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1 Introduction

Let X be a metric space and let T be a mapping of X into itself. The fixed point
problem for T is to find a point z\in X satisfying that z=Tz . The study of approxi‐
mation methods for a fixed point of a mapping is a central topic of fixed point theory
as well as the study of existence of a fixed point.

In particular, the shrinking projection method, which was proved by Takahashi,
Takeuchi, and Kubota [12] in 2008, was proposed as a new projection method for the

approximation of a common fixed point of a family of nonexpansive mappings defined

on a Hilbert space.

Since then, there have been a number of generalization. For example, Takahashi

and Zembayashi [13] applied this method to solve an equilibrium problem defined

on a Banach space. Plubtieng and Ungchittrakool [10] proposed an approximation
method for a finite family of relatively nonexpansive mappings using their convex

combination. Qin, Cho, and Kang [11] shows an approximate sequence converging to

a common solution to equilibrium problems and fixed point problems.
The technique to prove this type of convergence theorem was improved by two pa‐

pers, Kimura, Nakajo, and Takahashi [5], Kimura and Takahashi [8]. In these papers,

they use the concept of Mosco convergence [9] and obtain the convergence theorem

for a mapping defined on a reflexive Banach space with certain differentiability and

convexity conditions of the norm.

The shrinking projection method has also been applied to complete geodesic spaces;
to Hadamard spaces by Kimura [2] and to complete CAT(I) spaces by Kimura and

Satô [6].
In this short note, we discuss the shrinking projection method containing calculation
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errors, which has been studied by the author. We survey the recent results proved
with various types of underlying spaces. Further, by investigating from a different

point of view, we propose several deduced results from these theorems.

2 Preliminaries

Let X be a metric space. For x, y\in X , a mapping c : [0, d(x, y)]\rightarrow X is called a

geodesic with endpoints x, y if c(0)=x, c(l)=y , and d(c(t), c(s))=|t-s| for every

t, s\in[0, l] . Let  r\in ]  0, \infty]. We say  X is r‐geodesic if a geodesic with endpoints x, y

exists for every x, y\in X with d(x, y)<r . If such a geodesic is unique for each pair
of points, then X is said to be r‐uniquely geodesic.

In this paper, we only consider that every geodesic between two points is unique.
A geodesic segment joining x and y is defined as the image of a geodesic c with

endpoints x, y\in X We denote it by [x, y] . A subset C of a r‐uniquely geodesic space
X is said to be r‐convex if for every x, y\in C with d(x, y)<r , a geodesic segment
[x, y] is included in C . If C is r‐convex for every r>0 , we say that C is convex.

For x, y, z\in X , a geodesic triangle \triangle(x, y, z) is a subset of X defined by the union

of [y, z], [z, x] , and [x, y].
For  $\kappa$\in \mathbb{R} , we define the two‐dimensional model space M_{ $\kappa$}^{2} with the curvature  $\kappa$ by

 M_{ $\kappa$}^{2}=\left\{\begin{array}{l}
\frac{1}{\sqrt{- $\kappa$}}\mathbb{H}^{2} ( $\kappa$<0) ,\\
\mathbb{R}^{2}
\end{array}\right.( $\kappa$=0) ,

\displaystyle \frac{1}{\sqrt{ $\kappa$}}\mathrm{S}^{2} ( $\kappa$>0) ,

where \mathbb{R}^{2} is the Euclidean space with the metric induced from the Euclidean norm, \mathrm{S}^{2}
is the two‐dimensional unit sphere in \mathbb{R}^{3} whose metric is a length of a minimal great
arc joining each two points, and \mathbb{H}^{2} is the two‐dimensional hyperbolic space with the

metric defined by a usual hyperbolic distance.

The diameter of M_{ $\kappa$}^{2} is denoted by D_{ $\kappa$} , that is,  D_{ $\kappa$}=\infty if  $\kappa$\leq 0 , and D_{ $\kappa$}= $\pi$/\sqrt{ $\kappa$}
if  $\kappa$>0 . We know that M_{ $\kappa$}^{2} is a D_{ $\kappa$}‐uniquely geodesic space for any  $\kappa$\in \mathbb{R}.

For \triangle(x, y, z) in a geodesic space X satisfying that d(x, y)+d(y, z)+d(z, x)<2D_{ $\kappa$},
there exist points \mathrm{x},y, \overline{z}\in M_{ $\kappa$}^{2} such that

d(x, y)=d_{M_{ $\kappa$}^{2}}(\overline{x}, \overline{y}) , d(y, z)=d_{M_{ $\kappa$}^{2}}(\overline{y},\overline{z}) , and d(z, x)=d_{M_{ $\kappa$}^{2}}(\overline{z},\overline{x}) .

We call the triangle \triangle(\overline{x},\overline{y},\overline{z})\subset M_{ $\kappa$}^{2} a comparison triangle of \triangle(x, y, z) . It is unique
up to an isometry of M_{ $\kappa$}^{2} . A point \overline{p}\in[\overline{x},\overline{y}] is called a comparison point for p\in[x, y]
if d(x,p)=d_{M_{ $\kappa$}^{2}}(\overline{x},\overline{p}) .

Let X be a D_{ $\kappa$} ‐geodesic space for  $\kappa$\in \mathbb{R} . If for any x, y, z\in X with d(x, y)+
d(y, z)+d(z, x)<2D_{ $\kappa$} , for any p, q\in\triangle(x, y, z) , and for their comparison points
\overline{p},\overline{q}\in\triangle(\overline{x},\overline{y},\overline{z}) , the inequality d(p, q)\leq d_{M_{ $\kappa$}^{2}}(\overline{p},\overline{q}) holds, then X is called a CAT ( $\kappa$)
space.
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Let C be a nonempty closed D_{ $\kappa$}‐convex subset in a complete CAT(rc) space X.

Then, for x\in X satisfying that d(x, C)=\displaystyle \inf_{y\in C}d(x, y)<D_{ $\kappa$}/2 , there exists a

unique y_{x}\in C such that d(x, y_{x})=d(x, C) . We define a mapping P_{C} : X\rightarrow C by
P_{C}x=y_{x} for x\in X and we call it the metric projection of X onto C . It is known

that P_{C} is quasinonexpansive, that is, d(P_{C}x, z)\leq d(x, z) for every x\in X and z\in C.

A mapping T : X\rightarrow X is said to be nonexpansive if d(Tx , Ty) \leq d(x, y) for

every x, y\in X . It is easy to see that if X is CAT ( $\kappa$) space with d(u, v)<D_{ $\kappa$}/2 for

every u, v\in X , then F(T) is closed and convex. For such X , a metric projection
P_{C} : X\rightarrow X is nonexpansive whenever  $\kappa$\leq O. On the other hand,  P_{C} is not

necessarily nonexpansive if  $\kappa$>0.

For more details about CAT ( $\kappa$) spaces, see [1].

3 Approximate sequences on complete geodesic spaces

We begin with the following result proved by the author [4].

Theorem 1 (Kimura [4]). Let X be a complete CAT(O) space and suppose that a

subset \{z\in X: d(v, z)\leq d(u, z)\} is convex for every u, v\in X . Let T:X\rightarrow X be a

nonexpansive mapping such that the set F(T) of fixed points is nonempty. Let \{$\epsilon$_{n}\}
be a sequence of nonnegative numbers and $\epsilon$_{0}=\displaystyle \lim\sup_{n\rightarrow\infty}$\epsilon$_{n} . For a given point
x_{0}\in X , generate a sequence \{x_{n}\} as follows: C_{1}=X, x_{1}\in C_{1} , and

C_{n+1}=\{z\in X : d(Tx_{n}, z)\leq d(x_{n}, z)\}\cap C_{n},

x_{n+1}\in C_{n+1} such that d(x_{0}, x_{n+1})^{2}\leq d(x_{0}, C_{n+1})^{2}+$\epsilon$_{n+1}

for each n\in \mathrm{N} . Then,

\displaystyle \lim_{n\rightarrow}\sup_{\infty}d(x_{n}, Tx_{n})\leq 2\sqrt{$\epsilon$_{0}}.
Moreover, if $\epsilon$_{0}=0 , then \{x_{n}\} converges to P_{F(T)}x_{0} , where P_{F(T)} is the metric

projection of X onto F(T) .

This theorem shows that the iterative scheme still has sufficient property to ap‐

proximate a fixed point even if calculation errors occur for each time to compute the

values of metric projections. Moreover, we do not assume any summability conditions

of the error terms, which is a very important property for numerical experiments by
the computer.

On the other hand, this theorem can be applied to another type of shrinking pro‐

jection method, which has a perturbation at the anchor point x_{0}.

Theorem 2. Let X be a bounded CAT(O) space with the diameter D\geq 0 and let

T and x_{0} be the same as in Theorem 1. Let \{$\alpha$_{n}\} and \{$\beta$_{n}\} be real sequences with

$\alpha$_{0}=\displaystyle \lim\sup_{n\rightarrow\infty}$\alpha$_{n} and $\beta$_{0}=\displaystyle \lim\sup_{n\rightarrow\infty}$\beta$_{n} . Let \{u_{n}\} be a sequence in X such

that d(x_{0}, u_{n})\leq$\alpha$_{n} for n\in \mathrm{N} . Generate an iterative sequence \{y_{n}\}\subset X as follows:

107



C_{1}=X, y_{1}\in C_{1} and

C_{n+1}=\{z\in X : d(Ty_{n}, z)\leq d(y_{n}, z)\}\cap C_{n},

y_{n+1}\in C_{n+1} such that d(u_{n+1} , y_{n+1})^{2}\leq d(u_{n+1} , C_{n+1})^{2}+$\beta$_{n+1}^{2},

for each n\in \mathbb{N} . Then,

\displaystyle \lim_{n\rightarrow}\sup_{\infty}d(y_{n}, Ty_{n})\leq 2\sqrt{(2D+$\alpha$_{0}+$\beta$_{0})($\alpha$_{0}+$\beta$_{0})}.
Moreover, if $\alpha$_{0}=$\beta$_{0}=0 , then \{y_{n}\} converges to P_{F(T)}x_{0} , where P_{F(T)} is the metric

projection of X onto F(T) .

Proof. To apply Theorem 1 with the iterative scheme {yn}, we show that each y_{n+1}
satisfies

d(x_{0}, y_{n+1})^{2}\leq d(x_{0}, C_{n+1})^{2}+$\epsilon$_{n+1}.
for some $\epsilon$_{n} . For  $\tau$\in ]  0, 1[ and n\in \mathrm{N} , let w_{n}= $\tau$ y_{n}\oplus(1- $\tau$)P_{C_{n}}u_{n}\in C_{n} . Then we

have that

d(u_{n}, P_{C_{n}}u_{n})^{2}\leq d(u_{n}, w_{n})^{2}
\leq $\tau$ d(u_{n}, y_{n})^{2}+(1- $\tau$)d(u_{n}, P_{C_{n}}u_{n})^{2}- $\tau$(1- $\tau$)d(y_{n}, P_{C_{n}}u_{n})

and thus, for n\in \mathbb{N}\backslash \{1\} , we have

(1- $\tau$)d(y_{n}, P_{C_{n}}u_{n})^{2}\leq d(u_{n}, y_{n})^{2}-d(u_{n}, P_{C_{n}}u_{n})^{2}\leq$\beta$_{n}^{2}.

Tending  $\tau$\downarrow 0 , we get d(y_{n}, P_{C_{n}}u_{n})\leq$\beta$_{n} . Since every metric projection onto a

nonempty closed convex subset of a complete CAT ( $\kappa$) space is nonexpansive, we have

that

d(x_{0}, y_{n+1})\leq d(x_{0}, P_{C_{n+1}}x_{0})+d(P_{C_{n+1}}x_{0}, P_{C_{n+1}}u_{n+1})+d(P_{C_{n+1}}u_{n+1}, y_{n+1})
\leq d(x_{0}, C_{n+1})+d(x_{0}, u_{n+1})+$\beta$_{n+1}
\leq d(x_{0}, C_{n+1})+$\alpha$_{n+1}+$\beta$_{n+1}.

Thus, letting $\epsilon$_{n}=\sqrt{(2D+$\alpha$_{n}+$\beta$_{n})($\alpha$_{n}+$\beta$_{n})} for n\in \mathrm{N} , we have that

d(x_{0}, y_{n+1})^{2}\leq(d(x_{0}, C_{n+1})+$\alpha$_{n+1}+$\beta$_{n+1})^{2}
\leq d(x_{0}, C_{n+1})^{2}+(2d(x_{0}, C_{n+1})+$\alpha$_{n+1}+$\beta$_{n+1})($\alpha$_{n+1}+$\beta$_{n+1})
\leq d(x_{0}, C_{n+1})^{2}+$\epsilon$_{n+1}^{2}.

Hence we obtain from Theorem 1 that

\displaystyle \lim_{n\rightarrow}\sup_{\infty}d(y_{n}, Ty_{n})\leq 2\lim_{n\rightarrow}\sup_{\infty}$\epsilon$_{n}
=2\sqrt{(2D+$\alpha$_{0}+$\beta$_{0})($\alpha$_{0}+$\beta$_{0})}.

The remainder part of the theorem is also obtained by Theorem 1. 口
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For a complete CAT(I) space, we can prove the following result. The method for

the proof is essentially obtained in [7].
Theorem 3 (Kimura‐Satô [7]). Let X be a complete CAT(I) space such that D=

diam X< $\pi$/2 and that a subset \{z\in X : d(v, z)\leq d(u, z)\} is convex for every

u, v\in X. Let T : X\rightarrow X be a nonexpansive mapping such that the set of its fia ed

points F(T) is nonempty. Let \{$\delta$_{n}\} be a sequence in [0, \infty[and let $\delta$_{0}=\displaystyle \lim\sup_{n\rightarrow\infty}$\delta$_{n}.
For a given point x_{0}\in X , generate a sequence \{x_{n}\} as follows: C_{1}=X, x_{1}\in C_{1},
and

C_{n+1}=\{z\in X : d(Tx_{n}, z)\leq d(x_{n}, z)\}\cap C_{n},
x_{n+1}\in C_{n+1} such that d(u, x_{n+1})\leq d(u, C_{n+1})+$\delta$_{n+1},

for each n\in \mathbb{N} . Then

\displaystyle \lim_{n\rightarrow}\sup_{\infty}d(x_{n}, Tx_{n})\leq 2\arccos(e^{-$\delta$_{0}\tan D}) .

if $\delta$_{0}=0 , then \{x_{n}\} converges to P_{F(T)}x_{0}\in X.
In a complete CAT(I) space X , a metric projection is not necessarily nonexpansive

even if d(u, v)< $\pi$/2 for every u, v\in X . Therefore, some part of the technique in

the proof of Theorem 1 is not valid. However, we can show the following convergence
theorem by using the similar way as above.

Theorem 4. Let X be a complete CAT(I) space and suppose the same conditions

for X as in Theorem 3. Let T and x_{0} be the same as in Theorem 3. Let \{u_{n}\} be

a sequence in X converging to x_{0} and generate an iterative sequence \{y_{n}\}\subset X as

follows: C_{1}\cdot=X, y_{1}\in C_{1} , and

C_{n+1}=\{z\in X:d(Ty_{n}, z)\leq d(y_{n}, z)\}\cap C_{n},
y_{n+1}=P_{C_{n+1}}u_{n+1}

for each n\in \mathbb{N} . Then \{y_{n}\} converge to P_{F(T)^{X}0}.

4 Related results

An analogous iterative method shown in Theorems 1 and 3 can be applied with the

case of Banach spaces. We omit to define several notions shown in the following
theorem. For the details of their exact definitions, see [3].
Theorem 5 (Kimura [3]). Let E be a uniformly convex and uniformly smooth Banach

space. Let C be a nonempty bounded closed convex subset of E and  r\in ]  0, \infty[ such

that C\subset B_{r} . Let T:C\rightarrow E be such that  $\phi$(z, Tx)\leq $\phi$(z, x) for every x\in C

and  z\in F(T)\neq\emptyset . Let \{$\delta$_{n}\} be a bounded nonnegative real sequence and let $\delta$_{0}=
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\displaystyle \lim\sup_{n\rightarrow\infty}$\delta$_{n} . For a given point u\in E , generate a sequence \{x_{n}\} by the following
way: x_{1}\in C, C_{1}=C , and

C_{n+1}=\{z\in C: $\phi$(z, Tx_{n})\leq $\phi$(z, x_{n})\}\cap C_{n},

x_{n+1}\in\{z\in C:\Vert u-z\Vert^{2}\leq d(u, C_{n+1})^{2}+$\delta$_{n+1}\}\cap C_{n+1}

for n\in \mathrm{N} . Then,

\displaystyle \lim_{n\rightarrow}\sup_{\infty}\Vert x_{n}-Tx_{n}\Vert\leq 2g_{r}^{-1}(\frac{1}{2}$\delta$_{0}+\frac{1}{2}g_{r}^{*}(g_{r}^{-1}($\delta$_{0}))) .

Moreover, if $\delta$_{0}=0 and I-T is closed at zero, then \{x_{n}\} converges strongly to

P_{F(T)}u.
As a direct result, we obtain the following convergence theorem of another type of

iterative sequence.

Theorem 6. Let E, C, r
, and x_{0} be the same as in Theorem 5. Let T:C\rightarrow E be

such that  $\phi$(z, Tx)\leq $\phi$(z, x) for every x\in C and  z\in F(T)\neq\emptyset . Suppose that  I-T is

closed at zero. Let \{u_{n}\} be a sequence in E converging to x_{0} and generate an iterative

sequence \{y_{n}\}\subset C as follows: y_{1}\in C, C_{1}=C , and

C_{n+1}=\{z\in E: $\phi$(z, Ty_{n})\leq $\phi$(z,y_{n})\}\cap C_{n},

y_{n+1}=P_{C_{n+1}}u_{n+1}

for each n\in \mathrm{N} . Then \{y_{n}\} converge to P_{F(T)}x_{0}.
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