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1 Introduction

Let X be a metric space and let 7" be a mapping of X into itself. The fixed point
problem for T is to find a point z € X satisfying that z = T'z. The study of approxi-
mation methods for a fixed point of a mapping is a central topic of fixed point theory
as well as the study of existence of a fixed point.

In particular, the shrinking projection method, which was proved by Takahashi,
Takeuchi, and Kubota [12] in 2008, was proposed as a new projection method for the
approximation of a common fixed point of a family of nonexpansive mappings defined
on a Hilbert space.

Since then, there have been a number of generalization. For example, Takahashi
and Zembayashi [13] applied this method to solve an equilibrium problem defined
on a Banach space. Plubtieng and Ungchittrakool [10] proposed an approximation
method for a finite family of relatively nonexpansive mappings using their convex
combination. Qin, Cho, and Kang [11] shows an approximate sequence converging to
a common solution to equilibrium problems and fixed point problems.

The technique to prove this type of convergence theorem was improved by two pa-
pers, Kimura, Nakajo, and Takahashi [5], Kimura and Takahashi [8]. In these papers,
they use the concept of Mosco convergence [9] and obtain the convergence theorem
for a mapping defined on a reflexive Banach space with certain differentiability and
convexity conditions of the norm.

The shrinking projection method has also been applied to complete geodesic spaces;
to Hadamard spaces by Kimura [2] and to complete CAT(1) spaces by Kimura and
Sat6 [6].

In this short note, we discuss the shrinking projection method containing calculation



errors, which has been studied by the author. We survey the recent results proved
with various types of underlying spaces. Further, by investigating from a different
point of view, we propose several deduced results from these theorems.

2 Preliminaries

Let X be a metric space. For z,y € X, a mapping ¢ : [0,d(z,y)] — X is called a
geodesic with endpoints z,y if ¢(0) = z, ¢(l) = y, and d(c(¢), c(s)) = |t — s| for every
t,s € [0,I]. Let r € ]0,00]. We say X is r-geodesic if a geodesic with endpoints z,y
exists for every z,y € X with d(z,y) < r. If such a geodesic is unique for each pair
of points, then X is said to be r-uniquely geodesic.

In this paper, we only consider that every geodesic between two points is unique.

A geodesic segment joining x and y is defined as the image of a geodesic ¢ with
endpoints z,y € X We denote it by [z,y]. A subset C of a r-uniquely geodesic space
X is said to be r-convex if for every z,y € C with d(z,y) < r, a geodesic segment
[z,y] is included in C. If C is r-convex for every r > 0, we say that C is convex.

For 2,y,z € X, a geodesic triangle A(z,y, z) is a subset of X defined by the union
of [y, 2], [#,z], and [z, y].

For x € R, we define the two-dimensional model space M2 with the curvature x by
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where R? is the Euclidean space with the metric induced from the Euclidean norm, S?
is the two-dimensional unit sphere in R® whose metric is a length of a minimal great
arc joining each two points, and H? is the two-dimensional hyperbolic space with the
metric defined by a usual hyperbolic distance.

The diameter of M2 is denoted by Dy, that is, D, = 0o if K <0, and D, = 7/\/k
if K > 0. We know that M2 is a D.-uniquely geodesic space for any x € R.

For A(z,y, ) in a geodesic space X satisfying that d(z, y)+d(y, 2)+d(z,z) < 2D,
there exist points Z,y,z € M2 such that

d(.’L‘, y) = dME (Ta y)) d(ys 2) = dM,% (552)1 and d(Z, IL‘) = dM,%(E7f)

We call the triangle A(%,%,Z) C M2 a comparison triangle of A(z,y, z). It is unique
up to an isometry of M2. A point P € [Z,7] is called a comparison point for p € [z, y]
if d(z,p) = dM,% (-.'L'-, ﬁ)

Let X be a D.-geodesic space for k € R. If for any z,y,z € X with d(z,y) +
d(y, z) + d(z,z) < 2D, for any p,q € A(z,y,z), and for their comparison points
P,7 € A(T,7,%), the inequality d(p, q) < dp2(P,q) holds, then X is called a CAT(x)
space.
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Let C be a nonempty closed D.-convex subset in a complete CAT(x) space X.
Then, for x € X satisfying that d(z,C) = infyccd(z,y) < D,/2, there exists a
unique y, € C such that d(z,y,) = d(z,C). We define a mapping Pc : X — C by
Pozx =y, for x € X and we call it the metric projection of X onto C. It is known
that P¢ is quasinonexpansive, that is, d(Poz, z) < d(z, 2) for every z € X and z € C.

A mapping T : X — X is said to be nonexpansive if d(Tz,Ty) < d(z,y) for
every z,y € X. It is easy to see that if X is CAT(k) space with d(u,v) < D,/2 for
every u,v € X, then F(T) is closed and convex. For such X, a metric projection
Fe : X — X is nonexpansive whenever k < 0. On the other hand, P is not
necessarily nonexpansive if £ > 0.

For more details about CAT(k) spaces, see [1].

3 Approximate sequences on complete geodesic spaces
We begin with the following result proved by the author [4].

Theorem 1 (Kimura [4]). Let X be a complete CAT(0) space and suppose that a
subset {z € X : d(v,2) < d(u,2)} is conver for every u,v € X. Let T : X — X be a
nonezpansive mapping such that the set F(T) of fized points is nonempty. Let {e,}
be a sequence of nonnegative numbers and ep = limsup,,_, .. €n. For a given point
xg € X, generate a sequence {xn} as follows: C; = X, z; € C4, and

Cnt1={2€ X : d(Txp,2) < d(xpn,2)} N Ch,
Tnt1 € Cny1 such that d(zo, Tni1)? < d(To, Cnt1)? + €nt1

for each n € N. Then,
limsup d(zn, Tz,) < 2+/€.

n—oo

Moreover, if ¢¢ = 0, then {z,} converges to Pp(1yzo, where Pp(ry is the metric
projection of X onto F(T).

This theorem shows that the iterative scheme still has sufficient property to ap-
proximate a fixed point even if calculation errors occur for each time to compute the
values of metric projections. Moreover, we do not assume any summability conditions
of the error terms, which is a very important property for numerical experiments by
the computer.

On the other hand, this theorem can be applied to another type of shrinking pro-
jection method, which has a perturbation at the anchor point zg.

Theorem 2. Let X be a bounded CAT(0) space with the diameter D > 0 and let
T and zo be the same as in Theorem 1. Let {an} and {Bn} be real sequences with
ap = limsup,, o, @ and By = limsup,_,., On- Let {u,} be a sequence in X such
that d(xo,un) < an for n € N. Generate an iterative sequence {yn,} C X as follows:
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Ci=X,y; €Ci and
C"n.+1 = {z € X: d(Tyn,z) S d(yn, Z)} n Cn’
Yn+1 € Cny1 such that d(uny1,Yn41)? < d(tnt1, Cri1)® + Baiss

for each n € N. Then,
lim sup d(yn, Tyn) < 24/(2D + ag + Bo) (0 + Bo)-
n—oo

Moreover, if ag = Bo = 0, then {yn} converges to Pr(ryTo, where Pp(ry is the metric
projection of X onto F(T).

Proof. To apply Theorem 1 with the iterative scheme {y,}, we show that each Yn+1

satisfies
d(T0, Yn+1)? < d(@o, Cns1)® + €ns1.

for some ¢,. For 7 €]0,1[ and n € N, let w, = 7y, ® (1 — 7) P, un € Cp. Then we
have that

d(uny PC,.un)2 < d(una wn)2
< 7d(Un, Yn)? + (1 — 7)d(un, Po,un)? — 7(1 — 7)d(yn, P, tn)
and thus, for n € N\ {1}, we have
(1 - T)d(yny-PC,.un)z < d(un’yn)2 - d(una PCnun)2 < ﬂ?;

Tending 7 | 0, we get d(yn, Po,un) < B,. Since every metric projection onto a
nonempty closed convex subset of a complete CAT(k) space is nonexpansive, we have
that
d(20, Ynt1) < d(zo, Pe,,,%0) + d(Po, ., %o, Pe, 1y Unt1) + APy Unt1, Ynt1)
< d(zo, Cn+1) + d(Zo, Un+1) + Bn+1
< d(xo,Cny1) + ans1 + Brt1-

Thus, letting €, = /(2D + an + Br)(an + Bn) for n € N, we have that
d(20, Yn+1)? < (d(o, Crt1) + i1 + Bnt1)?
< d(20, Cns1)? + (2d(20, Cnt1) + On1 + Bry1)(@ns1 + Brs1)
< d(z0,Cry1)® + €41
Hence we obtain from Theorem 1 that

limsup d(yn, Ty,) < 2limsupe,
n—o0

n—oo

= 2\/(2D + ap + Bo)(ao + Po)-
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For a complete CAT(1) space, we can prove the following result. The method for
the proof is essentially obtained in [7].

Theorem 3 (Kimura-Satd [7]). Let X be a complete CAT(1) space such that D =
diam X < 7/2 and that a subset {z € X : d(v,z) < d(u,2)} is convezr for every
u,v € X. Let T : X — X be a nonexpansive mapping such that the set of its fized
points F(T) is nonempty. Let {8,} be a sequence in [0,00[ and let o = limsup,, ., In-
For a given point zo € X, generate a sequence {z,} as follows: C; = X, z, € C,
and

Crny1 ={2€ X :d(Tzp,2) < d(zpn,2)} NCh,
Znt1 € Cpt1 such that d(u, Tpi1) < d(u, Cpy1) + Ont1,

for each n € N. Then

limsup d(zy, Tz,) < 2arccos(e~%0 2 D),

if 6o = 0, then {z,} converges to Pp(ryzo € X.

In a complete CAT(1) space X, a metric projection is not necessarily nonexpansive
even if d(u,v) < m/2 for every u,v € X. Therefore, some part of the technique in
the proof of Theorem 1 is not valid. However, we can show the following convergence
theorem by using the similar way as above.

Theorem 4. Let X be a complete CAT(1) space and suppose the same conditions
for X as in Theorem 3. Let T and zo be the same as in Theorem 3. Let {u,} be
a sequence in X converging to xo and generate an iterative sequence {y,} C X as

follows: C; = X, y; € C4, and
Cny1 ={2 € X : d(Tyn,2) < d(yn,2)} N Cy,
Yn+1 = PC,,+1un+1

for each n € N. Then {yn} converge to Pg)xo.

4 Related results

An analogous iterative method shown in Theorems 1 and 3 can be applied with the
case of Banach spaces. We omit to define several notions shown in the following
theorem. For the details of their exact definitions, see [3].

Theorem 5 (Kimura [3]). Let E be a uniformly conver and uniformly smooth Banach
space. Let C be a nonempty bounded closed convez subset of E and r € ]0,00[ such
that C C B,. Let T : C — E be such that ¢(z,Tz) < ¢(2,z) for every z € C
and z € F(T) # 0. Let {6} be a bounded nonnegative real sequence and let 5o =

109



110

limsup,, o, 0. For a given point u € E, generate a sequence {z,} by the following
way: 1 € C, C, =C, and

Crni1={2€C:9¢(2,Tzs) < ¢(2,2n)} N Ch,
Tnp1 €{2€C: u—2z|® <d(u,Cni1)? + bns1} N Cria

forn € N. Then,

. 1 (1 1, _
hmsup ""‘v" - TCL'n" < 291' ! 500 + _gr(g‘r 1(60)) .
n—oo 2 2
Moreover, if 60 = 0 and I — T is closed at zero, then {x,} converges strongly to
PF(T)’U,.

As a direct result, we obtain the following convergence theorem of another type of
iterative sequence.

Theorem 6. Let E, C, r, and xo be the same as in Theorem 5. Let T : C — E be
such that ¢(z,Tz) < ¢(z,z) for everyz € C and z € F(T) # 0. Suppose that I —T is
closed at zero. Let {u,} be a sequence in E converging to xo and generate an iterative
sequence {yn} C C as follows: y, € C, C1 =C, and

C"n+1 - {Z € E: ¢(Z, Tyn) S ¢(z’yn)} N C‘n’
Ynt1 = PC,.+1un+1

for each n € N. Then {y,} converge to Pr(ryo.
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