,
Tp(N) =0,

where Zy, By are independent. This is similar to (Sch), studied by Krichevski-
Valkd-Virdg [13].

Theorem 3.6 Let o < §. Then £, — Poisson(n1d\).
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