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Abstract

Considered is a family of irreducible Weyl representations of canonical commuta-
tion relations with infinite degrees of freedom on the abstract boson Fock space over
a complex Hilbert space. Theorems on equivalence or inequivalence of the represen-
tations are reported. As a simple application, the well known inequivalence of the
time-zero field and conjugate momentum of different masses in a quantum scalar field
theory is rederived with space dimension d > 1 arbitrary. Also a generalization of
representations of the time-zero field and conjugate momentum is presented. Com-
parison is made with a quantum scalar field on a bounded space of RY. In the case of
a bounded space with d = 1,2, 3, the representatlons of different masses turn out to
be mutually equivalent.
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1 Introduction

In the canonical formalism of quantum field theory (e.g, [1, Introduction]), a Bose field
theory on the (1 + d)-dimensional space-time R x R? with d € N being the space dimen-
sion is constructed from a representation of the canonical commutation relations (CCR)
over S (R?) (the Schwartz space of real-valued rapidly decreasing infinitely differentiable
functions on R?) with the inner product of L2(R?) or a similar real inner product space,
giving a time-zero field and its conjugate momentum which are quantum fields on R? (for
the definition of representation of CCR, see Subsection 2.1). On the other hand, there
exist many representations of the CCR over a real inner product Hilbert space which are
mutually inequivalent. If the time-zero field and its conjugate momentum in a Bose field
theory are inequivalent to those in another Bose field theory, then these two Bose field
theories are inequivalent. Therefore it is'important to classify representations of the CCR
over a real inner product space into mutually equivalent ones and inequivalent ones.



It is well known [6, §X.7] that the time-zero field ¢,,(f) and conjugate momentum
7m(f) of a free scalar field on the four-dimensional space-time R x R3 with mass m > 0
(f € S&(R3)) give an irreducible Weyl representation of the CCR over F&(R3) (see
Definition 1-(ii) below). Moreover, interestingly enough, the quantum fields of different
masses are inequivalent, i.e., if my # mga (m1, mg > 0), then there is no unitary operator
U such that, for all f € SR(R?), Upm, (/U™ = ¢m,(f) and Umpm, (AU = mmy(f) ([6,
Theorem X.46]). This.fact gives a representation theoretic characterization for boson mass.
Namely the set of boson masses can be viewed as an index set of mutually inequivalent
irreducible Weyl representations of the CCR over .%g (R3). This is an example which shows

* physical importance of inequivalent representations of CCR.

The proof of the above fact given in [6, Theorem X.46] uses the Euclidean invariance
of the operators ¢m(f) and mm(f). This comes from “the idea that Euclidean invariance
is deeply connected with questions of inequivalence of representations of the CCR” [6,
p-329]. But, in our intuition, there should be a general structure behind it. Indeed, in the
previous paper [3], the author showed that this intuition is true by establishing an abstract
theorem on inequivalence of representations of CCR on the abstract boson Fock space and
rederiving the above fact as an application of the abstract theorem. This work clarifies
a more essential and fundamental reason why the representations {@m, (f), Tm, (f)|f €
SR} and {dmy(F), Tme (FHIf € FR(R?)} (my # my) are inequivalent. Schematically
speaking, the infiniteness of R® implies the continuity of the energy spectrum of one free
boson, which, in turn, implies the non-Hilbert-Schmidtness of an operator which makes
the two representations inequivalent.

In [3], a generalization of the representation {¢,,(f), Tm(f)|f € F&(R3)} also is pre-
sented-in such a way that the energy function wy, of a free relativistic boson with mass m
is replaced by a general function and the space R3 is replaced by R? with d € N arbitrary,
and a theorem on equivalence of the representations in the generalized family is proved.

Since infinity in space may give rise to inequivalence of representations {¢m(f), Tm(f)|f €
F&(R3)}, also a quantum field on a bounded space of R? is discussed in [3] for compar-
ison. In this case with d = 1,2,3, representations of time-zero fields of different masses
are mutually equivalent, in contrast to the case of the infinite space R%. This may be an
interesting phenomenon to note.

The present article is a short summary of some results in [3].

2 Preliminaries

2.1 Representations of the CCR: over a real inner product space

We first recall concepts of representation of the CCR over a real inner product space. For
a Hilbert space J#, we denote its inner product and norm by (-,-) 5 (linear in the right
variable and anti-linear in the left variable if 5% is a complex Hilbert 'space) and || - [l
respectively. :

Definition 1 Let % be a complex Hilbert space, %y be a dense subspace in % and ¥
be a real inner product space. Suppose that, for each f € ¥, closed symmetric operators
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¢(f) and p(f) on & are given. -

(i) The triple (£, %o, {q(F),p(f)|f € ¥}) is called a Heisenberg representation of the
CCR over V¥ if, for all f € ¥, %o C D(q(f)) N D(p(f)) and ¢(f) and p(f) leave F
invariant, satisfying the CCR '

la(f),p(9)) =i(f.9)y, [a(f),a(@)=0, [p(f).p(9))=0, f.ge¥, (1)
on .

(ii) Assume that, for each f € ¥, q(f) and p(f) are self-adjoint. Then (&, {€?(f),
e?(N|f € ¥}) is called a Weyl representation of the CCR over ¥ if the Weyl relations
i) eipla) — g=ilf:9)x gip(9) gia(f) @)

el gialo) — gia9)gia(f) i) iple) = ip(A)i?f) £ 0y, (3)

hold.

The Wey! representation (&, {¢4(f), (/)| f € ¥}) is said to be irreducible if there
is no non-trivial closed subspace left invariant by all e4(f) and ), f € ¥ (ie.,
if a closed subspace .# of & satisfies that, for all f € ¥, 9. C .# and
Pt C M, then A = {0} or F). _ '

(iii) Let p := (F, Fo,{q(f),p(NIf € ¥}) and o' = (F', Fg, {a(f);p(F)'|f € ¥'}) be.

Heisenberg representations of the CCR over #. Then p and ¢ are equivalent if there
exists a unitary operator U : & — &' such that Ug(f)U~! = q(f), Up(f)U™! =
p(f) forall feV.

(iv) Let p := (&, {9, eP|f € ¥}) and p = (&', {4V, eP)'|f € ¥}) be Weyl
representations of the CCR over ¥. Then p and o' are equivalent if there exists a
unitary operator U : & — &' such that Ug(f)U™! = q(f), Up(f)U~! = p(f)’ for
all fe 7.

Remark 2 (i) In our definition, the operators forming a Heisenberg representation are
not necessarily self-adjoint. ,

(ii) A Weyl representation (&, {e¥4(),eP(f)|f € #}) is a Heisenberg representation
(F, %0, {a(f),p(H)If € #}) for a suitable Fy. But the converse is not true. This
situation already occurs in the case where ¥ is finite dimensional (see [2, Chapter 3] and
references therein).

(iii) In the case where ¥ is finite dimensional, all irreducible Weyl representations of
the CCR over ¥ are mutually equivalent (von Neumann’s uniqueness theorem [5]). But,
as for Heisenberg representations, von Neumann’s uniqueness theorem does not hold in
general.
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2.2 Boson Fock space and Fock representation of CCR

Let
Fo(H) = @plo ® H

be the boson Fock space over a complex Hilbert space 7€, where Q¢ denotes the n-fold
symmetric tensor product Hilbert space with ®05¢ := C, and A(f) be the annihilation
operator with test vector f € # on (), ie., it is a densely defined closed linear
operator on F,(#°) such that, for all & € D(A(f)*), (A(f)*¥)©® =0 and

(A D)™ = /a8, (f @ T V), n>1,

where S, is the symmetrization operator on the n-fold tensor product Hilbert space ®@™.7¢.
The adjoint A(f)* of A(f) is called the creation operator with test vector f.!
The subspace

Fo() = {T = {TM}, | ¥ e@P#,n>0,3n €N, Vn > ng, ¥™ =0},

called the finite particle subspace, is dense in F,(J#). It is easy to see that, for all f € 52,
Fo(I) € D(A(f)) N D(A(f)*) and A(f) and A(f)* leave Fo(H) invariant, satisfying

[A(F), A(9) 1 =, 9 e, [A(F),Al9) =0, [A(f)",A(9)’]=0 (fges) (4)
on Fp(H#).
A natural operator constructed from A(f) and A(f)* is the Segal field operator:

B(f) == %_(A(f)*# A7), feox,

It is shown that ®(f) is a self-adjoint operator on %, () and is essentially self-adjoint
on Fo(H7). It follows from (4) that, for all f,g € 5,

[8(f), B(9)] = iS5 (£, 9) )

on Fo(IH).
The operator
I(f) = 2(if), feH

is called the conjugate momentum of .‘I>( f)- By (5), we have
[2(), 9| =R (f,0)es fr9€ .

Let C be a conjugation on S, i.e., C is an anti-linear mapping on ¢ such that C?=1
(identity) and ||Cfllse = ||fll¢, f € ##. Then the subset

Hp ={f € H|Cf = [}

! As a general reference for the theory on boson Fock space, we refer the reader to [1, Chapter 4].
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is a real Hilbert space with the inner product of J#°. It is easy to see that each f €  is
uniquely written as

f=Rf+iSf

with
f+Cf

2

f-Cf

Rf = 2

€ H#

€ Iy, Sf:=

Let
pc(f) =2(f), mc(f)=1(f), fe€Hp.

Then one can show that (%, (), {e#c(f), emcf)|f € A%} is an irreducible Weyl repre-
sentation of the CCR over % [6, Theorem X.43 and Appendix to X.7]. This representa-
tion is called the Fock representation of the CCR over 7.

3 A Family of Irreducible Weyl Representations of CCR
Let T be an injective self-adjoint operator on 4# (not necessarily bounded) such that
CT CcTC.

Then it is easy to see that, for all f € D(T), Rf in # N D(T) and R(Tf) = TRf.
Moreover, D(T*') N 24 is dense in #% and T (D(T*!) N 3) C 5.
We introduce new fields:

r(f) :=dc(T7f), feDT H)nHg,
Or(f) :=mnc(iTf), feD(T)NHg.

Let ¥ be a dense subspace in S% and Sy(5#) be the set of injective self-adjoint
operators T on S# satisfying the following conditions: '

(T.1) CT c TC
(T.2) ¥ € D(T)ND(T-*) and T*'¥ are dense in 5.

’i‘heorem 3 {7 M| f € ¥} is an irreducible Weyl representation of the CCR
over V':

i®r(Nir(9) — o=ilf.9)s¢ ¢illz (9) Gi®T(f),
®r(Ngi®r(s) — ¢i®r(@)i®r(f) GMr(Neillz(9) — (M) ilr () f gy,

4 Main Theorems

Theorem 4 Let Ty, Ty € Sy (H#) such that the following (a) and (b) hold:
(2) D(TTITRTTY) N D(TVT 2Ty and D(Ty \T2TyY) 0 D(TyT 2 Ty) are dense in .
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(b) Ty Ty and ToTy are bounded with ¥ C D(Ty 'Th) N D(TRT7 ) N D(TT ) N
D(TyTyY).
Then {1 Ui f € ¥} is equivalent to {e®n() ()| f ¢ ¥} if and only if
Ty ' — ToT7 s Hilbert-Schmidt.

Remark 5 The conditions for 77 and 75 in Theorem 4 afe related to an equivalence '

relation in a subset of Sy (5#). Let
Sy ()% := {T € Sy(H#)|T is surjective}.

Then, for all T € Sy(#)%, T~! € B(H#). For T1, T, € Sy (), we write Ty ~ T3 if
TT L, TiTyt € B(o#) and Ty 'Ty — ToTy ! is Hilbert-Schmidt. It is easy to see that the
relation ~ is an equivalent relation in Sy (J#)*.
Let
pr = {eiér(f)’eil'lr(f)lf e}

and T1,T» € Sy (#)*. Then pr, is equivalent to pr, if and only if T3 ~ T and condition
(a) holds.

In the case where at least one of 15 17y and ToT; ! is unbounded, the proof of Theorem
4 is not valid any more. In this case, we need a separate consideration. To state a theorem
in such a case, we need a lemma.

Lemma 6 For all T1,Ty € Sy (5%),
Ty =Ty T + TpTyt (6)
is injective.

Let .
T =Ty — It (7

Theorem 7 Let Ty, Ty € Sy () such that the following (a) —(c) hold:
(a) (M) N(T7YY) is dense in Hp.
() {T4fIf € (Y) N (TT1F)} is dense in .
(¢) T_T;* is bounded and its closure Ei:_l is not Hilbert-Schmidt.
Then pr, is inequivalent to pr,.

Remark 8 In Theorem 7, the i’y 1T1 and ToT7 1 are not riecessarily bounded.
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5 Application—Inequivalence of Time-Zero Fields and Con-
jugate Momenta of Different Masses in Any Space Dimen-
sion

We denote by R? = {z = (z1,...,%a)lz; € R,j = 1,...,d} the d-dimensional position

space and by R¢ = {k = (ki1,...,kq)lk; € R,j =1,...,d} the d-dimensional momentum
space?. Let &, : L2(R%) — L2(R¢) be the Fourier transform:

(Paf)8) = F6) 1= o [ oS @hia, S € L@

in the L2-sense, where kz := E k;jz;. We consider the boson Fock space F(L*(R%))

over L2(Rd) and we denote the annlhllatlon operator on this Fock space by a(f) (f €
L2(R$)). Then the time-zero field ¢ (f) (f € FR(R%)) and its conjugate momentum
7m (f) for the standard neutral scalar field with mass m > 0 is defined by

fm(f) = f(a(w“1/2f)*+a<w,;”2‘f>),
mnlf) = =5 (alH? ) - alwil*),

where wy, (k) == V&% +m?, k € RE.

Let
{ S&(RY) for m >0

Yim =\ (f € S®)[supp f C RI\{0}} form=0

Then ; i
- {ez¢m(f),e“'m(f)|f € Yam} ®)

is an irreducible Weyl representation of the CCR over % ,.

Theorem 9 Let mi, my > 0 with my # ma. Then 7, is inequivalent-to Tmg-

Proof (outline). We denote by T;,, the multiplication operator on L%(R¢) by the function
wm’?. We define a mapping C : L%(R¢) — L?(R¢) by

(Cu)(k) := u(—k)*, wue L*RY(, aekcRE.
Then it is easy to see that C is a conjugation and CT,,, C T;,C. Morever,
Z:5(R3) = {fIf € A®]), Cf = f}.

We note that X
On(f) = @7,.(f), 7m(f) = HTm(f)>

2We work with the physical unit system where the light speed ¢ and the Planck constant 7 divided by
27 are equal to 1.
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where ®(-) and II(-) are resepectively the Segal field operator and its conjugate momentum
on F,(L*(RY)). Hence it follows that 7y, is equivalent to 7, if and only if pr,, is
equivalent to pr,,, -

Lét my,mg > 0. Then
Wma

N

Ty T'r;;gl =

is bounded and )
m3 —mj

VP Oy (Wimg + Wny)

This is Hilbert-Schmidt if and only if m; = mg. Hence, if m; # mag, then, by Theorem 4,
PT,., is inequivalent to pr,,. The case where one of m; and mg is equal to zero can be
similarly treated. 1

Ty Ty = Ty Ty =

Remark 10 The method of proof of Theorem 9 presented here is different from that used
in the proof of {6, Theorem X.46] (Theorem 9 with d = 3) and simpler.

Remark 11 As is seen, the non-Hilbert-Schmidt property of T, T, —Tim, Ty in the case
my # gy comes from that the spectrum of the one-particle Hamiltonian wy, is continuous.
The continuity.of the spectrum of wy, is due to that the one-particle momentum operator
is purely (absolutely) continuous. On the other hand, the continuity of the spectrum of
the momentum operator comes from that the position space is R?. Thus the inequivalence
between 7y, and 7,,, comes from that the position space in which bosons exist is R?.

6 A General Family of Inequivalent Representations of CCR
on Fy,(LA(RY))

As an application of Theorems 4 and 7, one can construct a general family of inequivalent
representations of CCR on %, (L*(R$)) including {7,|m > 0}.
Let v : R? — R such that

v(k) = v(—=k), 0<|v(k) <oco, aekeRE,

and V := (—iDy,...,—iDg), where D; is the generalized partial differential operator in

z;. The operator
v(—iV) = F; wFy

acting in L2(R9) is self-adjoint, injective and
Cyqu(—iV) C v(—iV)Cy,

where Cyf = f*, f € L*(R2). _
Let 94 be a dense subspace in LERY) = {f € L2(R3)|Cyf = f} satisfying the
following conditions:

(i) 94 € D(v(—iV)) N D(u(=iV)~Y).
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(ii) v(-iV)%4 and v(—iV)719, are dense in L& (RZ).
We introduce operators ¢, (f) and m,(f) (f € Za) as follows:

$o(f) == @(v(—iD)7Yf), my(f) :=(v(~iD)f), f € P, @)

where ®(-) and II(-) are respectively the Segal field operator and its conjugate momentum

on F,(L2(RY)).

Lemma 12 {eid’"(f ), gimo(f )I f € D4} is an irreducible Weyl representation of the CCR
over 9.

Lemma 13 Let v1. and vy be functions on R? having the same properties as those of v
described above. Suppose that v1/ve and va/vy are essentially bounded. Then

W = (v2(—iV)~luy (—iV) — v2(—iV)v1 (—iV)1).
is bounded. Moreover, W is Hilbert-Schmidt if and only if vi = va.

Theorem 14 Let vy and vz be functions having the same properties as those of v described
above. Suppose that vi/vs and va/vy are essentially bounded. Then {ei¢1 () eimn(N|f €
D4} and {e) e ()| f € 9,} are inequivalent if and only if v1 # va.

In the case where vy /vs and vs /vy are not necessarily essentially bounded, we have the
following theorem. :

Theorem 15 Letvi and vz be functions having the same properties as those of v described
above and vy # vy. Let

94,,,1 = (’Ul(—-iV‘)gd) N (n (—‘—iV)—lgd)

and
Ty s+ = va(—iV) 01 (—iV) & vp(—iV)v (—iV) L.

Suppose that the following (a) and (b) hold:
(a) Daw, is dense in L} (RY).
(b) T4+ Pan, is dense in LE(RE).

Then {e¢ () eim(N|f € 9,4} is inequivalent to {e*v(f), e ()| f € 94}
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7 Quantum Fields on a Bounded Space

In view of Remark 11, it may be interesting to consider quantum fields on bounded space
in RE.

Let M be a bounded connected open set in R% and Aq := Z?:l 0%/ 89:? with domain
D(Ap) := C§°(M), acting in L2(M). Let AM) be any self-adjoint extension of Ag such
that

(i) A <o,
(i) CyrAM) ¢ AMDCy,, where Cyy is the complex conjugation on L2(M );

(iii) The spectrum of '——A‘M ) is purely discrete. The eigenvalues of —AM) are labeled as
{An}ner with T = N¢ or ({0} UN)<, counting multiplicities, and, for some constants
c1,¢3 > 0 with ¢1 < g,

aln)? <y <ealn)?, nel. (10)

Example 16
(i) AM = Ap (the Dirichlet Laplacian in M)
(ii) A®) := Ay (the Neumann Laplacian in M)

(iii) In the case where M = (—L1/2,L1/2) x --- x (—=Lg/2,La/2), AM) = Ap (the
Laplacian with the periodic boundary condition).

The one-particle Hamiltonian with mass m > 0 in the present context is given by
M = (—AM) 4 p2)1/2

acting in L2(M). This is a strictly positive self-adjoint operator with kM > m > 0. It
follows from the assumption of A(M) that there exists a CONS {fn|n € T'} of L2(M) such
that

DM fy = Anfa, meT,

and each f, is a real-valued function. Let ¥} be the real subspace algebraically spanned
by {fn|n € T'}. Then ¥4 is dense in the real Hilbert space L(M). For all a > 0,

¥M c D(RM)), (RMyEeyM = yM,

Hence conditions (T.1) and (T.2) with T = (kM)'/2 and ¥ = ¥ are satisfied.
Let ®™(-) be the Segal field operator on Fy,(L?(M)) and

SM(f) o= SM((WM)V2F), M (f) = BMEHM)2F), e VM.

Then o -
pM = {eZ¢m () gimm AN|f e M}

is an irreducible Weyl representation of the CCR over ™. One can prove the following
theorems:
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Theorem 17 Let mi,mg > 0 and my # mg. Then p,l‘,’{l and p;",’{2 are equivalent if and
only if d < 3.

Theorem 18 Let m > 0 .and 0 ¢ o(AM)). Then pM is equivalent to p}! if and only if
d<3.

These theorems show that, in the case d = 1,2,3, the infiniteness of the space on
which quantum fields exist is crucial for the inequivalence of time-zero fields-and conjugate
momenta of different masses.

Remark 19 Considerations similar to those given in the present paper can be done for
quantum Dirac fields of different masses which are representations of the canonical anti-
commutation relations over a complex Hilbert space. See [4] for details.
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