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1 Introduction

The poly-Bernoulli polynomials B¢ (z) ([6]) are defined by the generating
function
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is the p-th polylogarithm function. Note that e~% on the left-hand side is
replaced by € in [1, 2]. When z =0, B¥(0) = BY) are the poly-Bernoulli
numbers ([11]). When z = 0 and p = 1, (1)(0) = B, are the classical
Bernoulli numbers, defined by the generating function
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The generating function of poly-Cauchy polynomials W (z) ([12, Theo-
rem 2)) is given by
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‘is the polylogarithm factorial or polyfactorial function. Note that (1+¢)* on
the left-hand side is replaced by (1 +¢)™® in [10]. When z =0, M )(0) =
are the poly-Cauchy numbers ¥ ([12, Theorem 2]), given by

Lif, (log(1 +t)) = i cg*):% : (3)
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When z = 0 and p = 1, cle)(O) = ¢, are the classical Cauchy numbers,
defined by the generating function
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In this paper, by using the restricted and associated Stirling numbers of
the first kind, we define the restricted and associated poly-Cauchy polyno-
mials. By using the restricted and associated Stirling numbers of the sec-
ond kind, we define the restricted and associated poly-Bernoulli polynomials.
These polynomials are generalizations of original poly-Cauchy polynomials
and original poly-Bernoulli polynomials, respectively. We also study their
characteristic and combinatorial properties.

2 Restricted and associated Stirling numbers
of the second kind

In place of the classical Stirling numbers {?} we substitute the restricted

Stirling numbers and the associated Stirling numbers, denoted by

{(ilen ™4 kb

Some combinatorial and modular properties of these numbers can be found
in [21], and other properties can be found in the papers from the list of
references of [21]. The generating functions of these numbers are given by
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respectively, where
Em(t) = %!
k=0 "

is the mth partial sum of the exponential function. These give the number
of the k-partitions of an n-element set, such that each block contains at
most or at least m elements, respectively. Notice that as particular cases,
these numbers when m = 2 have been considered by several authors (e.g.,
5, 8, 22, 23]). Since the generating function of {7} } is given by

W 2

(see e.g., [9]), by Ex(z) = €* and Eo(z) = 1, we have

A {Z}Soo - {:}21 - {Z} )

3 Restricted and associated Stirling numbers
of the first kind

Denote by [:] the (unsigned) Stirling numbers of the first kind, arising as
coefficients of the rising factorial

n

x(x+1)...(x_+n—1)=2[?;] T
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the generating function of [:] is given by

f: [n] a" _ (=log(l-2)) '
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In place of the classical (unsigned) Stirling numbers of the first kind [}], we
substitute the (unsigned) restricted Stirling numbers of the first kind and the
(unsigned) associated Stirling numbers of the first kind, denoted by

[kl = [l

respectively. The associated Stirling number of the first kind [}],  equals

the number of permutations of a set N (|N| = n) with k orbits such that
each block contains at least m elements ([5, p.256-257], [23]). The restricted
Stirling number of the first kind [’,:] <m €quals the number of permutations
of n with k orbits such that each block contains at most m elements.

For k > 1 and m > 1, the generating functions of the restricted Stirling
numbers of the first kind [:] <m and the associated Stirling numbers of the

first kind [}],  are given by the following ([4, p. 467, (12.8)]). Denote the
mith partial sum of the logarithm function by '

Falt) = 3 (-1 ®)
k=1
> [Z]Sm i—T = %(—Fm(wx))", 9)
Y [4),, 5 = (- log(t - a) + Fnos(2)". (10)
n=0 = ) :

It is trivial to see that

4 Incomplete poly-Cauchy polynomials

In [10}, the concept of the poly-Cauchy polynomials is introduced by replacing
z by —z in the definition. For integers n and p with n > 0 and g > 1, define
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the poly-Cauchy polynomials of the first kind ¥ (z) (1 >1)as

1 1
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m
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Then, ¢y @) (z) can be expressed in terms of the Stirling numbers of the first

nd [1]:
w0 -3 [y (et

k=0 =0
([10, Theorem 1]).

Hence, it is natural to deﬁne two types of incomplete poly-Cauchy poly-
nomials of the first kind c <m(x) and cn >m(x) by
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respectively.

The generating function of poly-Cauchy polynomials is given by (3). The
generating functions of two types of incomplete poly-Cauchy polynomials of
the first kind can be also given by using the polylogarithm factorial functions
in terms of the mth partial sum of the logarithm function F,(2).

Theorem 1. For integers n > 1, m > 1 and p > 1 we have

if, (Fon(2) |
—Z;(%Tuar*) =2 S,“Lm(a:) (13)
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Remark. Since Fwo(t) = log(1 + t) and Fy(t) = 0, if we take m — oo in
(13) and m =1 in (14), both of (13) and (14) are reduced to the generating
function in ([17, Theorem 3]).

The generating function of two types of the incomplete poly-Cauchy poly-
nomials of the first kind can be written in the form of iterated integrals.

Corollary 1. For u > 1 we have

1 t ( t)m t 1'-(——t) "
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x ( e(log(l-i—t)—-Fm—l(t)) dt - Z (#) L. (16)
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Remark. If we take m — oo in (15) and m = 1 in (16), both of (15) and (16)
are reduced to the generating function in [10, Corollary 1]. When z = 0,
Corollary (1) is reduced to [15, Corollary 1].

For integers n and p with n > 0 and g > 1, define the poly-Cauchy
polynomials of the second kind ¢y o )(x) (L>1)as

?:‘f,”)(x)=/.../ (—taty- -ty +z)(—tatz- -ty + 2 — 1)
0 0

m
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Then, W (z) can be expressed in terms of the Stirling numbers of the first
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([10, Theorem 4]). :
Hence, it is natural to define two types of incomplete poly-Cauchy poly-
nomials of the second kind 'fl )<m(a:) and & Cr, >m( z) by

n

o-ENLorE(ptty

k=0 = i=0
n k :
n n k (—z)
n>m($) Z [k]Zm (1) . (Jma (18)
k=0 =0
' respectively.
The generating function of 2% (z) is given by
ZT 2 = " |
(1 + z)*Lif,,(— In(1 + t)) = ;aﬁ;ﬂ(x);ﬁ (19)

([10, Theorem 5]. Note that z is replaced by —z).

The generating functions of two types of incomplete poly-Cauchy poly-
nomials of the second kind can be also given by using the polylogarithm
factorial functions Lif,(z) in terms of F,(t). Since Fio(t) = log(1 +t) and
Fy(t) = 0, if we take m — oo in (20) and m = 1 in (21), both of (20) and
(21) are reduced to the generating function in [10, Theorem 5]. On the other
hand, if z = 0, then Theorem 2 is reduced to [15, Theorem 2].

Theorem 2. For integersn > 1, m > 1 and p > 1 we have

a:Fm(t)Llf t "(I‘) x ) 20
n,<m |
n=0 '
. _ 0o s
o8+~ Fn1Lif , (—log(1 + gt) + Fin_1(t)) = Eggm(x);{l . (21
n=0 : '

The generating function of two types of the incomplete Cauchy polyno-
mials of the second kind can be also written in the form of iterated integrals.
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Corollary 2. For y > 1 we have

eTFm(t)  rt 1— (=)™ t 1— (=)™ .y
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Remark. If we take m — oo in (22) and m = 1 in (23), both of (22) and (23)
are reduced to the generating function in [10, Corollary 2. If z = 0, then
Corollary 2 are reduced to [15, Corollary 2].

5 Some properties of incomplete poly-Cauchy
polynomials

It is known that poly-Bernoulli numbers satisfy the duality theorem BSH =
B,(c"") for n,k > 0 [11, Theorem 2] because of the symmetric formula

00 00 B(—k) z" ylc _ ety o4
ZOkZO "ol k! et eV —enty (24)
n= —

However, incomplete poly-Cauchy polynomials do not satisfy the duality the-
‘orem for any integer m > 1, by the following results.

Theorem 3. For nonnegative integers n, k, and a positive integer m, we



have
PO X " Ic
33 dB L = exp((¢f - 2)Fn(e) +3) (25)
n=0 k=0
; gc oy :l]/gl
= exp((e¥ — z)(log(1 + ) — Frn-1(z)) + v) - (26)

Remark. If m — oo in (25) or m =1 in (26), both identities are reduced to
the first identity in [10, Proposition 1]. If z = 0, then Theorem 3 is reduced
to [15, Theorem 4], where z is replaced by —z.

Similarly, incomplete poly-Cauchy polynomials of the second kind have
the following properties. If m — oo in (27) or m = 1 in (28), both identities
are reduced to the second identity in [10, Proposition 1]. If z = 0, then
Theorem 3 is reduced to [15, Theorem 5], where z is replaced by —z.

Theorem 4. For nonnegative integers n, k, and a positive integer m, we
have

oo o0 : n .k
- "y
ZZéz,;on(z)—.p = exp((z — &) Fn(2) +), @7
Lt n! k!
[oe] [o0)
-k
Z Eﬁzézn(z lkl
n=0 k=0

= exp((z — €¥) (log(1 + z) — Fn—1(2)) + ). (28)

By using Theorem 3, we have explicit expressions of incomplete poly-
Cauchy polynomials of the first kind with negative indices.

Theorem 5. For nonnegative integers n, k, and a positive integer m, we
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dBn(e) = Z;\;ﬂ{ JONO o] o,

| 29)

dthie) = iz_;;w{ FONO) [r,] o
)

Remark. If m — oo in (29), or if m = 1 in (30), both identities in Theorem
5 are reduced to the first identity in [10, Theorem 8], where z is replaced by
—z, and only classical Stirling numbers of both kinds are used.

If z = 0, then we have the following. These are different expressions seen
in [15, Theorem 6].

Corollary 3. For nonnegative integers n, k, and a positive integer m, we
have

T e it [y [

J=Oz—-0
T it e [ | R e

Similarly, using Theorem 4, we have explicit expressions of incomplete
poly-Cauchy polynomials of the second kind with negative indices. If m — co
~in (33), or if m = 1 in (34), any identity in Theorem 6 is reduced to the
second identity in [10, Theorem 8], where z is replaced by —z, and only
classical Stirling numbers of both kinds are used.

Theorem 6. For nonnegative integers n, k, and a positive integer m, we
have '
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If z = 0, then then we have the following. These are different expressions
seen in [15, Theorem 7].

Corollary 4. For nonnegative integers n, k, and a positive integer m, we
have

S I [ RO

J~0 =0

S e | R I

=0 =0

6 Incomplete poly-Bernoulli polynomials

In [6], poly-Bernoulli polynomials BW (z) are defined in (1). In [1, 2], z and
—z are interchanged in the definition of B (z). In [3], an extended concept
named poly-Bernoulli polynomials with a g parameter is introduced. In [16],

still different poly-Bernoulli polynomials By ) (z) are defined. Poly-Bernoulli
polynomials have an explicit expression in terms of the Stirling numbers of
the second kind:

B (z) = Z R i Pl ot (37)
(k+ 1)” 1) |k
When z = 0, we get the expression of poly»Bernoulh numbers BY” (0) = BW:

BW =Z((k1f;’)°f' { }

([11, Theorem 1}).
By using two types of 1ncomplete Stirling numbers, define restricted poly-
Bernoulli polynomials Bn" «m(Z) and associated poly-Bernoulli polynomials

B lm(x) by

) (@) = }:((klf;f'znj(l) {i}smx’*" (n>0) (38)
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1=0
respectively. We call these numbers as incomplete poly-Bernoulli polynomials.
If z = 0, then they are reduced to restricted poly-Bernoulli numbers and
associated poly-Bernoulli numbers, respectively ([18]).
One can deduce that the numbers B,(f im(:v) and B, >m(:c) have the gen-
erating functions by using the polyloganthms

Theorem 7. We have

Liy(1 = En(—1)) _,. I
=B (-8 ;anm(x)a ()
and ( - t)
Liy(Bn(") —€7) e _ g0 (nE
Em_1(—t) —et e = g Bn,>m($) i - (41)

Remark. If x = 0, they are reduced to the generating functions in {18,
Theorem 1].

If m — oo in (40) or m = 1 in (41), they are reduced to the generating
function in [3, Theorem 2.1] by putting ¢ = 1.

For ;1 > 1, the generating functions can be written in the form of iterated
integrals. We set E_;(—t) = 0 for convenience.



Theorem 8.

Em-1(-1) ' Em-1(—t)
el e 1O e (e et
p-l

Z«; (@) | (42)

e—tz t e-t m—2( t) m—2 t)

Em_l(—-t) - e‘t Em—l( t) — e"t E -1 —t) - e‘t

x (—log(1+e™t— Em_l(—t))) dt. ..dt

- BY (@) (43)

n=0

Remark. If = 0, then Theorem 8 is reduced to [18, Theorem 2]. In addition,
if m — oo in (42), by Ex(—t) = €%, and if m = 1 in (43), both of them are
reduced to the iterated form (2) in ([11]) by setting t = 0.

A symmetric property does not hold for generalized poly-Bernoulli num-
bers with negative indices because of the following.

Theorem 9. We have

ey—:zz

nz—;; <m( | k' 1 By(l _ '—.’L')) (44)
oo oo (k) U=z
Y T T T Ea e @

Remark. If m — oo in (44) or m = 1 in (45), both identities are reduced to
(24) with z = 0.
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