SRR S A 2 Sk 42

#2011 20164F 42-46

RENEERE =2 —u BT VICERT 5 IR
oy =

Fixed point theorem and fractional differential equations related with a neuron model
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1 Introduction

In this paper we show a fixed point theorem (Theorem 1). Using Theorem 1, we show the
existence and uniqueness of solutions for fractional differential equations with multiple delays
(Theorem 2). Using Theorem 2, we discuss the fractional chaos neuron model.

2 Information processing mechanisms in nervous sys-
tem and neuron models

Mammalian behaviour is thought to be controlled by nervous system including brain. Neuron,
which is structural and functional unit of nervous system, at the sensory receptor plays a
key role in transforming physical information from the outside into the signals which can be
treated in nervous system. The nervous signals are transferred to central nervous system and
are processed, producing the output toward effector organ like muscles.

Neuron itself can be considered as the system with multi-input and one output. Neuron
forms the unique special structure called synapse to contact with other neurons, composing
the neural networks in nervous system. One neuron receives inputs as postsynaptic potential
of either positive or negative value from other neurons through these synapses and summate
them, generating output as an action potential when summed input exceed the threshold
value.

Key points of information processing in neuron, therefore, are the summation of posi-
tive/negative inputs and threshold effect in input-output transformation, resulting in all-or-
none characteristic of output.
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Representative basic mathematical neuron model was reported by McCulloch and Pitts
in 1943 [4]. It relatively faithfully followed the neural information processing in mammalian
neurons especially for the all-or-none output characteristic. This model is expressed as fol-

lows:
z2=38 (Zw,-x,- — 0)
i=1

where n is a number of inputs, z; is an 4-th input , w; is a synaptic weight of an i-th input,
z is an output, 6 is a threshold and s is a step function

_J1 (20,
s(t)“{o (t < 0).

Other than this model, variety of mathematical neuron models were suggested for not only
the basic research in neuroscience but also the engineering research to develop novel system
based on neural information processing mechanisms. As for the engineering purpose, a model
does not need to precisely follow the neural behaviour of neuron in mammals, e.g. the neuron
model without all-or-none output characteristic. One of such models is the fractional chaos
neuron model in which its dynamics are exhibited by the fractional differential equation [3].
Example 3 in Section 4, we discuss the fractional chaos neuron model.

3 Fixed point theorem

Let I be an arbitrary interval, let J be an interval with I C J. Let (E, |-||g) be a Banach
space, let BC(I, E) be the Banach space consisting all bounded continuous mappings from
I into E with the norm ||lu|| = sup{||u(¢)||g | t € I} for any u € BC(I,E). Let F be a
nonempty closed subset of BC(I, E) and let ¢ be a mapping from J \ I into E. Define a
mapping ug by uy =u ifon I, uy = ¢ if on J\ I for any u € F. We say F satisfies (x) for ¢
if (x) uy € BC(J, E) holds for any u € F.

We obtain the following fixed point theorem. For the proof of Theorem 1, see [2].

Theorem 1. Let I be an arbitrary finite or infinite interval, let Jy, J be intervals with I C
Jo C J, let (E,|:|g) be a Banach space and let F' be a nonempty closed subset of BC(I, ).
Suppose that there ezists a mapping ¢ from J\ I into E such that F satisfies (%) for ¢. Let A
be a mapping from F into itself. Suppose that there ezist B € [0,1), a mapping G from I x Jy
into [0, 00) integrable with respect to the second variable for any the first variable, mappings
7,08 from I into Jo with v < d, n € N, and mappings n; € C(Jo,J) for anyi=1,...,n such
that

(H1) for any u,v € F and for anyt € I

8(t) n
| Au(t) — Av(t)lle < Bllu(t) — v(®)lle + / o G(t,s) D llug(m(s)) — ve(mi(s)) | dls;

i=1
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(H;) thereezista € [0,00), K € [0,00), m, M € (0, 00) withm < M andy € BC(J,[m, M])
such that

(1) B+nKael0,1);

(2) yu@®) < Ky(t) foranyt € Jy and for anyi=1,...,n;
5(2)
(3) t G(t,3)y(s)ds < ay(t) for anyt € 1.

7(t)
Then A has a unique fized point in F.

4 Fractional differential equations related with a neu-
ron model

In this section, using Theorem 1, we show the existence and uniqueness of solutions for
fractional differential equations with multiple delays. Throughout this paper the fractional
derivative means the Caputo-Riesz derivative °D® defined by

cnHo — 1 ' n—oa—1 a
Deu(t) = '1“_(77—_07)/0 (t—3s) Ig;u(s)ds

for any a € (0, c0) and for any function u of (0, 00) into R , where I' is the gamma function
and n is a natural number with n — 1 < a < n. The Riemann-Liouville fractional integral of
order a > 0 of a function u of (0, c0) into R is defined by

I*u(t) = ﬁ/o (t — s)* tu(s)ds.

For the fractional derivative and integral, for instance, see [1].
Using Theorem 1, we obtain the following.

Theorem 2. Let (E, ||-||g) be a Banach space, let C([0,T] x E x E, E) be the space consisting
of all continuous mappings from [0,T] X E x E into E and let f € C([0,T] x E x E, E)
satisfying

(Hy) there exist Ly, Ly € [0,T)] such that
£t 21, 22) — f(ty1,9) e < |21 —nlle + |22 — yalle
for any t € [0,T) and for any x1,%a,y1,92 € E.

Let C([0,T), E) be the Banach space consisting of all continuous mappings from [0, T] into E,
let C([0,T),[0,00)) be the space consisting of all continuous mappings from [0,T] into [0, co)
and let C((—o00,0], E) be the space consisting of all continuous mappings from (—oo,0] into
E. Then the following fractional differential equation with multiple delays

‘Du(t) = f(t,u®),us(t —7(2)) (¢ €[0,T)), 1)

where a € (0,1], 7 € C([0,T1],[0,00)) and ¢ € C((—o0,0], E), has a unique solution in
{u]ueC(0,T),E) and u(0) = ¢(0)}.
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Proof. Put I = Jy =[0,T}, 7o = inf{t — 7(t) | t € I}, J = [, T] and
F ={u|ueC(I,E) and u(0) = ¢(0)}.

Then F is closed. Since ¢ € C([1,0), E) and u(0) = ¢(0) for any u € F, we obtain
uy € C(J,E) for any u € F. Therefore F satisfies (x) for ¢. Then u € C(I, E) is a solution
of the equation (1) if and only if it is a solution of the integral equation

1 /t 1
Y t—s)*  f(s,u(s),us(s — 7(s)))ds. 2
F(a)o( )5 f (s, ul(s), ug(s — 7(s))) 2
In fact, if u satisfies the equation (1), then we have
I*°D%u(t) = I°f(t,u(t), us(t — 7(t)).
Since I*°Du(t) = u(t) — u(0) (1, Lemma 2.22]) and u(0) = ¢(0), we have the equation (2).
If u satisfies the equation (2), then we have
¢ D*u(t) = °D*@(0) + D*I* f(t, u(t), us(t — 7(2)).
Since *D*¢(0) = 0 and °D*I* = I ([1, Lemma 2.21]), we have the equation (1).
Define a mapping A by

u(t) = ¢(0) +

ult) = $(0) + - [ (6= 8 F(5, u(s), us(s — 7(s)))ds
F(a) 0

for any u € F. Since Au(0) = ¢(0), we obtain Au € F. We show A has a unique fixed point.
Indeed we have

1 A4u(t) — Av(t)]le
1 t a1
< w / (t — ) (Lallua(s — 72(5)) = vo(5 — 7(5)) s
+Lao||ug(s — 12(s)) — ve(s — 72(s))||£) ds

< ﬁ / (4= )" (g (5) = v )5+ ug(ma(s) = () ) s,
where 71(t) = 0, L = max{L;, Lo} and n;(t) =t — 1(t) (¢ =1,2). Put 8 =0,
(t—s)*! f0<s<t,

ift<s,

7(t) = 0 and 4(t) = t. Then the condition (H;) holds. Take a with 0 < na < 1 and take ¢
with ¢* > £ Put K =1, m = e, M = e and y(t) = e**. Then the conditions (1) and (2)
of (H;) hold. Moreover, since

a(t)

L
G(t,s) = { I'(a)
0

G(t, 8)y(s)ds = —2~ f (= s)lessds = € / ® lemeds < et < gt
() , I'(a) Jo cT(a) Jo T T ’

the condition (3) of (H) holds. Therefore by Theorem 1, A has a unique fixed point in
F. O
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Using Theorem 2, we discuss the fractional chaos neuron model [3].

Example 3. We consider the following fractional differential equation with delay

¢D*u(t) = —Bu(t) + sin muglt = 7) (telo,1]),
2Ty
where a € (0,1], 8,7 € [0,00), Ty € (0,00) and ¢ € C([~7,0],R). In this equation, u(t) is
an internal state of the neuron at time t, 3 is a dissipative parameter and 7 is delay time.
Moreover we use a sinusoidal function with a periodic parameter Ty as an activation to be
related to the output of the neuron. This equation is called the fractional chaos neuron model
[B]. Put E=R, 7(t) = 7 and f(t,z1,72) = =Bz, +sin 32 75 Since

A

|[f(t, x1,22) — f(t, 0, 92)] < 1Bllwa — | + Smf—sl ;r;{z

IA

|Bl|z1 — y1|+2T| T2 — Yal,

[ satisfies (Hy) for Ly = |B| and Ly = 57-. Therefore by Theorem 2 the equation above has
a unigue solution in {u | u € C([0,T],R) and u(0) = ¢(0)}.
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