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Abstract

Considered is a family of irreducible Weyl representations of canonical commuta‐

tion relations with infinite degrees of freedom on the abstract boson Fock space over

a complex Hilbert space. Theorems on equivalence or inequivalence of the represen‐
tations are reported

\cdot

. As a simple application, the well known inequivalence of the

time‐zero field and conjugate momentum of different masses in a quantum scalar field

theory is rederived with space dimension  d\geq 1 arbitrary. Also a generalization of

representations of the time‐zero field and conjugate momentum is presented. Com‐

parison is made with a quantum scalar field on a bounded space of \mathbb{R}^{d} . In the case of

a bounded space with d=1 , 2, 3, the representations of different masses turn out to

be mutually equivalent.

Keywords: Boson Fock space, canonical commutation relations, inequivalent representa‐
tion, quantum field, time‐zero field, Weyl representation.
Mathematics Subject Classification 2010: 81\mathrm{R}10, 47\mathrm{L}60.

1 Introduction

In the canonical formalism of quantum field theory (e.g, [1, Introduction a Bose field

theory on the (1+d)‐dimensional space‐time \mathbb{R}\mathrm{x}\mathbb{R}^{d} with d\in \mathrm{N} being the space dimen‐

sion is constructed from a representation of the canonical commutation relations (CCR)
over \mathscr{S}_{\mathbb{R}}(\mathbb{R}^{d}) (the Schwartz space of real‐valued rapidly decreasing infinitely differentiable

functions on \mathbb{R}^{d} ) with the inner product of L^{2}(\mathbb{R}^{d}) or a similar real inner product space,

giving a time‐zero field and its conjugate momentum which are quantum fields on \mathbb{R}^{d} (for
the definition of representation of CCR, see Subsection 2.1). On the other hand, there

exist many representations of the CCR over a real inner product Hilbert space which are

mutually inequivalent. If the time‐zero field and its conjugate momentum in a Bose field

theory are inequivalent to those in another Bose field theory, then these two Bose field

theories are inequivalent. Therefore it is important to classify representations of the CCR

over a real inner product space into mutually equivalent ones and inequivalent ones.
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It is well known [6, §X.7] that the time‐zero field $\phi$_{m}(f) and conjugate momentum

$\pi$_{m}(f) of a free scalar field on the four‐dimensional space‐time \mathbb{R}\times \mathbb{R}^{3} with mass m>0

(f\in \mathscr{S}_{\mathbb{R}}(\mathbb{R}^{3})) give an irreducible Weyl representation of the CCR over \mathscr{S}_{\mathbb{R}}(\mathbb{R}^{3}) (see
Definition l‐(ii) below). Moreover, interestingly enough, the quantum fields of different

masses are inequivalent, i,e., if m_{1}\neq $\gamma$ n_{2}(m_{1}, m_{2}>0) ,
then there is no unitary operator

U such that, for all f\in \mathscr{S}_{\mathrm{N}}(\mathbb{R}^{3}) , U$\phi$_{m1}(f)U^{-1}=$\phi$_{m2}(f) and U$\pi$_{m}1(f)U^{-1}=$\pi$_{m}2(f)([6,
Theorem X.46]). This. fact gives a representation theoretic characterization for boson mass.

Namely the set of boson masses can be viewed as an index set of mutually inequivalent
irreducible Weyl representations of the CCR over \mathscr{S}_{\mathbb{R}}(\mathbb{R}^{3}) . This is an example which shows

physical importance of inequivalent representations of CCR.

The proof of the above fact given in [6, Theorem X.46] uses the Euclidean invariance

of the operators $\phi$_{m}(f) and $\pi$_{m}(f) . This comes from �the idea that Euclidean invariance

is deeply connected with questions of inequivalence of representations of the CCR�� [6,
p.329]. But, in our intuition, there should be a general structure behind it. Indeed, in the

previous paper [3], the author showed that this intuition is true by establishing an abstract

theorem on inequivalence of representations of CCR on the abstract boson Fock space and

rederiving the above fact as an application of the abstract theorem. This work clarifies

a more essential and fundamental reason why the representations \{$\phi$_{m}1(f) , $\pi$_{rn1}(f)|f\in
\mathscr{S}_{\mathbb{R}}(\mathbb{R}^{3})\} and \{$\phi$_{m2}(f), $\pi$_{m}2(f)|f\in \mathscr{S}_{\mathbb{R}}(\mathbb{R}^{3})\}(m_{1}\neq m_{2}) are inequivalent. Schematically
speaking, the infiniteness of \mathbb{R}^{3} implies the continuity of the energy spectrum of one free

boson, which, in turn, implies the non‐Hilbert‐Schmidtness of an operator which makes

the two representations inequivalent.
In [3], a generalization of the representation \{$\phi$_{m}(f), $\pi$_{m}(f)|f\in \mathscr{S}_{\mathbb{R}}(\mathbb{R}^{3})\} also is pre‐

sented in such a way that the energy function $\omega$_{m} of a free relativistic boson with mass m

is replaced by a general function and the space \mathbb{R}^{3} is replaced by \mathbb{R}^{d} with d\in \mathbb{N} arbitrary,
and a theorem on equivalence of the representations in the generalized family is proved.

Since infinity in space may give rise to inequivalence of representations \{$\phi$_{m}(f) , $\pi$_{rn}(f)|f\in
\mathscr{S}_{\mathbb{R}}(\mathbb{R}^{3})\} , also a quantum field on a bounded space of \mathbb{R}^{d} is discussed in [3\mathrm{J} for compar‐

ison. In this case with d=1 , 2, 3, representations of time‐zero fields of different masses

are mutually equivalent, in contrast to the case of the infinite space \mathbb{R}^{d} . This may be an

interesting phenomenon to note.

The present article is a short summary of some results in [3].

2 Preliminaries

2.1 Representations of the CCR over a real inner product space

We first recall concepts of representation of the CCR over a real inner product space. For

a Hilbert space \mathscr{H} , we denote its inner product and norm by \rangle_{\mathscr{H}} (linear in the right
variable and anti‐linear in the left variable if \mathscr{H} is a complex Hilbert space) and \Vert\cdot|\cdot|_{\mathscr{H}}
respectively.

Definition 1 Let \mathscr{F} be a complex Hilbert space, \mathscr{F}_{0} be a dense subspace in \mathscr{F} and  $\gamma$

be a real inner product space. Suppose that, for each  f\in $\gamma$ , closed symmetric operators
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 q(f) and p(f) on \mathscr{F} are given.

(i) The triple (\mathscr{F}, \mathscr{F}_{0}, \{q(f),p(f)|f\in\prime $\gamma$\}) is called a Heisenberg representation of the

CCR over  $\gamma$ if, for all  f\in $\gamma$, \mathscr{F}_{0}\subset D(q(f))\cap D(p(f)) and q(f) and p(f) leave \mathscr{F}_{0}
invariant, satisfying the CCR

[q(f),p(g)]=i\{f, g\}_{ $\gamma$}, [q(f), q(g)]=0, |p(f),p(g)]=0, f, g\in $\gamma$ , (1)

on \mathscr{F}_{0}.

(ii) Assume that, for each f\in $\gamma$, q(f) and p(f) are self‐adjoint. Then (\mathscr{F}, \{e^{iq(f)},
e^{ip(f)}|f\in $\gamma$\}) is called a Weyl represeniation of the CCR over if the Weyl relations

e^{iq(f)}e^{ip(g)}=e^{-i(f,g)_{\mathrm{V}}}e^{ip(g)}e^{iq(f)} , (2)
 e^{iq(f)}e^{iq(g)}=e^{i\mathrm{q}(g)}e^{i\mathrm{q}(f)}, e^{ip(f)}e^{ip(g)}=e^{ip(g)}e^{ip(f)} , f, g\in n\parallel , (3)

hold.

The Weyl representation (\mathscr{F}, \{e^{iq(f)}, e^{ip([)}|f\in\prime $\psi$\}) is said to be irreducible if there

is no non‐trivial closed subspace left invariant by all e^{iq(f)} and e^{ip(f)}, f\in r (i.e.,
if a closed subspace \mathscr{M} of Pt satisfies that, for all f\in\prime $\psi$, e^{iq(f)}\mathscr{M}\subset \mathscr{M} and

e^{ip(f)}\mathscr{M}\subset \mathscr{M} , then \ovalbox{\tt\small REJECT}=\{0\} or \mathscr{F}).

(iii) Let  $\rho$ :=(\mathscr{F}, \mathscr{F}_{0}, \{q(f),p(f)|f\in $\gamma$\}) and $\rho$'= ( \mathscr{F} , \mathscr{F}Ó, \{q(f),p(f)'|f\in $\psi$\} ) be

HeisenUerg representations of the CCR over  $\psi$ . Then  $\rho$ and  $\rho$ are equivalent if there

exists a unitary operator  U : \mathscr{F}\rightarrow \mathscr{F} such that Uq(f)U^{-1}=q(f) , Up(f)U^{-1}=
p(f)' for all f\in l $\psi$.

(iv) Let  $\rho$:=(\mathscr{F}, \{e^{iq(f)}, e^{ip(f)}|f\in\prime $\psi$\}) and  $\rho$=(\mathscr{F}, \{e^{iq(f)'}, e^{ip(f)'}|f\in y be Weyl
representations of the CCR over  l $\psi$ . Then  $\rho$ and  $\rho$ are equivalent if there exists a

unitary operator  U:ff\rightarrow P such that Uq(f)U^{-1}=q(f) , Up(f)U^{-1}=p(f) for

all f\in Y.

Remark 2 (i) In our definition, the operators forming a Heisenberg representation are

not necessarily self‐adjoint.
(ii) A Weyl representation (\mathscr{F}, \{e^{iq(f)}, e^{ip(f)}|f\in\prime $\psi$\}) is a Heisenberg representation

(\mathscr{F}, \mathscr{F}_{0}, \{q(f),p(f)|f\in\prime $\psi$\}) for a suitable \mathscr{F}_{0} . But the converse is not true. This

situation already occurs in the case where \wedge $\gamma$ is finite dimensional (see [2, Chapter 3] and

references therein).
(iii) In the case where  $\gamma$ is finite dimensional, all irreducible Weyl representations of

the CCR over  $\gamma$/ are mutually equivalent (von Neumann�s uniqueness theorem [5]). But,
as for Heisenberg representations, von Neumann�s uniqueness theorem does not hold in

general.
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2.2 Boson Fock space and Fock representation of CCR

Let

\mathscr{F}_{\mathrm{b}}(\mathscr{H}):=\oplus_{n=0}^{\infty}\otimes_{\mathrm{s}}^{n}\mathscr{H}

be the boson Fock space over a complex Hilbert space \mathscr{H} , where \otimes_{\mathrm{s}}^{n}\mathscr{H} denotes the n_{ $\Gamma$}‐fold

symmetric tensor product Hilbert space with \otimes_{\mathrm{s}}^{0}\mathscr{H} :=\mathbb{C} , and A(f) be the annihilation

operator with test vector f\in \mathscr{H} on \mathscr{F}_{\mathrm{b}}(\mathscr{H}) , i.e., it is a densely defined closed hnear

operator on \mathscr{F}_{\mathrm{b}}(\mathscr{H}) such that, for all  $\Psi$\in D(A(f)^{*}) , (A(f)^{*} $\Psi$)^{(0)}=\backslash 0 and

(A(f)^{*} $\Psi$)^{(n)}=\sqrt{n}S_{n}(f\otimes$\Psi$^{(n-1)}) , n\geq 1,

where S_{n} is the symmetrization operator on the n‐fold tensor product Hilbert space \otimes^{n}\mathscr{H}.

The adjoint A(f)^{*} of A(f) is called the creation operator with test vector f^{1}
The subspace

\mathscr{F}_{0}(\mathscr{H}) :=\{ $\Psi$=\{$\Psi$^{(n)}\}_{n=0}^{\infty} $\Psi$^{(n)}\in\otimes_{\mathrm{s}}^{n}\mathscr{H}, n\geq 0, \exists n_{0}\in \mathrm{N}, \forall n\geq n_{0}, $\Psi$^{(n)}=0\},

called the finite particle subspace, is dense in \mathscr{F}_{\mathrm{b}}(\mathscr{H}) . It is easy to see that, for all f\in \mathscr{H},
\mathscr{F}_{0}(\mathscr{H})\subset D(A(f))\cap D(A(f)^{*}) and A(f) and A(f)^{*} leave \mathscr{F}_{0}(\mathscr{H}) invariant, satisfying

[A(f), A(g)^{*}]=\{f, g)_{\mathscr{H}}, [A(f), A(g)]=0, [A(f)^{*}, A(g)^{*}]=0 (f, g\in \mathscr{H}) (4)

on \mathscr{F}_{0}(\mathscr{H}) .

A natural operator constructed from A(f) and A(f)^{*} is the Segal field operator

 $\Phi$(f):=\displaystyle \frac{1}{\sqrt{2}}\overline{(A(f)^{*}+A(f))}, f\in \mathscr{H},
It is shown that  $\Phi$(f) is a self‐adjoint operator on \mathscr{F}_{\mathrm{b}}(\mathscr{H}) and is essentially self‐adjoint
on \mathscr{F}_{0}(\mathscr{H}) . It follows from (4) that, for all f, g\in \mathscr{H},

[ $\Phi$(f),  $\Phi$(g)]=i\Im\{f, g\}_{\mathscr{H}} (5)

on \mathscr{F}_{0}(\mathscr{H}) .

The operator
 $\Pi$(f):= $\Phi$(if) , f\in \mathscr{H}

is called the conjugate momentum of  $\Phi$(f) . By (5), we have

[ $\Phi$(f),  $\Pi$(g)]=i\Re\langle f, g\}_{\mathscr{H}}, f,g\in \mathscr{H}.

Let C be a conjugation on ,?, i.e., C is an anti‐linear mapping on \mathscr{H} such that C^{2}=I

(identity) and \Vert Cf\Vert_{\mathscr{H}}=\Vert f\Vert_{\mathscr{H}}, f\in \mathscr{H} . Then the subset

\mathscr{H}_{C}:=\{f\in \mathscr{H}|Cf=f\}

1As a general reference for the theory on boson Fock space, we refer the reader to [1, Chapter 4].
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is a real Hilbert space with the inner product of \mathscr{H} . It is easy to see that each f\in \mathscr{H} is

uniquely written as

f=\Re f+i\Im f

with

\displaystyle \Re f:=\frac{f+Cf}{2}\in \mathscr{H}_{C}, \Im f:=\frac{f-Cf}{2i}\in \mathscr{H}_{C}
Let

$\phi$_{C}(f):= $\Phi$(f) ,  $\pi$ c(f)= $\Pi$(f) , f\in \mathscr{H}_{C}.
Then one can show that (\mathscr{F}_{\mathrm{b}}(\mathscr{H}), \{e^{i$\phi$_{C}(f)}, e^{i $\pi$ c(f)}|f\in \mathscr{H}_{C}\} is an irreducible Weyl repre‐

sentation of the CCR over \mathscr{H}_{C} [6 , Theorem X.43 and Appendix to X.7]. This representa‐
tion is called the Fock representation of the CCR over \mathscr{H}_{C}.

3 A Family of Irreducible Weyl Representations of CCR

Let T be an injective self‐adjoint operator on \mathscr{H} (not necessarily bounded) such that

CT\subset TC.

Then it is easy to see that, for all f\in D(T) , \Re f in \mathscr{H}_{C}\cap D(T) and \Re(Tf)=T\Re f.
Moreover, D(T^{\pm 1})\cap \mathscr{H}_{C} is dense in \mathscr{H}_{C} and T^{\pm 1}(D(T^{\pm 1})\cap \mathscr{X}_{C})\subseteq \mathscr{H}_{C}.

We introduce new fields:

$\Phi$_{T}(f):=$\phi$_{C}(T^{-1}f) , f\in D(T^{-1})\cap \mathscr{H}_{C},
\mathrm{I}\mathrm{I}_{T}(f):= $\pi$ c(iTf) , f\in D(T)\cap \mathscr{H}_{C}.

Let  $\gamma$ be a dense subspace in \mathscr{H}_{C} and \mathrm{S}_{\mathrm{V}}(\mathscr{H}) be the set of injective self‐ adjoint
operators T on \mathscr{H} satisfying the following conditions:

(T. 1) CT\subset TC

(T.2)  $\gamma$\subset D(T)\cap D(T^{-1}) and  T^{\pm 1} $\gamma$ are dense in \mathscr{H}_{C}.

Theorem 3 \{e^{i$\Phi$_{\mathrm{T}}(f)}, e^{i\mathrm{I}1_{\mathrm{T}}(f)}|f\in Y\} is an irreducible Weyl representation of the CCR

over $\gamma$_{:}

ee=eeei$\Phi$_{\mathrm{T}}(f)i$\Pi$_{\mathrm{T}}(g)-i\langle f,g)_{\ovalbox{\tt\small REJECT}}i\mathrm{I}\mathrm{I}_{T}(g)i$\Phi$_{T}(f) ,

e^{i$\Phi$_{T}(f)}e^{i$\Phi$_{T}(g)}=e^{i$\Phi$_{\mathrm{T}}(g)}e^{i$\Phi$_{T}(f)}, e^{i$\Pi$_{T}(f)}e^{i$\Pi$_{T}(g)}=e^{i$\Pi$_{T}(g)}e^{i$\Pi$_{T}(f)}, f, g\in $\gamma$.

4 Main Theorems

Theorem 4 Let T_{1}, T_{2}\in \mathrm{S}_{ $\psi$}(\mathscr{H}) such that the following (a) and (b) hold:

(a) D(T_{1}^{-1}T_{2}^{2}T_{1}^{-1})\cap D(T_{1}T_{2}^{-2}T_{1}) and D(T_{2}^{-1}T_{1}^{2}T_{2}^{-1})\cap D(T_{2}T_{1}^{-2}T_{2}) are dense in \mathscr{H}.
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(b) T_{2}^{-1}T_{1} and T_{2}T_{1}^{-1} are bounded with  $\gamma$\subset D(T_{2}^{-\mathrm{I}}T_{1})\cap D(T_{2}T_{1}^{-1})\cap D(T_{1}^{-1}T_{2})\cap
 D(T_{1}T_{2}^{-1}) .

Then \{e^{i$\Phi$_{T_{1}}(f)}, e^{i$\Pi$_{T}(f)}\mathrm{i}|f\in$\gamma$^{ $\gamma$}\} is equivalent to \{e^{i$\Phi$_{T_{2}}(f)}, e^{i$\Pi$_{T_{2}}(f\rangle}|f\in $\gamma$\} if and. only if

T_{2}^{-1}T_{1}-T_{2}T_{1}^{-1} is Hilbert‐Schmidt.

Remark 5 The conditions for T_{1} and T_{2} in Theorem 4 are related to an equivalence
relation in a subset of \mathrm{s}_{ $\gamma$}(\mathscr{H}) . Let

\mathrm{S}_{ $\gamma$/}(\mathscr{H})^{\times}:= { T\in \mathrm{S}_{ $\gamma$}(\mathscr{H})|T is surjective}.

Then, for áll T\in \mathrm{S}_{7}/(\mathscr{H})^{\times}, T^{-1}\in \mathfrak{B}(\mathscr{H}) . For T_{1}, T_{2}\in \mathrm{S}_{Y}(\mathscr{H})^{\times} , we write T_{1}\sim T_{2} if

T_{2}T_{1}^{-1}, T_{1}T_{2}^{-1}\in \mathfrak{B}(\mathscr{H}) and T_{2}^{-1}T_{1}-T_{2}T_{1}^{-1} is Hilbert‐Schmidt. It is easy to see that the

relation \sim is an equivalent relation in \mathrm{S}_{\mathrm{V}}(\mathscr{H})^{\times}.
Let

 $\rho \tau$:=\{e^{i$\Phi$_{T}(f)}, e^{i$\Pi$_{\mathrm{T}}(f)}|f\in\}.
and T_{1}, T_{2}\in \mathrm{s}_{ $\gamma$}(\mathscr{H})^{\times} . Then  $\rho \tau$_{1} is equivalent to  $\rho \tau$_{2} if and only if T_{1}\sim T_{2} and condition

(a) holds.

In the case where at least one of T_{2}^{-1}T_{1} and T_{2}T_{1}^{-1} is unbounded, the proof of Theorem

4 is not valid any more. In this case, we need a separate consideration. To state a theorem

in such a case, we need a lemma.

Lemma 6 For all T_{1}, T_{2}\in \mathrm{S}_{ $\gamma$}(\mathscr{H}) ,

T_{+}:=T_{2}^{-1}T_{1}+T_{2}T_{1}^{-1} (6)

is injective.

Let

T_{-}:=T_{2}^{-1}T_{1}-T_{2}T_{1}^{-1} . (7)

Theorem 7 Let T_{1}, T_{2}\in \mathrm{S}_{Y}(\mathscr{H}) such that the following (a) -(\mathrm{c}) hold:

(a) (T_{1}7^{/})_{\mathrm{Y}}\cap(T_{1}^{-1}7) is dense in \mathscr{H}_{C}.

(b) \{T_{+}f|f\in(T_{1}7)\cap(T_{1}^{-1,} $\psi$)\} is dense in \mathscr{H}_{C}.

(c) T_{-}T_{+}^{-1} is bounded and its closure \overline{T_{-}T_{+}^{-1}} is not Hilbert‐Schmidt.

Then  $\rho \tau$_{1} is inequivalent to  $\rho \tau$_{2}.

Remark 8 In Theorem 7, the T_{2}^{-1}T_{1} and T_{2}T_{1}^{-1} are not necessarily bounded.
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5 Application—Inequivalence of Time‐Zero Fields and Con‐

jugate Momenta of Different Masses in Any Space Dimen‐

sion

We denote by \mathbb{R}_{x}^{d}=\{x= (x\mathrm{l}, . .., x_{d})|x_{j}\in \mathbb{R},j=1, . . . , d\} the d‐dimensional position
space and by \mathbb{R}_{k}^{d}=\{k= (k\mathrm{l}, . . . , k_{d})|k_{j}\in \mathbb{R},j=1, . . . , d\} the ‐dimensional momentum

space2. Let \mathscr{F}_{d}:L^{2}(\mathbb{R}_{x}^{d})\rightarrow L^{2}(\mathbb{R}_{k}^{d}) be the Fourier transform:

(\displaystyle \mathscr{F}_{d}f)(k):=\hat{f}(k):=\frac{1}{(2 $\pi$)^{d/2}}\int_{\mathbb{R}_{x}^{d}}e^{-ik\cdot x}f(x)dx, f\in L^{2}(\mathbb{R}_{x}^{d})
in the L^{2}‐sense, where kx :=\displaystyle \sum_{j=1}^{d}k_{j}x_{j} . We consider the boson Fock space \mathscr{F}_{\mathrm{b}}(L^{2}(\mathbb{R}_{k}^{d}))
over L^{2}(\mathbb{R}_{k}^{d}) and we denote the annihilation operator on this Fock space by  a(f)(f\in
 L^{2}(\mathbb{R}_{k}^{d})) . Then the time‐zero field $\phi$_{m}(f)(f\in \mathscr{S}_{\mathbb{R}}(\mathbb{R}_{x}^{d})) and its conjugate momentum

$\pi$_{m}(f) for the standard neutral scalar field with mass m\geq 0 is defined by

$\phi$_{m}(f):=\displaystyle \frac{1}{\sqrt{2}}\overline{(a($\omega$_{m}^{-1/2}\hat{f})^{*}+a($\omega$_{rn}^{-1/2}\hat{f}))},
$\pi$_{m}(f):=\displaystyle \frac{i}{\sqrt{2}}\overline{(a($\omega$_{m}^{1/2}\hat{f})^{*}-a($\omega$_{m}^{1/2}\hat{f}))},

where $\omega$_{m}(k):=\sqrt{k^{2}+m^{2}}, k\in \mathbb{R}_{k}^{d}.
Let

$\gamma$_{d,rn}:=\left\{\begin{array}{ll}
\mathscr{S}_{\mathbb{R}}(\mathbb{R}_{x}^{d}) & \mathrm{f}\mathrm{o}\mathrm{r} m>0\\
\{f\in \mathscr{S}_{\mathbb{R}}(\mathbb{R}_{x}^{d})|\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p} \hat{f}\subset \mathbb{R}^{d}\backslash \{0\}\} & \mathrm{f}\mathrm{o}\mathrm{r} m=0
\end{array}\right.
Then

$\tau$_{m}:=\{e^{i$\phi$_{m}(f)}, e^{i$\pi$_{m}(f)}|f\in:$\psi$_{d,m}\} (8)

is an irreducible Weyl representation of the CCR over $\psi$_{d,m}.

Theorem 9 Let m_{1}, m_{2}\geq 0 with m_{1}\neq m_{2} . Then $\tau$_{m}1 is inequivalent to $\tau$_{m2}.

Proof (outline). We denote by T_{m} the multiplication operator on L^{2}(\mathbb{R}_{k}^{d}) by the function

$\omega$_{m}^{-1/2} We define a mapping C : L^{2}(\mathbb{R}_{k}^{d})\rightarrow L^{2}(\mathbb{R}_{k}^{d}) by

(Cu)(k):=u(-k)^{*}, u\in L^{2}(\mathbb{R}_{k}^{d}(, \mathrm{a}.\mathrm{e}.k\in \mathbb{R}_{k}^{d}.

Then it is easy to see that C is a conjugation and CT_{m}\subset T_{m}C . Morever,

\mathscr{F}_{d}\mathscr{S}_{\mathbb{R}}(\mathbb{R}_{x}^{d})=\{\hat{f}|f\in \mathscr{S}_{\mathbb{R}}(\mathbb{R}_{x}^{d}) , C\hat{f}=f

We note that

$\phi$_{m}(f)=$\Phi$_{T_{m}}(\hat{f}) , $\pi$_{m}(f)=$\Pi$_{T_{m}}(\hat{f}) ,

2We work with the physical unit system where the light speed \mathrm{c} and the Planck constant \hslash divided by
 2 $\pi$ are equal to 1.
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where  $\Phi$ and  $\Pi$ are resepectively the Segal field operator and its conjugate momentum

on \mathscr{F}_{\mathrm{b}}(L^{2}(\mathbb{R}_{k}^{d})) . Hence it follows that $\tau$_{m1} is equivalent to $\tau$_{m}2 if and only if  $\rho \tau$_{m_{1}} is

equivalent to  $\rho \tau$_{m_{2}}.
Let m_{1}, m_{2}>0 . Then

T_{m_{1}}T_{m}^{-1}2=\displaystyle \frac{\sqrt{$\omega$_{m2}}}{\sqrt{$\omega$_{m}1}}
is bounded and

TT_{m}^{-1}2-T_{m}T_{m_{1}}^{-1}=\displaystyle \frac{m_{2}^{2}-m_{1}^{2}}{\sqrt{$\omega$_{m}$\omega$_{m}12}($\omega$_{m2}+$\omega$_{m1})}.
This is Hilbert‐Schmidt if and only if m_{1}=m_{2} . Hence, if m_{1}\neq m_{2} , then, by Theorem 4,

 $\rho \tau$_{m_{1}} is inequivalent to  $\rho \tau$_{m_{2}} . The case where one of m_{1} and m_{2} is equal to zero can be

similarly treated.

Remark 10 The method of proof of Theorem 9 presented here is different from that used

in the proof of [6, Theorem X.46] (Theorem 9 with d=3) and simpler.

Remark 11 As is seen, the non‐Hilbert‐Schmidt property \mathrm{o}\mathrm{f}T_{m}1T_{m2}^{-1}-T_{m2}T_{m_{1}}^{-1} in the case

m_{1}\neq m_{2} comes from that the spectrum of the one‐particle Hamiltonian $\omega$_{m} is continuous.

The continuity of the spectrum of $\omega$_{m} is due to that the one‐particle momentum operator
is purely (absolutely) continuous. On the other hand, the continuity of the spectrum of

the momentum operator comes from that the position space is \mathbb{R}^{d} . Thus the inequivalence
between $\tau$_{m_{1}} and $\tau$_{m}2 comes from that the position space in which bosons exist is \mathbb{R}^{d}.

6 A General Family of Inequivalent Representations of CCR

on \check{}_{\mathrm{b}}^{ $\sigma$}(L^{2}(\mathbb{R}_{k}^{d}))
As an application of Theorems 4 and 7, one can construct a general family of inequivalent
representations of CCR on \mathscr{F}_{\mathrm{b}}(L^{2}(\mathbb{R}_{k}^{d})) including \{$\tau$_{m}|rn\geq 0\}.

Let v:\mathbb{R}^{d}\rightarrow \mathbb{R} such that

v(k)=v(-k) , 0<|v(k)|<\infty, \mathrm{a}.\mathrm{e}.k\in \mathbb{R}_{k}^{d},

and \nabla:=(-iD_{1}, \ldots, -iD_{d}) , where D_{j} is the generalized partial differential operator in

x_{j} . The operator

v(-i\nabla):=\mathscr{F}_{d}^{-1}v\mathscr{F}_{d}
acting in L^{2}(\mathbb{R}_{x}^{d}) is self‐adjoint, injective and

C_{d}v(-i\nabla)\subset v(-i\nabla)C_{d},

where C_{d}f :=f^{*}, f\in L^{2}(\mathbb{R}_{x}^{d}) .

Let \mathscr{D}_{d} be a dense subspace in L_{\mathbb{R}}^{2}(\mathbb{R}_{x}^{d}):=\{f\in L^{2}(\mathbb{R}_{x}^{d})|C_{d}f=f\} satisfying the

following conditions:

(i) \mathscr{D}_{d}\subset D(v(-i\nabla))\cap D(v(-i\nabla)^{-1}) .
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(ii). v(-i\nabla)\mathscr{D}_{d} and v(-i\nabla)^{-1}\mathscr{D}_{d} are dense in L_{\mathbb{R}}^{2}(\mathbb{R}_{x}^{d}) .

We introduce operators $\phi$_{v}(f) and $\pi$_{v}(f)(f\in \mathscr{D}_{d}) as follows:

$\phi$_{v}[f):= $\Phi$(v(-iD)^{-1}f) , $\pi$_{v}(f):= $\Pi$(v(-iD)f) , f\in \mathscr{D}_{d} , (9)

where  $\Phi$ and II are respectively the Segal field operator and its conjugate momentum

on \mathscr{F}_{\mathrm{b}}(L^{2}(\mathbb{R}_{x}^{d})) .

Lemma 12 \{e^{i$\phi$_{v}(f)}, e^{i$\pi$_{v}(f)}|f\in \mathscr{D}_{d}\} is an irreducible Weyl representation of the CCR

over \mathscr{D}_{d}.

Lemma 13 Let v_{1} and v_{2} be functions on \mathbb{R}^{d} having the same properties as those of v

described above. Suppose that v_{1}/v_{2} and v_{2}/v_{1} are essentially bounded. Then

W :=(v_{2}(-i\nabla)^{-1}v_{1}(-i\nabla)-v_{2}(-i\nabla)v_{1}(-i\nabla)^{-1}) .

is bounded. Moreover, W is Hilbert‐Schmidt if and only if v_{1}=v_{2}.

Theorem 14 Let v_{1} and v_{2} be functions having the same properties as those ofv described

above. Suppose that v_{1}/v_{2}and\cdot v_{2}/v_{1} are essentially bounded. Then \{e^{i$\phi$_{v_{1}}(f)},  e^{i$\pi$_{v}(f)}1|f\in
\mathscr{D}_{d}\} and \{e^{i$\phi$_{v_{2}}(f)}, e^{i$\pi$_{v_{2}}\langle f)}|f\in \mathscr{D}_{d}\} are inequivalent if and only if v_{1}\neq v_{2}.

In the case where v_{1}/v_{2} and v_{2}/v_{1} are not necessarily essentially bounded, we have the

following theorem.

Theorem 15 Let v_{1} and v_{2} be functions having the same properties as those ofv described

above and v_{1}\neq v2 . Let

\mathscr{D}_{d,v_{1}}:=(v_{1}(-i\nabla)\mathscr{D}_{d})\cap(v_{1}(-i\nabla)^{-1}\mathscr{D}_{d})

and

T_{d,\pm}:=v_{2}(-i\nabla)^{-1}v_{1}(-i\nabla)\pm v_{2}(-i\nabla)v_{1}(-i\nabla)^{-1}.
Suppose that the following (a) and (b) hold:

(a) \mathscr{D}_{d,v_{1}} is dense in L_{\mathbb{R}}^{2}(\mathbb{R}_{x}^{d}) .

(b) T_{d,+}\mathscr{D}_{d,v}1 is dense in L_{\mathbb{R}}^{2}(\mathbb{R}_{x}^{d}) .

Then \{e^{i$\phi$_{v_{1}}(f)}, e^{i$\pi$_{v_{1}}(f)}|f\in \mathscr{D}_{d}\} is inequivalent to \{e^{i$\phi$_{v}(f)}2, e^{i$\pi$_{v_{2}}(f)}|f\in \mathscr{D}_{d}\}
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7 Quantum Fields on a Bounded Space

In view of Remark 11, it may be interesting to consider quantum fields on bounded space
in \mathbb{R}_{x}^{d}.

Let M be a bounded connected open set in \mathbb{R}_{x}^{d} and $\Delta$_{0} :=\displaystyle \sum_{j=1}^{d}\partial^{2}/\partial x_{j}^{2} with domain

D($\Delta$_{0}):=C_{0}^{\infty}(M) , acting in L^{2}(M) . Let $\Delta$^{(M)} be any self‐adjoint extension of \triangle 0 such

that

(i) $\Delta$^{(M)}\leq 0 ;

(ii) C_{M}$\Delta$^{(M)}\subset\triangle^{(M)}C_{M} , where C_{M} is the complex conjugation on L^{2}(M) ;

(iii) The spectrum of -$\Delta$^{(M)} is purely discrete. The eigenvalues of -\triangle(M) are labeled as

\{$\lambda$_{n}\}_{n\in $\Gamma$} with  $\Gamma$=\mathrm{N}^{d} or (\{0\}\cup \mathrm{N})^{d} , counting multiplicities, and, for some constants

c_{1}, c_{2}>0 with c_{1}<c_{2},

 c_{1}|n|^{2}\leq$\lambda$_{n}\leq c_{2}|n|^{2}, n\in $\Gamma$ . (10)

Example 16

(i) \triangle(M)=$\Delta$_{\mathrm{D}} (the Dirichlet Laplacian in M)

(ii) $\Delta$^{(M)} :=\triangle_{\mathrm{N}} (the Neumann Laplacian in M)

(iii) In the case where M=(-L_{1}/2, L_{1}/2)\times\cdots\times(-L_{d}/2, L_{d}/2) , \triangle(M)=\triangle_{\mathrm{P}} (the
Laplacian with the periodic boundary condition).

The one‐particle Hamiltonian with mass m>0 in the present context is given by

h_{m}^{M}:=(-\triangle^{(M)}+m^{2})^{1/2}

acting in L^{2}(M) . This is a strictly positive self‐adjoint operator with h_{m}^{M}\geq m> O. It

follows from the assumption of $\Delta$^{(M)} that there exists a CONS \{f_{n}|n\in $\Gamma$\} of L^{2}(M) such

that

-$\Delta$^{(M)}f_{n}=$\lambda$_{n}f_{n}, n\in $\Gamma$,
and each f_{n} is a real‐valued function. Let $\gamma$_{M}^{ $\gamma$} be the real subspace algebraically spanned
by \{f_{7l}|n\in $\Gamma$\} . Then \prime$\psi$_{M} is dense in the real Hilbert space L_{\mathbb{R}}^{2}(M) . For all  $\alpha$>0,

7^{M}\subset D((h_{m}^{M})^{ $\alpha$}) , (h_{m}^{M})^{\pm $\alpha$}7^{/M}=$\gamma$^{M}.
Hence conditions (T.1) and (T.2) with T=(h_{m}^{M})^{1/2} and Y=\prime$\gamma$_{M} are satisfied.

Let $\Phi$^{M} be the Segal field operator on \mathscr{F}_{\mathrm{b}}(L^{2}(M)) and

$\phi$_{m}^{M}(f):=$\Phi$^{M}((h_{m}^{M})^{-1/2}f) , $\pi$_{m}^{M}(f):=$\Phi$^{M}(i(h_{m}^{M})^{1/2}f) , f\in $\gamma$/M.
Then

$\rho$_{m}^{M}:=\{e^{i$\phi$_{m}^{M}(f)}, e^{i$\pi$_{m}^{M}(f)}|f\in Y^{M}\}
is an irreducible Weyl representation of the CCR over 7^{M} . One can prove the following
theorems:
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Theorem 17 Let m_{1}, m_{2}>0 and m_{1}\neq m_{2} . Then $\rho$_{m_{1}}^{M} and $\rho$_{m}^{M}2 are equivalent if and

only if d\leq 3.

Theorem 18 Let m>0 and 0\not\in $\sigma$(\triangle^{(M)}) . Then $\rho$_{m}^{M} is equivalent to $\rho$_{0}^{M} if and only if
d\leq 3.

These theorems show that, in the case d=1 , 2, 3, the infiniteness of the space on

which quantum fields exist is crucial for the inequivalence of time‐zero fields and conjugate
momenta of different masses.

Remark 19 Considerations similar to those given in the present paper can be done for

quantum Dirac fields of different masses which are representations of the canonical anti‐

commutation relations over a complex Hilbert space. See [4] for details.
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