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1 Introduction

In this paper we show a fixed point theorem (Theorem 1). Using Theorem 1, we show the

existence and uniqueness of solutions for fractional differential equations with multiple delays
(Theorem 2). Using Theorem 2, we discuss the fractional chaos neuron model.

2 Information processing mechanisms in nervous sys‐

tem and neuron models

Mammalian behaviour is thought to be controlled by nervous system including brain. Neuron,
which is structural and functional unit of nervous system, at the sensory receptor plays a

key role in transforming physical information from the outside into the signals which can be

treated in nervous system. The nervous signals are transferred to central nervous system and

are processed, producing the output toward effector organ like muscles.

Neuron itself can be considered as the system with multi‐input and one output. Neuron

forms the unique special structure called synapse to contact with other neurons, composing
the neural networks in nervous system. One neuron receives inputs as postsynaptic potential
of either positive or negative value from other neurons through these synapses and summate

them, generating output as an action potential when summed input exceed the threshold

value.

Key points of information processing in neuron, therefore, are the summation of posi‐
tive/negative inputs and threshold effect in input‐output transformation, resulting in all‐or‐

none characteristic of output.
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Representative basic mathematical neuron model was reported by McCulloch and Pitts

in 1943 [4]. It relatively faithfully followed the neural information processing in mammalian

neurons especially for the all‐or‐none output characteristic. This model is expressed as fol‐

lows:

z=s(\displaystyle \sum_{i=1}^{n}w_{i}x_{i}- $\theta$)
where n is a number of inputs, x_{i} is an i‐th input, w_{i} is a synaptic weight of an i‐th input,
z is an output,  $\theta$ is a threshold and  s is a step function

s(t)=\left\{\begin{array}{l}
1 (t\geq 0) ,\\
0 (t<0) .
\end{array}\right.
Other than this model, variety of mathematical neuron models were suggested for not only

the basic research in neuroscience but also the engineering research to develop novel system
based on neural information processing mechanisms. As for the engineering purpose, a model

does not need to precisely follow the neural behaviour of neuron in mammals, e.g. the neuron

model without all‐or‐none output characteristic. One of such models is the fractional chaos

neuron model in which its dynamics are exhibited by the fractional differential equation [3].
Example 3 in Section 4, we discuss the fractional chaos neuron model.

3 Fixed point theorem

Let I be an arbitrary intervall let J be an interval with I\subset J . Let (E, \Vert\cdot\Vert_{E}) be a Banach

space, let BC(I, E) be the Banach space consisting all bounded continuous mappings from

I into E with the norm \displaystyle \Vert u\Vert=\sup\{\Vert u(t)\Vert_{E}|t\in I\} for any u\in BC(I, E) . Let F be a

nonempty closed subset of BC(I, E) and let  $\phi$ be a mapping from  J\backslash I into E . Define a

mapping u_{ $\phi$} by u_{ $\phi$}=u if on I,  u_{ $\phi$}= $\phi$ if on  J\backslash I for any u\in F . We say F satisfies (*) for  $\phi$
if (*)u_{ $\phi$}\in BC(J, E) holds for any u\in F.

We obtain the following fixed point theorem. For the proof of Theorem 1, see [2].

Theorem 1. Let I be an arbitrary finite or infinite interval let J_{0}, J be intervals with  I\subset

 J_{0}\subset J , let (E, \Vert\cdot\Vert_{E}) be a Banach space and let F be a nonempty closed subset of BC(I, E) .

Suppose that there exists a mapping  $\phi$ from  J\backslash I into E such that F satisfies (*) for  $\phi$ . Let  A

be a mapping from F into itself. Suppose that there exist  $\beta$\in[0 , 1), a mapping G from I\times J_{0}
into [0, \infty ) integrable with respect to the second variable for any the first variable, mappings

 $\gamma$,  $\delta$ from I into  J_{0} with  $\gamma$\leq $\delta$, n\in \mathrm{N} , and mappings $\eta$_{i}\in C(J_{0}, J) for any i=1
,

. . .

,
n such

that

(H_{1}) for any u, v\in F and for any t\in I

\displaystyle \Vert Au(t)-Av(t)\Vert_{E}\leq $\beta$\Vert u(t)-v(t)\Vert_{E}+\int_{ $\gamma$(t)}^{ $\delta$(t)}G(t, s)\sum_{i=1}^{n}\Vert u_{ $\phi$}($\eta$_{i}(s))-v_{ $\phi$}($\eta$_{i}(s))\Vert_{E}ds ;
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(H_{2}) there exist  $\alpha$\in[0, \infty ),  K\in[0, \infty),  m, M\in(0, \infty) with m\leq Mandy\in BC(J, [m, M])
such that

(1)  $\beta$+nK $\alpha$\in[0 , 1 ) ;

(2) y($\eta$_{i}(t))\leq Ky(t) for any t\in J_{0} and for any i=1 ,
. . .

, n_{f}.

(3) \displaystyle \int_{ $\gamma$(\mathrm{t})}^{ $\delta$(t)}G(t, s)y(s)ds\leq ay(t) for any t\in I.

Then A has a unique fixed point in F.

4 Fractional differential equations related with a neu‐

ron model

In this section, using Theorem 1, we show the existence and uniqueness of solutions for

fractional differential equations with multiple delays. Throughout this paper the fractional

derivative means the Caputo‐Riesz derivativ\mathrm{e}^{\mathrm{C}}D^{ $\alpha$} defined by

\displaystyle \mathrm{C}D^{ $\alpha$}u(t)=\frac{1}{ $\Gamma$(n- $\alpha$)}\int_{0}^{t}(t-s)^{n- $\alpha$-1} \frac{f^{ $\iota$}}{fs^{n}}u(s)ds
for any  $\alpha$\in(0, \infty) and for any function u of (0, \infty) into \mathbb{R} , where  $\Gamma$ is the gamma function

and  n is a natural number with n-1\leq $\alpha$<n . The Riemann‐Liouville fractional integral of

order  $\alpha$>0 of a function u of (0, \infty) into \mathbb{R} is defined by

I^{ $\alpha$}u(t)=\displaystyle \frac{1}{ $\Gamma$( $\alpha$)}\int_{0}^{t}(t-s)^{ $\alpha$-1}u(s)ds.
For the fractional derivative and integral, for instance, see [1].

Using Theorem 1, we obtain the following.
Theorem 2. Let (E, ||\cdot\Vert_{E}) be a Banach space, let C([0, T]\times E\times E, E) be the space consisting
of all continuous mappings from [0, T]\times E\times E into E and let f\in C([0, T]\times E\times E, E)
satisfying

(H_{f}) there exist L_{1}, L_{2}\in[0, T] such thal

\Vert f(t,x_{1}, x_{2})-f(t, y_{1},y_{2})\Vert_{E}\leq\Vert x_{1}-y_{1}\Vert_{E}+\Vert x_{2}-y_{2}\Vert_{E}

for any t\in[0, T] and for any x_{1} , x_{2}, y_{1}, y_{2}\in E.

Let C([0, T], E) be the Banach space consisting of all continuous mappings from [0, T] into E,
let C([0, T], [0, \infty)) be the space consisting of all continuous mappings from [0, T] into [0, \infty)
and let  C((-\infty, 0], E) be the space consisting of all continuous mappings from (-\infty, 0] into

E. Then the following fractional differential equation with multiple delays

\mathbb{C}D^{ $\alpha$}u(t)=f(t,u(t),u_{ $\phi$}(t- $\tau$(t)) (t\in[0, T (1)
where  $\alpha$\in(0,1],  $\tau$\in C([0, T], [0, \infty)) and  $\phi$\in C((-\infty, 0], E) ,

has a unique solution in

\{u|u\in C([0,T], E) and u(0)= $\phi$(0)\}.
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Proof Put I=J_{0}=[0, T] , $\tau$_{0}=\displaystyle \inf\{t- $\tau$(t)|t\in I\}, J=[$\tau$_{0}, T] and

F= {u|u\in C(I, E) and u(0)= $\phi$(0) }.
Then F is closed. Since  $\phi$\in C([$\tau$_{0},0), E) and u(0)= $\phi$(0) for any u\in F , we obtain

u_{ $\phi$}\in C(J, E) for any u\in F . Therefore F satisfies (*) for  $\phi$ . Then  u\in C(I, E) is a solution

of the equation (1) if and only if it is a solution of the integral equation

u(t)= $\phi$(0)+\displaystyle \frac{1}{ $\Gamma$( $\alpha$)}\int_{0}^{t}(t-s)^{ $\alpha$-1}f(s, u(s),u_{ $\phi$}(s- $\tau$(s)))ds . (2)

In fact, if u satisfies the equation (1), then we have

I^{ $\alpha$ \mathrm{c}}D^{ $\alpha$}u(t)=I^{ $\alpha$}f(t,u(t), u_{ $\phi$}(t- $\tau$(t)) .

Since I^{ $\alpha$ \mathrm{c}}D^{ $\alpha$}u(t)=u(t)-u(0) ( [1 , Lemma 2.22]) and u(0)= $\phi$(0) ,
we have the equation (2).

If u satisfies the equation (2), then we have

\mathrm{C}D^{ $\alpha$}u(t)=\mathrm{c}D^{ $\alpha$} $\phi$(0)+^{\mathrm{C}}D^{ $\alpha$}I^{ $\alpha$}f(t, u(t), u_{ $\phi$}(t- $\tau$(t)) .

Since \mathrm{C}D^{ $\alpha$} $\phi$(0)=0 and \mathrm{C}D^{ $\alpha$}I^{ $\alpha$}=I ( [1 , Lemma 2.21]), we have the equation (1).
Define a mapping A by

Au (t)= $\phi$(0)+\displaystyle \frac{1}{ $\Gamma$( $\alpha$)}\int_{0}^{t}(t-s)^{ $\alpha$-1}f(s, u(s), u_{ $\phi$}(s- $\tau$(s)))ds
for any u\in F . Since Au(0) = $\phi$(0) , we obtain Au\in F . We show A has a unique fixed point.
Indeed we have

\Vert Au(t)-Av(t)\Vert_{E}

\displaystyle \leq\frac{1}{ $\Gamma$( $\alpha$)}\int_{0}^{t}(t-s)^{ $\alpha$-1}(L_{1}\Vert u_{ $\phi$}(s-$\tau$_{1}(s))-v_{ $\phi$}(s-$\tau$_{1}(s))\Vert_{E}
+L_{2}\Vert u_{ $\phi$}(s-$\tau$_{2}(s))-v_{ $\phi$}(s-$\tau$_{2}(s))\Vert_{E})ds

\displaystyle \leq\frac{L}{ $\Gamma$( $\alpha$)}\int_{0}^{t}(t-s)^{ $\alpha$-1}(\Vert u_{ $\phi$}($\eta$_{1}(s))-v_{ $\phi$}($\eta$_{1}(s))\Vert_{E}+\Vert u_{ $\phi$}($\eta$_{2}(s))-v_{ $\phi$}($\eta$_{2}(s))\Vert_{E})ds,
where $\tau$_{1}(t)=0, L=\displaystyle \max\{L_{1}, L_{2}\} and $\eta$_{i}(t)=t-$\tau$_{i}(t)(i=1,2) . Put  $\beta$=0,

G(t, s)=\left\{\begin{array}{ll}
\frac{L}{ $\Gamma$( $\alpha$)}(t-s)^{ $\alpha$-1} & \mathrm{i}\mathrm{f} 0\leq s<t,\\
0 & \mathrm{i}\mathrm{f} t\leq s,
\end{array}\right.
 $\gamma$(t)=0 and  $\delta$(t)=t . Then the condition (H_{1}) holds. Take  $\alpha$ with  0<n $\alpha$<1 and take c

with c^{ $\alpha$}\displaystyle \geq\frac{L}{ $\alpha$} . Put K=1, m=e^{c $\tau$}, M=e^{cT} and y(t)=e^{\mathrm{c}t} . Then the conditions (1) and (2)
of (H_{2}) hold. Moreover, since

\displaystyle \int_{ $\gamma$(t)}^{ $\delta$(t)}G(t, s)y(s)ds=\frac{L}{ $\Gamma$( $\alpha$)}\int_{0}^{t}(t-s)^{ $\alpha$-1}e^{\mathrm{c}s}ds=\frac{Le^{\mathrm{c}t}}{c^{ $\alpha$} $\Gamma$( $\alpha$)}\int_{0}^{\mathrm{c}t}s^{ $\alpha$-1}e^{-s}ds\leq\frac{L}{c^{ $\alpha$}}e^{ct}\leq $\alpha$ y(t) ,

the condition (3) of (H_{2}) holds. Therefore by Theorem 1, A has a unique fixed point in

F. 口
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Using Theorem 2, we discuss the fractional chaos neuron model [3].

Example 3. We consider the following fractional differential equation with delay

\displaystyle \mathrm{c}D^{ $\alpha$}u(t)=- $\beta$ u(t)+\sin\frac{ $\pi$ u_{ $\phi$}(t- $\tau$)}{2T_{0}} (t\in[0,T]) ,

where  $\alpha$\in (0,1],  $\beta,\ \tau$\in[0 , 科科), $\tau$_{0}\in(0, \infty) and  $\phi$\in C([- $\tau$, 0],\mathbb{R}) . In this equation, u(t) is

an internal state of the neuron at time t,  $\beta$ is a dissipative parameter and  $\tau$ is delay time.

Moreover we use a sinusoidal function with a periodic parameter  T_{0} as an activation to be

related to the output of the neuron. This equation is called the fractional chaos neuron model

[3]. Put E=\mathbb{R},  $\tau$(t)= $\tau$ and  f(t, x_{1} , x_{2})=- $\beta$ x_{1}+\displaystyle \sin\frac{ $\pi$ x_{2}}{2T_{0}} . Since

|f(t, x_{1}, x_{2})-f(t,y_{1},y_{2})| \leq | $\beta$||x_{1}-y_{1}|+|\displaystyle \sin\frac{ $\pi$ x_{2}}{2T_{0}}-\sin\frac{ $\pi$ y_{2}}{2T_{0}}|
\displaystyle \leq | $\beta$||x_{1}-y_{1}|+\frac{ $\pi$}{2T_{0}}|x_{2}-y_{2}|,

f satisfies (H_{f}) for L_{1}=| $\beta$| and L_{2}=\displaystyle \frac{ $\pi$}{2T_{0}} . Therefore by Theorem 2 the equation above has

a unique solution in \{u|u\in C([0, T], \mathbb{R}) and u(0)= $\phi$(0)\}.
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