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Distribution modulo one of certain sequences
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This is a summary of our talk at the workshop in RIMS. After that time some results
are refined.

For z € R let |z] denote the integral part of z; let {z} = z — [«| be the residue of z
modulo 1. Let X[o,6)() be the characteristic function of the interval [a, 5) C [0,1), that
is, X[a,8)(%) = 1 if z € [, B); X|a,8)(z) = 0 otherwise.

Let b > 2 be an integer considered as a base for the development of a real number z > 0
and My(z) be the mantissa of z defined by & = My(z) x b™*) such that 1 < M(z) < b
holds, where n(z) is a uniquely determined integer. Let K = kik---k, be a positive
integer expressed in the base b, that is

K=kb ' +hkd 24+ Ek_1b+k,

where k1 # 0 and at the same time K = kjks - - - k.- is considered as an r-consecutive block
of digits in the base b. Note that for z of the type x = 0.00---0kik2---k,---, k1 > 0, we
have My(z) = k1.k2-- -k, - - - and the first zero digits is omitted. Thus arbitrary z > 0 has
the first r-digits, starting a non-zero digit, equal to kjks - - - k, if and only if

kiky-- -k, SMb(.’L') < kl.k2~--(kr+1). (1)

Since logy Mp(z) = logy  mod 1 the inequality (1) is equivalent to

K K+1
log;, (bT——1> <logy z mod 1 < log, (b’—:> .

Definition 1 (P. Diaconis [1]). A sequence z,, n = 1,2,..., of positive real numbers
satisfies Benford’s law (abbreviated to B.L.) in base b, if for every r = 1,2,... and every
r-digits integer K = kikz - - - k, we have

lim #{n < N; first r digits (starting a non-zero digit) of z,, = K}

N—oo N

K+1 K
= lOgb 7_‘1— — lOgb bT—T .

It is well known that:

Theorem 1 (P. Diaconis [1]). A sequence zn, n = 1,2,..., of positive real numbers
satisfies B.L. in base b if and only if the sequence logy x, mod 1 is uniformly distributed
(abbreviating u.d.) in [0,1).



Definition 2. A function ¢ : [0,1] — [0,1] will be called distribution function if the
following two conditions are satisfied

(i) 9(0) =0, 9(1) =1
(i1) g is non-decreasing.

Definition 3. Let z,, n = 1,2,..., be a sequence of real numbers and define the step
distribution function of z, mod 1

L
Fn(z) = N ZX[O,m)({xn})

for # € [0,1]. The limit g(z) of a subsequence Fu, () of Fy(x)

lim Fy, (z) = g(z) (2)
k—o0
for every z € [0,1], is called a distribution function of z,, where N; < Ny < ... is related
sequence of indices. Let G(z, mod 1) be the set of all possible limits (2).

Definition 4 (see [3]). Let z,,n = 1,2, ... be a sequence of real numbers and let g(z) be
distribution function. Then the discrepancies of z,, mod 1 with respect to g(z) are defined
by
Dy (z, mod 1,9) = sup |Fn(z) — g(z)|-
0<z<1

Dy (zn mod 1,g) = P |(Fn(y) — Fn(x)) — (9(y) — 9(2))|-

Definition 5. Let u,,n = 1,2,... be a positive sequence and let g(z) be a distribution
function. Let K = ki ---ky = k1" 1 + kob™ 2+ + kb + Ky

BN (un, g)
‘#{1 <n < N : (first r digits starting a non-zero digit of z,) = K}
= su
1"211) N
brl<K<b”
(r,K€Z)

K+1 K
e 1Ogbbr—_1 -9 IOgbbT—_l .

From the definition, it follows that By (uy,g) = Dn(log, u, mod 1, g).
We have the following quantitative results on log-like sequences.

Theorem 2. Let the real-valued function f(t) be strictly increasing for t > 1.
Assume that

(1) limsyoo f(t) = 00,

(i) (2) = limyy00 L2 for o € [0,1].
Then

(a) there exists p > 0 with ¢¥(z) = e*,

(b) it holds that

sup |{(E+ 1)

— el =0 (k— 00).
z€[0,1] (k) ( )



In addition, let w € [0,1], let

1 e —1 min(ef®, ef”) -1
erv el — 1 erv

Iu(z) =

I

for0<x <1, and let Ky = [f(N)], wn = {f(N)}, then
(¢) it holds that

D* d1 < R -1 k f—l(k + Cl}) pT
~n(f(n) mod 1, gy) < N ’;:0 I )le[lo?l] k) e+
f—l(KN-'_l') z w wN f(N) 2.f_l(o)
+ (e’ +1) z?ﬁﬁ] KN e’ + (ef + 1)|e’” — PN | + N + ~—~

Furthermore, assume that
(iii) limyeo f/(£) =0
and set N; = | f71(i +w)| for 0 <w <1, N; = [f71(i)] for w = 0, wn, = {f(N:)} for

1 =1,2,.... Then we have lim; ,oc wy, = w and
lim DY (f(n) mod 1, gy) = 0. 3)
1—00

Corollary 1. For b > 2 be a positive integer and r > 0, let f(z) = logy z",

1 b7 —1 min(b7,b7) — 1
wl\T) = —w + w w e 0,1 .
9w () i s (w € [0,1])

Then we have lim; ,oo{ f(N;)} =0 and

1 1
br(br +1) 2 rlogy N;

*
< 7 — —_
Dy, (f(n) mod 1, g,) < N, + N, + N,

where N; = [bﬁ;ﬂj Joro<w<1l,i=12,....
Furthermore, if v is positive integer, then {f(Ny2_1)} = {rlogy¥"} = 0 for Ny2_; = b"
and

2
Dy (logy n” mod 1, gg) = Dy-(logyn" mod 1,g1) = O (b—r)

and
1

Dy, (logyn” mod 1) = O (—) .

7_
Remark 1. S. Eliahou-B. Massé-D. Schneider [2, Theorem 1] proved

Dy (logign” mod 1) = 0(r™), (4
where ¢(r) = |€"] by a different method (see [2]).

The sequence of all primes p,, do not satisfy B. L., i.e. the sequence logy py, is not u.d.
mod 1, but G(log, p, mod 1) = G(log,n mod 1). In the following, we have quantitative
results for the sequence logy, pp.-



Theorem 3. Let the real-valued function f(t) be strictly increasing fort > 1 and let
B(.’E) = —-——————ff_l(:t)
= og f I(m) 1"
Assume that

(1) limyyoo f(t) = 00,

(i) 9(2) = limy o0 L5 for 3 € [0,1].
Then

(a) there exists p > 0 such that

P(x) = e,

(b) it holds that
B(k+z)
B(k)

el -0 (k— o0).

z€[0,1]
In addition, let u € [0,1], let

1 e —1 min(ef ef*) —1
T e er—1 et

(5)

9u(z)

for 0 <z <1, let Kn = |f(pn)], let uny = {f(pn)}, and let M be an arbitrary positive
integer with M > f(e3). Then
(c) it holds that for sufficiently large N

Dy (f(pn) mod 1,4u) <

Kn—1
2 Bk + ) B(Ky + )

<— B(k) sup |[———= S L A
N k=ZM ( ):ce[O,l] B(k) B(Kn)

B(M 1 log / (K
+ 26le — V| 43 Sv”o(m)”(w%

1 k) () M) 1
+O(N 2 (logf‘l(k))3)+0( 7))+ (Grianey)

M

— e +2(e” +1) sup +

z€[0,1]

Corollary 2. Let f(z) be as in Theorem 3. In addition to the assumptions (i)-(ii), assume
that

(iii) f'(z) is non-increasing and f'(z) = O(z ™).
For 0 <u<1let N; =m(f1(i +u)). Then

lim {f(o,)} = u

and
lim Dy (f(pn) mod 1,g,) =0,
1—00

where g, () is defined in (5).

Corollary 3. Let a >0, let 0 <u <1, let N; = w(e%) fori=1,2,..., and let g,(x) be
defined in (5).
(I) If a is a constant, then for sufficiently large i

. 1
Dy, (alogp, mod 1,g4) = O (logNi) .

10



(1) If « is a variable, then for sufficiently large i and o

(61

1
Dy, (alog pp, mod 1, g,) < +

logN; ~ (log N;)?

Corollary 4. Let b > 2 and r be positive integers, and let

)—bw/r—:l (0<z<1
go(x—gl/,—__l <z <1).

Then for sufficiently large v

N 1
Dw(br)(logbp;rz mod 1790) =0 (;) )
* s 1
D7y (log, pj, mod 1) = O (;) .

References

11

(6)

[1] P. Diaconis: The distribution of leading digits and uniform distribution mod 1, The

Annals of Probability 5 (1977), no. 1, 72-81.

[2] S. EL1AHOU — B. MASSE — D. SCHNEIDER: On the Mantisa distribution of powers of

natural and prime numbers, Acta Math. Hungar. 139 (1-2) (2013), 49-63.

[3] O. STRAUCH — S. PORUBSKY: Distribution of Sequences: A Sampler, Peter Lang,

Frankfurt am Main, 2005.

Yukio Ohkubo:

Department of Business Administration
The International University of Kagoshima
8-34-1 Sakanoue, Kagoshima-shi, 891-0197
Japan

E-mail address: ohkubo@eco.iuk.ac.jp

Oto Strauch:

Mathematical Institute

Slovak Academy of Sciences
Stefanikova 49

SK-814 73 Bratislava

Slovakia

E-mail address: strauch@mat.savba.sk



