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Abstract

We review our results for approximate solutions for a robust convex optimization problem with a ge-
ometric constraint, which is the face of data uncertainty. In this review, we notice that using robust
optimization approach(worst-case approach), we can get an optimality theorem and duality theo-
rems for approximate solutions for the robust convex optimization problem, and that we can extend
the optimality and duality results for the convex optimization problem to a fractional optimization
problem with uncertainty data.
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1 Introduction

Robust convex optimization problems are to optimize convex optimization problems with data uncer-
tainty (incomplete data) by using the worst-case approach. Here, uncertainty means that input parameter
of these problems are not known exactly at the time when solution has to be determined [3].

The study of convex programs that are affected by data uncertainty ([1, 2, 3, 4, 5, 9, 10, 12]) is
becoming increasingly important in optimization. Recently, the duality theory for convex programs
under uncertainty via robust approach(worst-case approach) have been studied ([1, 10, 11, 12]). It was
shown that primal worst equals dual best ([1, 10, 11]).

A standard form of convex optimization problem ([6, 15]) with a geometric constraint set is as follows:

(CP) min f(z)
st gi(z)£0,i=1,---,m,
zeC,

where f, ¢; :R® - R, i =1,--- ,m, are convex functions and C is a closed convex cone of R™.



The convex optimization problem (CP) in the face of data uncertainty in the constraints can be
captured by the problem

(UCP) min f(z)
st gi(z,1;)£0,i=1,---,m,
zeC,

where g; : R® x R? —» R, g;(-,v;) is convex and v; € R? is an uncertain parameter which belongs to the
set Vi CR?, 2=1,---,m.

We study an approximate optimality theorem and approximate duality theorem for the uncertain
convex optimization problem (UCP) by examining its robust (worst-case) counterpart ([3])

(RUCP) min f(z)
s.t. gi(:c,'vi) <0,V €V, i=1,--- ,m,
zeC.

where g; : R® x R? = R, gi(-,v;) is convex and v; € R? is the uncertain parameter which belongs to the
set V; CRY, i =1,---,m. Clearly, A:= {z € C | gi(z,v;) £0, Vo; € V;, i =1,...,m} is the feasible
set of (RUCP).

Let € 2 0. Then Z is called an approximate solution of (RUCP) if for any z € A,

f(@) 2 (@) -«

Recently, Jeyakumar and Li [10] has showed that when C' = R™ and ¢ = 0, Lagrangian strong duality
holds between s robust counterpart and an optimistic counterpart for robust convex optimization problem
in the face of data uncertainty via robust optimization under a new robust characteristic cone constraint

qualification (RCCCQ) that
m
U ePi(Z/\igi('vvi))*

vi€Vi, A 20 i=1
is convex and closed.
In this paper, we give approximate optimality theorem for (RUCP) under the following constraint
qualification:
m
U ePi(Z Aigi(vi))* +C* x Ry
v, EV;, i 20 =1
is convex and closed. For approximate solutions of (RUCP), we formulate a Wolfe type dual problem
for the primal one and give approximate weak duality and approximate strong duality between the
primal problem and its Wolfe type dual problem, which hold under a weakened constraint qualification.
Moreover, we notice that we can extend the optimality and duality results for (RUCP) to a fractional
optimization problem with uncertainty data.

2 Definitions and Notations

Let us first recall some definitions and notations which will be used throughout this paper. R™ denotes
the Euclidean space with dimension n. The nonnegative orthant of R" is denoted by R’ and is defined
by R} := {(z1, - ;Zn) € R™ : ; 2 0}. The inner product in R" is defined by (z,y) := zTy for all
z,y € R®. We say the set A is convex whenever ua; + (1 — p)ag € A for all u € [0,1], a3,a; € A. Let



f be a function from R to R, where R = [—00,+00]. Here, f is said to be proper if for all z € R,
f(z) > —oo and there exists zo € R" such that f(zo) € R. We denote the domain of f by domf, that is,
domf = {z € R™ | f(z) < +o0}. The epigraph of f, epif, is defined as epif = {(z,7) e R* xR | f(z) <
r}, and f is said to be convex if for all u € [0, 1],

F(A=-wz+py) £ Q- p)fz)+pfly)

for all z,y € R™, equivalently epif is convex. The function f is said to be concave whenever — f is convex.
Let g : R® —» RU{+o0} be a convex function. The (convex) subdifferential of f at z € R™ is defined by

{z* €R* | (z*,y — 2) < f(y) — f(z), Vy €R"}, ifz € domf,
@, otherwise.

of(e) = {

More generally, for any € > 0, the e-subdifferential of f at z € R” is defined by

{z* €eR" | (z*,y — z) < f(y) - f(z) +¢ Yy €R"}, ifz € domf,
@, otherwise.

0.1@) = {

As usual, for any proper convex function g on R”, its conjugate function g* : R™ — RU {+oc} is defined
by for any z* € R", g*(z*) = sup {(z*, ) — g(z) | z € R"}. For details of conjugate function, see [15].
Given a set A C R™, we denote the closure, the convex hull, and the conical hull generated by A, by clA,
coA, and coneA, respectively. The normal cone Ng(z) to C at z is defined by

Ne(z)={veR"| (v,y—z) £ 0, for ally € C},
and let € 2 0, then the e-normal set N&(z) to C at z is defined by
&(x)={veR" | (v,y—z) < ¢ forally e C}

When C is a closed convex cone in R", we denote N¢(0) by C* and call it the negative dual cone of C.

3 Approximate Optimality Theorem

Slightly extending Theorem 2.4 in [10] to a robust convex optimization problem with a geometric
constraint, we can obtain the following lemma in [12], which is the robust version of Farkas Lemma for
convex functions in [8]:

Lemma 3.1. [12] Let f : R® — R be a conver function and let g; : R® xR? -+ R, i = 1,...,m, be
continuous functions such that for each v; € R, g;(-,v;) s a conver function. Let C be a closed convex
cone of R®. Let V; CRY,i=1,...,m, and let A:={z € C | gi(z,v;) £0, Vv; €V;, i=1,...,m} #0.
Then the following statements are equivalent:

(i) {xeC | gi(z,vi) 20, Vv; €V, i=1,...,m} C{z € R* | f(z) 2 0};

m
(i) (0,0) €epif*+cleo( |J epid Aigi(v:))" +C* xRy).
v;€Vi, A0 =1

Using Lemma 3.1, we can obtain the following theorem in [12]:
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Theorem 3.1. [12] Let T € A andlet g; : R* XxR? - R, i = 1,...,m, be continuous functions such that
for eachv; € R?, gi(-,v;) is-convex for each fized v; € V;. Suppose thatJ,,cy, x>0 epi(Y i g Xigi(-,vi))*+
C* x Ry is closed and convez. Then % is an approzimate solution of (RUCP) if and only if there exist
Xi20and % €V, i=1,...,m, such that for any z € C,

f(=z) + Z:\z’gi(x, %) 2 f(Z) — e

i=1

Using Lemma 3.1, we can obtain the following approximate optimality theorem for approximate
solution of (RUCP) which is in [12].
Theorem 3.2. [12] (Approximate Optimality theorem) Let T € A and let g; : R® x R? — R,
i=1,...,m, be continuous functions such that for each v; € RY, g;(-,v;) is convez for each fized v; € V;.
Suppose that U,,ey,, ri>0 epi(3_im, Xigi(,v))* + C* x Ry is closed and convez. Then the following
statements are equivalent:

(i) Z is an approzimate solution of (RUCP);

(i) Oe-f@)eepif*+ |J epiQ_Ngi(u)* +C* xRy;

vi€Vi, Xi20 i=1
(il) There exist 5, € V;, :20,i=1,...,m, and ¢, 20,i=0,1,...,m+1 such that
m
0 € 0, f(Z) + Y 0, (Xigi (&, T)) + NG+ (z)

=1
m+1 m

and Z €6 —€= Z:\igi(i,ﬁi)

=0 =1

As usual convex program, the dual problem of (RUCP) is sometimes more treatable than (RUCP).
So, we formulate a dual problem (RLD) for (RUCP) as follows([12] ):

m
(RLD) Maximize(x,,,_,\) f(x) + Z /\igi(a:, v,-)
i=1
' m
subject to 0 € 0o f(z) + Z O, Migi(z, v;) + NG~ (z),

i=1
/\izov ‘UiGVi, i=1...,m,
m+1

Z €6 e
i=0

When € = 0, and g;(z,v;) = gi(z), ¢ = 1,...,m, (RUCP) becomes (CP), and (RLD) collapses to the
Wolfe dual problem (D) for (CP) as follows:

(D) Maximize(;xy  f(z)+ Y Nigi(x)
i=1
subject to Vi(z)+ Z Vigi(z) + Ne(z) =0,
i=1

A0 i=1,...,m.

Now, we prove approximate weak and approximate strong duality theorems which hold between
(RUCP) and (RLD) which are in [12].
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Theorem 3.3. [12] (Approximate Weak Duality Theorem) For any feasible x of (RUCP) and any
feasible (y,v, A) of (RLD),

fl@) 2 fly)+ Z/\z‘gi(y, Vi) — €.
i=1

Theorem 3.4. [12] (Approximate Strong Duality Theorem) Let g; : R x R - R, i =1,...,m,
be continuous functions such that for each v; € R, g;(-,v;) is a convez for each fixed v; € V;. Suppose
that ™
U epiQ higil,v)* +C* xRy
viEV;, Xi20 i=1
is closed. If T is an approzimate solution of (RUCP), then there exist A € R and & € RY such that
(,, ) is a 2¢-solution of (RLD).

4 Robust Fractional Optimization Problem

In this chapter, we notice that we can extend the optimality and duality results for the convex
optimization problem to a fractional optimization problem with uncertainty data.
Consider the following standard form of fractional optimization problem with a geometric constraint

set:
(FP) min (@)
9(z)
st.  hi(z)£0,i=1,---,m,
zeC,
where f,h; : R* - R,i=1,--- ,m, are convex functions, C is a closed convex cone of R” and g : R®* - R

is a concave function such that for any z € C, f(z) 2 0 and g(z) > 0.
The fractional optimization problem (FP) in the face of data uncertainty in the constraints can be
captured by the problem:

f(z,u)
(uv)euxv g(z,v)
st hi(z,w;)£0,i=1,---,m,
z€eC,

(UFP) min

where f: R® x R? 5 R, h; : R* x R? = R, f(-,u) and h;(-,w;) are convex, and g : R™ x R? - R, g(-,v)
is concave, and u € RP, v € R? and w; € RY are uncertain parameters which belongs to the convex and
compact uncertainty sets i C R?, V C R? and W; C R?, i =1,--- , m, respectively.

We study approximate optimality theorems and approximate duality theorems for the uncertain frac-
tional optimization problem (UFP) by examining its robust (worst-case) counterpart ([3]):

f(z,u)
(uw)eUxv g(z,v)
st hi(z,w)) S0, Vw; €W, i=1,--- ,m
zeC.

(RFP) min
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Clearly, A :={z € C | hi(z,w;) £ 0, Vw; € W;, i =1,...,m} is the feasible set of (RFP).
Let € 2 0. Then Z is called an approximate solution of (RFP) if for any z € A,

fau) o f@u)

max
(wv)euxv g(z,v) = (u)exv g(Z,v)

Using parametric approach, we transform the problem (RFP) into the robust non-fractional convex
optimization problem (RNCP), with a parameter r € R,:

(RNCP),, min max flz,u) — rmin 9(z,v)
s.t. hi(ar,wi) <0, Vuw; €W, i=1,---,m
zeC.

Let € 2 0. Then Z is called an approximate solution of (RNCP),. if for any z € A,

— i > T — i T —
max f(z,u) — rming(z,v) 2 max f(z,u) — rming(z,v) -«

Now we give the following relation between approximate solution of (RFP) and (RNCP);, which is
in [13].
Lemma 4.1. [13] Let z € A and let € 2 0. If LE8) _ ¢ > 0, then the following statements are
(u, v)EUXV 9(@0)
equivalent:

(i) Z is an approzimate solution of (RFP);

(i) Z is an €-solution of (RNCP);, where ¥ = @ zgleuxv ﬁi—u)l —ecand €= emm g(z ).

From Lemma 4.1, we can get the following theorem in [13] with a similar way to Theorem 3.1.

Theorem 4.1. [13] Let f : R® x R? = R and h; : R® x R? — R be functions such that for any u € U,
f(-,u) and for each w; € W, hi(-,ws), i =1,...,m, are convez functions, and for any z € R", f(z,-) is
concave function. Let g : R™ xRP — R be a function such that for anyv € V, g(-,v) is a concave function,
and for all z € R™, g(z,-) is a convez function. Let U C RP, V C R” and W; CRY,i=1,...,m. Let

FTeAandletT= max ﬂﬂ)l — €. Suppose that U epl(z Aihi(syw;))* + C* x R+ is closed
(u,v)EUXY 9(@v Wi €W, 20 i=1
and convex. Then the following statements are equivalent:
(i) z is an approzimate solution of (RFP);
(ii) there evista €U, TEV, W; €W, and X; 20, i =1,...,m, such that for any z € C,
hidd -
f(z, @) — 7g(x,0) + Y Aihi(z, @;) 2 0.

i=1

Using Lemma 4.1, we can establish approximate optimality theorems ([13]) for approximate solutions
for the robust fractional optimization problem with a similar way to Theorem 3.2.

Theorem 4.2. [13] (Approximate Optimality theorem) Let f : R* xR? — R and h; : R* xR? - R

be functions such that for any v € U, f(-,u) and for each w; € W;, hi(-,w;), i = 1,...,m, are convex
functions. Let g: R® x RP — R be a function such that for any v € V, g(-,v) is a concave function. Let
UCRP,VCRP and W; CRY%, i=1,....,m. Letz € Aandlete 2 0. Let 7= max LZW _

(u,v)eUxY I )

13



. g&(xvg:v: < €, then T is an approzimate solution of (RFP). If “ u)euxvﬁu‘g 2 € and

U epl(z Aihi(,w;))* + C* x Ry is closed and convez, then the following statements are equiv-
wiEW;, A 20 i=1
alent:

(i) = is an approzimate solution of (RFP);

(i) There exist ; € W; and X; 20,i=1,...,m, ¢ 20,4 20 ande; 20,i=1,...,m+1 such that

0 € Oy (max f(,u))(@) + D3 (~7min g(-,v))(@) + Zaﬁu ihi(-,®:))(T)
i=1
+Ng"+ (%),
max f(Z,u) — Fming(a’;, v)=¢ min g(Z,v) and

m+1
& +e+ Z € — emmg(:c,v) ZA, (Z, ;).

i=1 i=1

If for all z € R®, f(z,-) is concave, and for all z € R, g(z,-) is convex, then using Lemma 4.1, we can
obtain the following characterization of approximate solution for (RFP) which is in [13).

Theorem 4.3. [13] (Approximate Optimality theorem) Let f : R* xR? — R and h; : R*xR? - R,
i=1,...,m, be functions such that for any u € U, f(-,u) and for each w; € W;, hi(-,w;) are convex
functions, and for oll z € R™, f(z,-) is concave function. Let g : R® x RP — R be a function such that
for any v € V, g(-,v) is concave, and for all z € R, g(z,-) is convezr. Let U CRP, V C R? and W; C RY,
i=1,....m. LetTc Aandlete>0. Let 7= max L&YW _¢ If max f(z2) < €, then T is an

(u,w)euUxy 9 (u,v)EUXY 9(zv)
m
approzimate solution of (RFP). If gg: Zeand U epi(X Nihi(wi))*+C* xRy is
(u, u)GuxV wi €W, Ai20 i=1

closed and convez, then the following statements are equivalent:
(i) Z is an approzimate solution of (RFP);

(i) ThereeristG €U, TEV, W € W;, i 20,i=1,...,m, ¢, 20,3 20ande; 20,i=1,...,m+1,
such that
m
0 € 8y (f(-,@))(®) + 8z (—7g(-, 0))(&) + Y _ Be;(Niha(:, @:))(2)
i=1
+NG(z),
max f(@,u) — min 79(Z,v) = eming(:Tz, v) and

m+1
e +ek+ Zc.—emmg(x v) <Z)\ ihi(Z, ;).

i=1 i=1
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Following the approach in [7], we formulate a dual problem (RFD) for (RFP) as follows ([13]) :

(RFD) max r
st. 0€ 351 (ma‘xf(’ u))(x) + 652(-’!‘ Lnel{}g(a 'U))(:L‘)

+Eae.(mz( w))(z) + Ng™* (),

i=1
maxf(:z, u) — rming(m, v) = eming(:z:, v),

m+1

6+ et + Z € —emlng(z v) < Z/\,h.(x w;),
i=1 i=1
r20, w; €W;, N 20,i=1,...,m,

420,220,620 i=1,...,m+1
Clea.rly, F := {(z,w)A’r) | 0e Bi(ma‘xf(?u))(w) +352(_Tminy('iv )(1’) + in: aEi(Aihi('ywi)) (z) +

Ny (z), ma.xf(z u) — rmmg(m,v) 2 eg(z,v), € + €& + 2 € — emmg(z v) £ E Aibi(z,wi), T =
=
0, w; € W,, Ai20, €20, e?, 20,620,i=1,...,m, €u41 =0} is the feasible set of (RFD).
Let ¢ > 0. Then (Z,@,\,) is called an apprommate solution of (RFD) if for any (y,w,A,r) € F,
FZr—e
When € = 0, mea.b)((f(a:, u) = f(z), néi\r}g(:t,v) = g(z) and hi(z,w;) = hi(z), ¢ = 1,...,m, (RFP)
u v

becomes (FP), and (RFD) collapses to the Mond-wier type dual problem (FD) for (FP) as follows ([14]):
(FD) max r

st.  0€0f(z)+0(-rg)(z) + Y ONihi(z) + No(z),
i=1
r20, \20,i=1,...,m

Now, we prove approximate weak and approximate strong duality theorems which hold between (RFP)
and (RFD).

Theorem 4.4. [13] (Approximate Weak Duality Theorem) For any feasible z of (RFP) and any
feasible (y,w, )\, r) of (RFD),

few

(uw)eUxv g(z,v) ~

Theorem 4.5. [13] (Approximate Strong Duality Theorem) Suppose that

m
U epiQ_ g w))* +C* xRy
w; EWi,Ai20 i=1
is closed. If T is an approzimate solution of (RFP) and (o n)lgi}jxv ;g—:% —€ 20, then there exist w € R,
X €RT and 7 € Ry such that (Z,®,\,7) is a 2¢-solution of (RFD).

Remark 4.1. Using the optimality conditions of Theorem 4.2, robust fractional dual problem (RFD)
for a robust fractional problem (RFP) in the convex constraint functions with uncertainty is formulated.
However, when we formulated the dual problem using optimality condition in Theorem 4.3, we could not
know whether approximate weak duality theorem is established, or not. It is our open question.
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