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Abstract. This paper solves the general Erdos-Szemeredi conjecture for some classes
of increasing families of finite subsets of self-similar subsets of the integers. It does
so by applying zeta function methods for discrete self similar sets.
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1 Introduction

The Erdos-Szemeredi conjecture [ES] predicts a basic feature about the minimal num-
ber of distinct A—fold sums or products that can be created from an arbitrary finite
set of integers. Despite much interest and some partial results, most notably by Chang
[C], few examples appear to exist for which the conjecture is actually proved. Indeed,
the only reasonably general class of sets known to us are arithmetic progressions
where the verification of the conjecture is elementary.

The purpose of this article is to exhibit a large class of families of finite subsets of Z,
one that is distinctly different from arithmetic progressions, for which the conjecture
can be proved by means of “fractal” zeta function theory. These sets are all subsets
of “self-similar” sets (see Definition 3).

In our recent work [EL-2], we have shown how various Falconer type problems
for “compatible” self similar sets of Z™ can be solved using a multivariate Tauberian

*This author benefits from the financial support of the French-Japanese Project “Zeta Functions
of Several Variables and Applications” (PRC CNRS/JSPS 2015-2016).



theorem when applied to a fractal zeta function, provided one also has proved essential
functional properties of the zeta function. This method extends very simply to solve
the Erdos-Szemeredi conjecture for certain increasing families of finite subsets of any
self similar subset of Z since any such set is automatically also compatible.

The main result is as follows.

Theorem 1. Let F C Z be a self similar set (see definition 3 below). For z > 0 set
F(z)=FN[-z,z].
Then for any integer h > 2,
maz{|F(2)"], |hF(z)|} > |F ()",

where F(z)* := h—fold products, hF(z) := h—fold sums of F(z), and | - | denotes
cardinality.

The careful reader will have noted that each of the finite sets must equal some
F(z), as defined in the Theorem. Our method does not establish the predicted lower
bound for increasing families of arbitrary finite subsets of F, though it does seem that
Theorem 1 is a reasonable first step.

A natural extension of Theorem 1, is the following. Let P € Z[X;,...,X,] be a
polynomial of degree d > 0. Define for any « > 0 the P—fold sumset PF(z) by

PF(z) = {P(mq,...,mp) |m; € F(z)Vj=1,...,h}.

By using in addition to our zeta method, a deep result of T. Browning and D.R.
Heath-Brown [BHB] on the density of rational points in algebraic varieties, we obtain
the following extension of Theorem 1:

Theorem 2. Let F C Z be a self similar set. Let P € Z[Xy,...,Xn], h > 2 be a
form of degree d > 2 that defines a non singular projective hypersurface {P=0}C
P*~1(Q). Assume also that

1. forallj=1,...,h, the coefficient of X;’ in P 1is non zero;
2. the upper Minkowski dimension of F verifies e(F) > 1 — %.

Then, for any € > 0,

|PF(z)] > | F(a)| (P 1+E) <,
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2 Ingredients for the proof

We first recall needed definitions and basic properties of fractal zeta functions used
in the proof of Theorem 1. These properties only require 7 C R™.

Definition 1. A similarity on R™ is an affine linear transformation
L:x—cTx+Db,

where ¢ > 0 and T is an orthogonal transformation.

Definition 2. Let F be a countable discrete subset of R™. Define the upper Minkowski
dimension of F by:

e(F) = udimy F := limsup M

R—oo InR < [0, OO] ’

where F(R) := {x € F; ||x|| < R} VR. We say that F has finite upper Minkowski
dimension whenever the limit is finite.

Definition 3. A discrete set F C R™ is self similar if its upper Minkowski dimension
e(F) is finite and positive, and there ezists a finite set of similarities {L; = ¢;T;+b;}]
such that each scale factor c; > 1 and*

F=JL(F) and #(Ly(F)NLy(F)) <00 Vir #ja.
i=1
F is “compatible” if the T; pairwise commute.

Remark. Interesting examples of such sets are the Pascal triangle mod p, whose zeta
function was studied in [E], and Pascal pyramid mod p, studied in [EL-1].

Definition 4. The fractal zeta function determined by a discrete self similar set
F C R" is the Dirichlet series

Hs)= 3 "# (F = F\{o}),

meF’ m”s
where ||m|| = Euclidean norm on R™.

The basic properties of the fractal zeta function (#(s) were determined in [EL-1].
More precisely, Theorems 1 and 2 of [EL-1] can be summarized as follows:

!The notation F = G means that (F'\ G)U (G \ F) is a finite set.



99

Theorem 3. Let F be a compatible discrete self similar subset of R™ as in Definition
3. Then

1. {#(8) converges absolutely and defines a holomorphic function in the halfplane
{Res > e(F)} and s = e(F) is its abscissa of convergence.

2. {#(s) has a meromorphic continuation with moderate growth to the whole com-
plezx plane C.

3. The polar locus P(F) of (#(s) is a subset of

U U{s-#15 2057 =1},
aeNp keN j=1

where for each j =1,...,7 Aj = (Aj1,..., Aja) @S a vector of (complex) eigen-
values of the adjoint T} of Tj;.

4. The upper Minkowski dimension e(F) is a simple pole of ((s) and satisifes
e(F) = supP(F).

5. e(F) is the largest positive solution of the equation ), c;° = 1.

Remark. If F is discrete self similar subset of R (i.e. if n = 1), then it is necessarily
also compatible.

For any P(x) € R[Xj,...,Xy,] the fractal zeta function with weight P is the

Dirichlet series P(m)
gf(s’}))zz = .
mze;r, [jmll®
Other weight functions can also be used, but these suffice for our purposes here.
) If F is a compatible discrete self similar subset of R™ as in Definition 3, the
following three analytic properties of any weighted zeta function (z(s, P) are basic
for applications. They are proved in Lemma 2 of [EL-2].

Theorem 4. 1. The zeta function (r(s,P) converges absolutely and defines a
holomorphic function in the halfplane {Re(s) > e(F) + deg(P)}.

2. There exists a meromorphic extension of (x(s, P) to C with moderate growth in
any open subset of a vertical strip of finite width whose distance from the polar
locus is positive.

3. The polar locus (s, P) is a subset of

U U{s+|a[ k|ZA“ o1 }

aeNg keN



Remarks. (i) Theorem 4, when combined with a weighted Perron formula [I] and

a careful description of the polar locus of (#(s) near its boundary of analyticity,

determines an explicit asymptotic for a weighted average of coefficients of (#(s).
For Res > e(F) write the distinct values of m € 7/ — ||m| as \; < A2 < ---,

and the series as c
2]

5
¢ A

A typical application, though hardly the only one, shows the existence of a periodic
function ¢ # 0 and p > 0 such that

~ Z) = 4% (loga)? 1
x—))gwcg(l A{) z?% (log z) (go(logx)+Q(logx) asz —oo. (1)

(ii) Because Falconer type problems typically involve translation invariant metric
invariants as weights, the polynomial P is often of the form P(xj,X2,...,Xs) €
R[xi,...,X5) where each x; € R (n > 1). As a result, a single variable Tauberian
result is far from sufficient to solve a Falconer type problem. Instead, it is necessary
to prove a multivariable Tauberian theorem that can give, with precision comparable
to (1), an asymptotic for

z - 3 P(my,...,my) [](1 - Mr::—,,ll)'

{(m1,....mp):||my||<zVu}

This requires use of a multivariable fractal zeta function. Probably the simplest
example is the zeta function associated to the Erdés distance problem (see [EL-2])
where the weight function equals P(m;, my) = ||m; — my||? :

z P (ml, mg)

Caist (51, 82) = Tl

(m1,m2)&(F")?

The needed Tauberian result is Theorem 6 [EL-2]. This implies (see §3.1 [ibid.]) the
existence of a positive weight w = w(F,p)(= 2(e(F) + 1)) and a periodic function
@ # 0 such that

2
z
2 P(my, mo) [J(1 - m) =1 p(logz) +0(z¥) o0
{(ml»mﬁ)ep: [my||<z Vu} u=1 ‘

The weight w is the maximal weight of any vertex on the real part of the bound-
ary of the domain of analyticity of (ys:(s1,52). There are two vertices at (e(F) +
2,e(F)), (e(F), e(F) + 2) so that w = 2(e(F) +1).
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3 Main ingredient

Let 7 C R™ be a compatible self similar set as above and P a polynomial of the
form P(x3,X2,...,X5) € R[xy,...,X,] where each x; € R* (n > 1). We define a
multivariable fractal zeta function as follows:

P(mljn..,mh) .
ven= s =(s1,...,8,) € C".
mh-.-,zmhef' [l [} .. . [[mge RERD

Write . X
P(Xy,...,Xp) = > a(a) X&' ... X"
a=(al,.,ah)eS(P)

where S(P) is a finite subset of (N7)*.
Theorem 4 implies that (z(s, P) converges absolutely and defines a holomorphic
function in the domain

D(F,P) := N {s € C" | Re(s;) > e(F) +|ed| Vj=1,...,h} (2)

a=(al,...,ah)eS(P)
where it satisfies the identity
h .
C#(s,P) = > a(a) [[ (55, X$). (3)
a=(al,..,a?)eS(P) Jj=1

Theorem 4 implies also that (#(s, P) has a meromorphic continuation with moderate

growth to the whole space C".
Define :

1. S(F,P) = {(e(F) +|a],...,e(F) +|a") : a=(a!,...,a") € S(P)};
2. So(F,P) := {w € S(F, P); |w| = he(F) + degP};
3. I'(F, P) = convex hull of So(F, P) = “polar polyhedron” of (x(s, P);

4. V(F,P) = {v € So(F,P) : v is a vertex of I'(F, P)} := vertez set of the polar
polyhedron of (z(s, P). :

Identity (3), Lemma 2 and the multivariate tauberian theorem (Theorem 8) we es-
tablished in [EL-2] imply the following key result:



Theorem 5. Assume P >0 on F* and that for any vertez v € V(F, P),

' h
Resg, =y, - . . ReSs;=y,(F(s, P) i= Z a(a) H Resy—y; (7 (55, X$) # 0.

a=(al,..ah)eS(P) Jj=1
4)
Then, for any € > 0,

P(my,...,my) >, ghePItdesP=2 g5 4 5 o0,
{(m1,....mp)EF", |my|<z Yu}

Remark. Formula (3) implies that D(F, P), defined in (2), is a “good approxima-
tion” for the domain of analyticity of (#(s, P), whose boundary in R is known to
be a polyhedron. The weight he(F) + degP is the maximal weight of any vertex of
this polyhedron and V(F, P) is its vertex set. Formula (3) implies that any vertex
in V(F, P) is'a possible pole of {#(s, P). The non-vanishing of iterated residues in
formula (4) implies that any point in V(F, P) is indeed a pole.

4 Proof of Theorem 1

Set Py(X1,...,Xn) = (X1...Xs)? The fractal zeta function we need for the h—fold
product sets F(z)" is a Dirichlet series in s = (sy, .. ., s) which is absolutely conver-
gent in (),{Resg > e(F) + 2}:

(h) ) (s) == Cr(s, Py) = Z in—l—_’lgg = HCJ—'(«Se 2). ()

me(F)h [ma® - - - [mp

With notations of §3 above, the vertex set of the polyhedron of {#(s, Pp) is
V(F, P) = {vo} where vo = (e(F) +2,...,e(F) + 2). Moreover,

h
Resg,—e(F)+2 - - - ReSsy=e(r)+2CF (s, Po) = H Resg—e(7)+2(F (55 — 2)
j=1

h
= H Resg,—e(r)CF(s5) # 0.
j=1
It follows from Theorem 5 that we have the nontrivial asymptotic bound:

Ve >0, Al(:‘ld(x) = Z (my...mp)? >,z €€ 55 7 5 o0
{(m1,....omp)EFR, |mu|<z Vu}
(6)
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Defining
Npr(T) = [F(z)*| and setting F(z)*={p<pa<---< Prpe(z) >

it is clear that
npr (T)

AP (z) = Z P2 N,

for any j = 1,...,np(z), Nj = #{(ml,...,mh) € F(z)* | my...ms = p;}. Since
each m; € Z, there is a standard bound (see for example [Te]) that is uniform in z:

Ve >0, Nj < #{(ma,...,mz) €Z" :mq...my = p;} < |p;°- (7

In addition, since |p;| < z”, it is clear that for any £ > 0

npr ()
3
Az(,,ld(:v) = Z 3 Nj < npr(z) - 2?01,
Jj=1

As a result, for any €,¢’ > 0, we have for all sufficiently large = :
TP o A () Ko ipn(@) - 22HH)
which implies that for any £ > 0
N (1) ¢ zPeF)e,
Moreover, by the definition of upper Minkowski dimension, we also have:
|F(z)| < 289,

From which, we deduce the predicted lower bound of the Erdds-Szemeredi conjecture
for the subsets F(z) of F:

h eF) . € h—e
e (%) e [F ()" > |F2)|" "
This, of course, suffices to finish the proof of Theorem 1. O

Remark. It is, however, also of interest to see what the above method gives as a
lower bound for |hF(z)|. The evident fractal zeta function equals:

bl

z (m1+---+mh)2

(On(s) = (r(s, A1) = [mal®t - - - [mp|or

(ma,e.imn )E(F)R
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where P(Xy,...,Xp) = (X1+---+X3)? It follows that Cs..,,m (s) converges absolutely
in the domain N, {R(s;) > e(F) + 2} where it satisfies the identity

(n(s) = ZCf(S] -2) HCJ—'(SJ +2 ) (s —1)Cr(s;— 1) H Cr(sk). (8)

=1 1<i<j<h peiey
= b Sis purrg
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We deduce that (s " m(s) has a meromorphic continuation with moderate growth to

(Ch

Denoting the all 1 vector in R” by 1, and {e; }"‘ the unit vectors, it is not difficult

to verify that the vertex set of the polyhedron of ¢{&, is
V(F,P)={e(F)-1,+2¢;|j=1,...,h}.

Moreover, for any j = 1,..., h if we denote v/ = (v{, ,vj’;) the vertex
e(F) - 1, + 2e;, we have

A
Ressh:vi e R3331=.,,{CF(S, P1) = Resg;=e(F)+2CF (55 — 2) H Resg,—e(7)CF(5:)

i=1
i#i

h
= H Res o) (F (1) = (Ressme(r) ()" #0

It follows from Theorem 5 that we have the nontrivial asymptotic bound:

Ve > 0, Ag’;)m(x) = Z (ma+- - +mp)? >, M eI a5 7 00.

{(m1ye..mp)EFP, Imu|<z Vu}
9
Analogously, we define

Neu() = |hF(z)| and write hF(z) = {r <72 <+ <T@}

It follows that

Neu ()

Agum () = Z 2 Mj,

j=1

where for all j = 1,...,n(z), Mj := #{(m4,...,m4) € F'(z)" : 3, me = 7;}. Since
each 77 < h?z? < z?, we need a uniform (in 7;) bound for each M;. This is given by
Lemma 6 [EL-2] which shows that for any € > 0,

Mj = #{(ma; ..., mn) € F(a)" : Zme =T7;} <K 2"
¢
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Thus, for any € > 0

nsu(ZT) .
Agum(z) = Z TEM; L mgu(z) - T
=1

Combining this with (9), we deduce
gheF)+2—¢ <. nsu(x) . ghti+e,

So, there is a lower bound for n,,(z) that grows in z iff h(e(F) — 1) + 1 > 0, that is,
ife(F)>1-— ,ll However, when this is satisfied, the resulting lower bound

neu(®) > | F(z)] S

is weaker than that obtained for nym.q4(z) as above.

5 Proof of Theorem 2

5.1 A geometric lemma

Lemma 1. Let P € Z[Xi,...,Xp], h > 2 be a form of degree d > 2 that defines a
non singular projective hypersurface X = {P = 0} in P*"}(Q). Then, for any e > 0,
there exists a positive constant C' = C(h,d,e) > 0 which depends only upon h,d and
€ such that for any £ € Z and any B > 0, '

#{(m1,...,mn) € Z" | P(ma, ..., my) = £ and max |m;| < B} < C B*'*,

Proof of Lemma 1. First case: We assume that £ € Z \ {0}. Define the form
F(zo,...,z1) = P(X1,...,Xs) — £ X¢ and Y = {F(=o,...,21) = 0} C P the
projective hypersurface associated to it.

Assume that Y is singular. It follows that there exists a point X = (2o, Z1,...,2s) €
Y such that

Vi=1,...,h OP(zy,. .-, 2n) = OF(X) =0 and -—dlzi'= ﬂ‘l =0.

a&‘i 8.’L'i 8330
We deduce that
viz1,...p 2P@L ) oo,
6.’1),'

It follows that x = (z1,...,2) is a singular point of the projectve hypersurface

X = {P =0} C P*. Hence a contradiction.



Thus, the projective hypersurface Y = {F(xy,...,z3) = 0} C P* is non singular.
The corollary of Theorem 1 of [BHB] implies then that for any € > 0, there exists a
positive constant C = C(h,d,e) > 0 which depends only upon h,d and € such that
for any B > 0,

#{(my,...,mp) €Z" | F(1,my,...,mp) = 0 and max |m;| < B} < C B"1*=,

It follows that for any B >0and £ € Z :

#{(m1,...,ms) € z" | P(my,...,mp) =£ and max|m;| < B} <C Bh—1+e

This end the proof of lemma 1 in the first case.

Second case: We assume that £ = 0. Since the projective hypersurface X =
{P(z1,...,24) = 0} C P*! is non singular. The corollary of Theorem 1 of [BHB]
implies then that for any € > 0, there exists a positive constant K = K(h,d,e) > 0
which depends only upon h,d and € such that for any B > 0,

N(B)
= #{m = (my,...,my) € Z* | P(m) = 0, ged(my,...,ms) = 1 and max|m;| < B}
< K Bh—2+€-
It follows that for any € > 0 and any B > 1
No(B) := #{m = (my,...,my) € Z* | P(m,,...,ms) = 0 and max |m;| < B}
= Z #{m € Z" | P(m) = 0, ged(m,,...,m;) = v and max|m;| < B}

u<B
=Z# {m ¥/ | P(m) =0, ged(my,...,mp) =1and m?,x|mi] < %}
u<B
= Z N (—) Lhde Z (—) Lh,de Bh—2te (z 1) Lhde Bh-1+e
U U
u<B u<B u<B
This end the proof of lemma 1. 0

5.2 Proof of Theorem 2

Let P € Z[Xy,...,X4] be a polynomial of degree d which satisfies the assumption
of Theorem 2. Write P(X1,...,Xa) = 3 qeg(p) %X, where the finite set S(P) is
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the support of P. The fractal zeta function we need for the sets PF(z) is a Dirichlet

series in s = (81,...,8):
P(mla tU a"'nh)2
Cx(s, P?) = A, TA) 10
( mez(:]'")h || - - || (10)
Theorem 4 implies that (#(s, P) converges absolutely in the domain
{s € C* | R(s;) > e(F) + 2d Vj} where it satisfies the identity
h
C]:(S, P2) = Z aaaﬁHC;(sj,X;’-w’). (11)

a,BeS(P) j=1

Theorem 4 implies also that (r(s, P) has a meromorphic continuation to C* with
moderate growth.
Moreover, with notations of §3, we have:

1.
2.

S(F,P?) = {(e(F) + a1+ B, .., e(F) +an+ Br); (a,B) € S(P)?};

SO(I7P2)
={w € S(F, P?); |w| = he(F) +2d}
= {(e(]-') +o1+ By e(F)+an+Br); (a,B) € S(P)? and |a| = |B| = d};

. Denoting the all 1 vector in R? by 1, and {e;}* the unit vectors, it is not difficult
to verify that the polar polyhedron I'(F, P?) = convex hull of So(F, P?) is the
set

['(F, P?) = convexz hull {e(F) - 15 + 2de, . .., e(F) - 1 + 2des}.

. It is also not difficult to verify that the vertex set of the polar polyhedron is

V(F,P?) ={e(F) -1, +2de; | j=1,...,h}.

Moreover, it follows from (11) that
for any vertex vi = (Vk,1,. .., Ukn) = e(F) - 15 + 2dey, € V(F, P):

h

i+
Ressh.—_uk'h e R6531=‘uk,1 C.F(Sy P2) - Z Aol H Ressi:vk,j C.F(sj, X;"a ﬁ.’i)
a,BES(P) Jj=1
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Since
1. (#(sk, X, ,':’""ﬂ") converges absolutely and defines a holomorphic function in the
halfplane {Re(sz) > e(F) + ax + Bi} and;

2. vpx = e(F)+2d > e(F) + ag + B if a # deg or B # dey,
we deduce that

Resg,—u, ), - - - BeSgy =y, ,CF (S, P?)
A
= (ade,)? ReSsyze(r)+2aCF(sk — 2d) H Resg,—o(r)(F(55)
Jj=1, j#k

= (a‘dek.)2 (Ressr-e(}')c}'(s))h #0.

Theorem 5 implies then the nontrivial asymptotic bound:

Ve >0, Ap((v) = Z P(ml . ~mh)2 >, xhe(}')-l-2d-e a8 T — 00.
{(m1,....mp)EF, |muy|<z Vu}

(12)
Defining
np(z) :=|PF(z)| andsetting PF(z)={p1 <p2<: < pPrp@)}

it is clear that
np(x)

Ap(z) =Y A} N,

=1

where for any j =1,...,np(z),
N; = #{(ma,...,mz) € F(z)* | P(my,...,ms) = p;}.
Since each m; € Z, Lemma 1 above implies the following uniform bound in z and p;:

Ve >0, Nj < #{(m4,...,mn) € Z" : P(my,...,my) = p; and |m;| < zVj} <, z" .

(13)
In addition, since |p;| < z¢, it is clear that for any € > 0
np(x)
.AP(GJ) — Z ;0? j\fj <. np(:l:) . p2d+h-lte
Jj=1 '

As a result, for any €,&’ > 0, we have for all sufficiently large = :

gheFr+2d—¢ Ap(z) <. np() - g2d+h-1+e,
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which implies that for any € > 0
np(z) ¢ gHEFI-DH1=¢
Moreover, by the definition of upper Minkowski dimension, we also have:
|F(z)] <e 250,
From which, we deduce the lower bound:

np(x) S [F@)| 0T,

This, of course, suffices to finish the proof of Theorem 2. O
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