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Abstract

The purpose of this paper, by using the resolvent operator technique associated with
randomly (A, 7, m)-monotone operator, is to establish an existence and convergence the-
orem for a class of system of random nonlinear equations with fuzzy mappings in Hilbert
spaces. OQur works are improvements and generalizations of the corresponding well-known
results.
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1 Introduction

The fuzzy sets theory is an extension of a crisp set by enlarging the truth valued set {0,1}
to the real unit interval [0,1] ([27]). A fuzzy set is characterized and identified by a mapping
called a membership grade function from the whole set into [0, 1]. Heilpern [13] introduced the
concept of fuzzy mappings and proved a fixed point theorem for fuzzy contraction mapping
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which is a fuzzy analogue of Nadler’s fixed point theorem for multi-valued mappings.

In 1989, Chang and Zhu [0] first introduced and studied a class of variational inequalities
for fuzzy mappings. Since then several classes of variational inequalities, quasi variational
inequalities and complementarity problems with fuzzy mappings were considered by Agarwal
et al. [1], Chang and Huang [2], Ding et al. [9], Huang [10], Lee et al. [21], Salahuddin [25] in
the setting of Hilbert spaces and Banach spaces.

Lan [20] introduced a new concepts of (A, n)-monotone operator which generalizes the
(H,n)-monotonicity and A-monotonicity in Hilbert spaces and studied some properties of
(A, n)-monotone operators and applied resolvent operators associated with (A, n)-monotone
operators to approximate the solution of a new class of nonlinear (A, n)-monotone operator
inclusion problems with relaxed cocoercive operators in Hilbert spaces. Recently Kim et al.
[16] introduced the (A, 7, m)-proximal operator to study the system of equations in Hilbert
spaces.

Recently some systems of variational inequalities, variational inclusions, complementarity
problems and equilibrium problems have been studied by some authors in recent years be-
cause of their close relation to Nash equilibrium problems. Huang and Fang [11] introduced
a system of order complementarity problems and established some existence results for these
using fixed point theory. Kim and Kim [15] introduced and studied some system of variational
inequalities and developed some iterative algorithms for approximately the solutions of system
of variational inequalities.

On the other hand, random variational inequality problems, random quasi variational
inequality problems and random variational inclusions and complementarity problems have
been studied by Chang [5], Chang and Huang [7], Huang [10], Khan and Salahuddin [15] and
Bharucha-Red [3], etc.

The concepts of random fuzzy mapping was first introduced by Huang [10]. Subsequently
the random variational inclusion problems for random fuzzy mappings is studied by Anastas-
siou et al. [2], Salahuddin [25], Zhang and Bi [28].

Inspired and motivated by the works [2, 12, 14, 17, 23, 26], we establish the existence and
convergence theorem for system of random nonlinear equations with fuzzy mapping in Hilbert
spaces by using random (A, 1, m)-proximal operator equations

2 Preliminaries

Throughout this paper, (£2,X) is a measurable space with a set  and a o-algebra ¥ of a
subset of 2, H is a real separable Hilbert space endowed with a norm || - || and inner product
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(-,-). Notations B(H), 22 and CB(H) denote the class of Borel o-fields in H, the family
of all nonempty subsets of H and the family of all nonempty closed bounded subset of H,
respectively.

Definition 2.1. A mapping u : @ — H is said to be measurable if for any B € B(H),u™! =
{t € Q,u(t) € Be T}

Definition 2.2. A mapping f : @ x H — H is called a random mapping if for each fixed
u € H, a mapping f(-,u) : & — H is measurable. A random mapping f is said to be
continuous if for each fixed ¢ € Q, a mapping f(¢,-) : H — H is continuous.

Definition 2.3. A multi-valued mapping T : @ — 2 is said to be measurable if for any
BeBH), T (B)={teQ: Tt)NB#0} X.

Definition 2.4. A mapping u : @ — H is called a measurable selection of a measurable
multi-valued mapping T : @ — 2 if u is measurable and for any t € §, u(t) € Ti(u(t)).

Definition 2.5. A mapping T : 2 x H — 2¥ is called a random multi-valued mapping if
for each fixed z € H, T(-,z) : @ — 2¥ is a measurable multi-valued mapping. A random
multi-valued mapping T : Q x H — CB(H) is said to be ®-continuous if for each fixed ¢ € {2,
T(t,-) : Q x H — 2" is randomly continuous with respect to the Hausdorff metric D.

Definition 2.6. A multi-valued mapping T : @ x H — 2¥ is called random if for any
z € H,T(, z) is measurable (denoted by T}, or T;).

Let Q be a set and F(H) be a collection of fuzzy sets over H. A mapping F': Q@ x H —
F(H) is called a fuzzy mapping on H. If F is a fuzzy mapping on H then for any ¢ € Q, F(t)
(denote it by F; in the sequel) is a fuzzy mapping on H and F}(z) is the membership grade of
z in F,. Let A € F(H), a € (0,1]. Then the set

A, = {z€ H: A(z) > a}
is called an a-cut of A.

Definition 2.7. A fuzzy mapping ' : Q x H — §(H) is said to be measurable, if for any
a € (0,1], (F(-))s : @ — 27 is a measurable multi-valued mapping.

Definition 2.8. A fuzzy mapping ' : Q x H — F(H) is a random fuzzy mapping if for any
T € H, F(,x) : Q x H — §(H) is a measurable fuzzy mapping (denoted by F‘m short down
F(z)).
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Let T:QxH—§ (H) be a random fuzzy mapping satisfying the following condition:

(%) : there exists a function a : H — (0, 1] such that for all (¢,z) € Q x H, we have
(Tm(t))a(z(t)) € CB(H), where T;, denotes the value of T at (¢,z). Induced multi-valued
random mapping T, from T as follows:

T:QxH— CB(H), T; = T(t z(t)) az(e)), (t, ) — 'I;,za(z),V(t z) € Qx H.

In this paper we consider the following random (A, 7, m;)-proximal operator equation
system with fuzzy mappings, we consider for each fixed ¢ € Q finding (z(t), y(¢)), (2(¢), w(t)) €
Hy x Hy,u(t) € Ty(z(t)) and

Ey((t),y(t)) + o RY" D (2(8) = 0,
Gul(u(t), y(®) + o Ry (w(t)) = 0 (2.1)

where T : H; x Q@ — F(Hy) is a fuzzy mapping, E : Hy X Hy x Q@ — H,,G : Hy x
H2xQ—)Hg,g:Hlx‘Q—)Hl,h:H2xQ-——)H2,m : Hy x Hy x Q — H; and
ne : Hy x Hy x Q@ — Hj are nonlinear random single-valued mappings, A; : H; x Q@ —
HI,A2:HZXQ_)HQ,M:HIXHIXQ—)ZHl andN:ngngQ—>2H2 are
any nonlinear operators such that for all (2(t),t) € Hy x Q, My(-, %) : Hi — 2% is a ran-
domly (A ¢, 71,4, m1¢)-monotone operator with f;(H;)Ndom(M(-, z(t))) # 0 and for all (w,t) €
Hy xQ, Ny(-,w(t)) : Hy — 272 is a randomly (As, 72,4, Ma,s)-monotone operator with g;(Hz)N
dom(N(,w() # 0, UG = T — Ay (J4EO) | RIS = 1~ ay (V29 T
the identity mapping, A (J242((0)) = Ave (J470) (0, Ase (2429 () =
Ane (TS0 (w(t)), T ® = (Avitpci(, (1)) and JpSE® = (Ag et aNil,y(8)
for all (z(t), 2(t)) € Ha, (y(t), w(t)) € Hz and p,0: Q& —> (0,1) are measurable mappings.

For appropriate and suitable choice of T, E,G, M, N, f, g, A;,m; and H; for i = 1,2 we see
that (2.1) is generalized version of some problems which include the system (random) vari-
ational inclusions, (random) generalized quasi variational inequalities and (random) implicit
quasi variational inequalities for fuzzy mappings, see [17, 18].

Lemma 2.9. [1] Let M : Q@ x H — CB(H) be a D-continuous random multi-valued mapping.
Then for a measurable mapping = : 8 — H, the mapping M(-,z(-)) : @ — CB(H) is
measurable.

Lemma 2.10. [{] Let M,V : Q@ — CB(H) be two measurable multi-valued mappings and
€ > 0 be a constant and = :  — H be a measurable selection of M. Then there exists a
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measurable selection y : @ — H of V such that for all £ €
lz(®) —y@l < (1+e)D(M(2), V(D).

Lemma 2.11. [22] Let (H,d) be a complete metric space. Suppose that G : H — CB(H)

satisfies
D(G(2),G(y)) < wd(z,y),Vz,y € H,

where w € (0,1) is a constant. Then the mapping G has a fixed point in H.
Definition 2.12. Let z,y,w :  — H be random mappings and ¢ € 2. A random mapping
T:Qx Hx H— H is said to be:

(i) randomly monotone in the first argument if
(Tu(z(t), w(t)) — Tu(y(t), w(t)), =(t) - y(1)) = 0,
for all z(¢),y(t) € H.
(i) randomly strictly monotone in the first argument if T; is monotone and
(T(2(), w(®)) — Tu(y(t), w(t)), =(t) — y(2)) = 0
if and only if z(t) = y(t);

(iii) randomly 7-strongly monotone in the first argument if there exists a measurable function
ry : 8 — (0, 00) such that

(Tu(x(t), w(t) — Te(y(t), w(t)), 2(t) — y(t)) > relle(t) -y,
for all z(t),y(t) € H.

(iv) randomly m;-relaxed monotone in the first argument if there exists a measurable function

m; : @ — (0, 00) such that
(T (t), w(t)) - Tuly(®), w(t), z(t) — y(t)) > —mella(t) — y(@)II,
for all z(t),y(t) € H.

(v) randomly s;-cocoercive in the first argument if there exists a measurable function s; :
Q — (0, 00) such that

(Tu(2(t), w(t)) — Ty(t), w(t), =(t) — y(t)) 2 s:lITe(z(t), w(t) — Tu(y(t), w(t))II?,

for all z(t),y(t),w(t) € H x H x H.
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(vi) randomly ~y,-relaxed cocoercive with respect to A; in the first argument if there exists a
measurable function -y, — (0, 00) such that

(T(=(t), w(t)) = Tuly(), w(t)), Ax(z(t)) — Ay (1)) = —nl|Te(z(2), w(t)) - Te(y(t), w(t))II?,
for all z(t),y(t), w(t) € H x H x H.

(vil) randomly (+y, o;)-relaxed cocoercive with respect to A, in the first argument if there exist
measurable functions 4, o : © — (0, 00) such that

(Tu(2(t), w(t)) — Te(y(®), w(t)), Ad(e(t)) — Au(y(1)))
> —nl| Tz (t), w(t)) - Tiy(®), w®)|* + aella(t) — y@)I%,

for all z(¢),y(t),w(t) € H x H x H.

(viii) randomly p;-Lipschitz continuous in the first argument if there exists a measurable func-
tion py :  — (0, 00) such that

ITe(2(2), w(?)) — Te(y(®), w@)I < pellz(t) -y,
for all z(t), y(t),w(t) € H x H x H.
In a similar way, we can define a randomly Lipschitz continuity of the operator T'(,-, ) in
the second argument.

Definition 2.13. Let T : H x Q — 2¥ be a random multi-valued mapping. Then T is said
to be randomly Tt-ﬁ-Lipschitz continuous in the first argument if there exists a measurable
mapping 7 : & — (0, 1) such that

D(Tu(x(t)), Ti(y(®))) < mllz(t) — y(®)ll,
for all z(t), y(t) € H,t € Q, where D : 28 x 2H —3 (—00, +00)U{+00} is the Hausdorff metric

i.e.,

D(A,B) = max{ sup inf |lz(¢) — y(t)|

, sup inf ||z(¢) — y(¢ ,VA,B e 28,
S0 l Sup s llz(2) — y( )Il}

In a similar way we can define randomly D-Lipschitz continuity of the T(-,-) in the second
argument.
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Lemma 2.14. Let (H,d) be a complete metric space and 71,7 : H — CB(H) be two
set-valued contractive mappings with same contractive constant ¢ € (0, 1) i.e.,

D(Ti(z), Ti(y)) < td(=,y),Va,y € H,i=1,2.

Then . B
D(F(T:), F(T)) < 1 5up D(Ti(z), To(a)),

where F(T1) and F(T3) are the sets of fixed points of 7} and T3, respectively.

Definition 2.15. Let A : H x Q — H,n : H x H x  — H be two random single-
valued mappings. The set-valued mapping M : H x H x Q@ — 2 is said to be randomly
(A¢, 7, m¢)-monotone if

(1) M is randomly m;-relaxed n;-monotone mapping;
(2) (At + peM;)(H) = H, where p: @ — (0,1) is a measurable mapping.

Definition 2.16. Let A : Q@ x H — H be a randomly r;-strongly 7;-monotone mapping
and M : @ x H — 29 be a randomly (A, 7;)-monotone operator. Then random operator
(A¢+ peM;) 7! is a single-valued random mapping for any measurable function p : H — (0, 00)
and ¢ € .

Definition 2.17. Let A: Q x H — H be a randomly strictly 7;-monotone mapping and M :
Q x H —» 29 be a randomly (A, 7, m;)-monotone mapping. Then for any given measurable
mapping p : & — (0, 1), the random resolvent operator J;’::ﬁf‘ : H — H is defined by

T (@(t)) = (A + peMy) ™ (2(t)), VE € Q, z(t) € H.

Proposition 2.18. [19] Let H be a Hilbert space and n: 2 x H x H — H be a randomly
Ti-Lipschitz continuous mapping, A : 2 x H — H be a randomly r;-strongly 7;-monotone
mapping and M : Q x H — 2% be a randomly (A, 7;, m;)-monotone mapping. Then the

random resolvent operator J;’:,%‘ : H — H is a randomly (rﬁ;‘tmt )-Lipschitz continuous

mapping i.e.,
JMeg oy geody )l < — Tt ig(t) — y(t )
| Pt At ® m,M,y( )< s — Py llz(t) — y( )“

where p; € (0, %) is a real-valued random variable for all ¢ € Q.

In connection with a randomly (A, 7, m;)-proximal operator equation system (2.1), we
consider the system of random nonlinear equation with fuzzy mappings for finding measurable
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mappings z,u :  :— Hy,y: Q — H, such that for all £ €  and each fixed T},z(t)(u(t)) >
a(z(t)) and

0 € Ey(z(t), y(t)) + My(z(2), (t)),

0 € Gy(u(t), y(t)) + Ne(y(t), y(2))- (22)

Lemma 2.19. For ¢t € Q, z,u: Q — H; and y : Q@ — Hy, (z(t), y(¢),u(t)) is a solution of
problem (2.2) if and only if (z(t), u(t)) € Hy,y(t) € H; such that

o(t) = Ty T[4y (2(t)) — peBr(a(t), y(t)]
y(t) = Ty YD Ay (y(8) — eiGelult), y(1))] (2.3)

where fof";:(t» = (A1t + peM (-, z(t))) ! and Jﬁﬁ;ﬁt(t» = (Az¢ + 0:N:(-,y(t))) ™" are corre-

sponding random resolvent operator in the first argument of a random (Aj4, 71,:)-monotone
operator M,(-,-), random (As, 72, )-monotone operator. Ny (-, -), respectively, A;; is a randomly
r;¢-strongly monotone operator for s = 1,2 and p, o : @ — (0, 1) are measurable mappings.

Now we prove that problem (2.1) is equivalent to problem (2.3).

Lemma 2.20. For t €  the problem (2.1) has a solution ((t), y(t), u(t)) with u(t) € Ty(x(t))
if and only if the problem (2.3) has a solution (x(t), y(t), u(t)) with u(t) € T;(2(t)), where

a(t) = Taren (D), y(t) = Tarea® (w(t)) (24)

and
2(t) = Ars(2(t)) — peEe(2(t), y(2)),

w(t) = Az(y(1) — &G(u(t), (1)),

where p, o : 2 — (0, 1) are measurable mappings.

3 Main Results

In this section, we first discuss the existence thorem. And then we developed an algorithm for

the problem and proved the convergence of the random sequence generated by given algorithm.

Theorem 3.1. Let (2,0) be a measurable space. Let A; : H; x @ — H; be a randomly
73 +-strongly monotone and randomly s;-Lipschitz continuous mapping for each ¢ = 1,2,T :
Hy xQ — §(H,) be a fuzzy mapping induced by a set-valued mapping T : Hy x 2 — Hj, and
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a: Hy — (0,1) and T,,x(t)(x(t)) > a(z(t)) satisfying the condition (x). Let T : Hy x Q — H;
be the randomly ; — —-D- Lipschitz continuous mapping induced by T', where D is the Hausdorff
pseudo metric on 2%, for each i = 1,2. Let M : H; x H; x @ — 291 be a randomly
(A1,¢, m,¢)-monotone mapping with measurable mapping m; : 2 — (0,1) in the first variable
and N : Hy x Hy x @ — 252 be a randomly (A, n2,¢)-monotone mapping with measurable
mapping my : @ — (0,1) in the first variable. Let 7y : H; x H1Q — H; be a randomly 754~
Lipschitz continuous mapping, 7, : H x Hy x @ — Hj be randomly 7, ;-Lipschitz continuous
mapping, £ : H; X Hy x @ — H; be the randomly Lipschitz continuous mapping with
respect to first variable with measurable mapping 3 :  — (0, 1), and second argument with
respect to the measurable mapping £ : @ —» (0,1) and randomly (71, @1 ,4)-relaxed cocoercive
with respect to A;; and first variable of E; with measurable mappings v,a : @ — (0,1).
Let G : Hy x Hy x 2 — H, be the randomly Lipschitz continuous with respect to first
and second variables with measurable mappings p,¢ : & — (0, 1), respectively. Let G be a
randomly (754, o ¢ )-relaxed cocoercive mapping with respect to A, ; with measurable mappings
Yo, a2 : 8 —> (0,1), respectively. If in addition p : @ — (0, %‘—t) and o : Q@ — (0, ;—2'—2‘1) are
measurable mappings and

[T (2(8)) — JECEO (0))]] < vagll®) -y, (3.1)
for all (z(t),y(¢), 2(t),t) € Hy x Hy x Hy x ,
TSmO (2(2)) — TS ()] < vaellz(®) — y®)]I, (32)

for all (z(t),y(t), 2(t),t) € Hy X Hy X Hy X Q, where z,u : @ — H; and y : § — H, are
measurable mappings, then problem (2.1) has a random solution (z*(t), y*(t), u*(t)).

4 Iterative algorithms and convergence analysis

In this section, based on Lemma 2.20 and Nadler results [23], we shall construct a new class
of iterative algorithms for solving problems (2.1) and discuss the convergence analysis of the

algorithms.

Algorithm 4.1. Assume that H;, A;, 7, M, N, E,G, T,T are same as in the problem (2.1) for
eachi=1,2 and 9 : @ — Hi,yo : @ — H, are measurable mappings. For a : H, — (0,1),
n > 0 and the random element (z(t),y(t),u(t)) € Hy x Hy x Hy, we define the iterative

sequences {n(¢)}, {ya(t)}, {un(t)} by

Zasa(t) = (1= Mn®)2a(®) + Mnl®) [Tyt (As(@n(t)) = uBrl@a(®), Un(t)))] +Pal®), (41)
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Y1) = (1= M()n(t) + Mn(®) [0 2D (Aga(n(8)) — 0Gulun(®), 1()] + 0a(8), (42)
Tiao (tn(®)) 2 aea(t)), Jun(t) —u(@®) < 1+ )D(Eea(®) Ti=(®),  (43)

where p,0 : @ — (0,1) are measurable, {\,(¢)} is a measurable sequence in (0,1], and
Pn(t), ¢, (t) are two random error sequences satisfying the same conditions in H; and Hs,
respectively.

Lemma 4.2. [24] Let {a,}, {b,} and {c,} be three sequences of nonnegative real numbers
satisfying the following conditions:

(i) 0<b, <1,n=0,1,2,--- and limsup, b, < 1;

(il) B2 4en < +00;

(i) @nt1 < bpan+cp,m=0,1,2,---.

Then lim,,_,. a, =0.

Theorem 4.3. Let Hy, Hy, T}, Ty, 14, Moty Avs Ay, My, Ny, Ey, Gy be the same as in Theorem
3.1. Assume that all the conditions of Theorem 3.1 hold and

lim sup An(t) < 1,275, (lpa @)l + llaa(®)]) < +o00. (44)

Then the random iterative sequences (z,(t), yn(t)) With u,(t) € Ty(2(t)) defined by Algorithm
4.1, converges strongly to the random solution (z*(¢), y*(¢), u*(t)) of (2.1).
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