<table>
<thead>
<tr>
<th>Title</th>
<th>On the theory of Laplace hyperfunctions in several variables (Algebraic analytic methods in complex partial differential equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Honda, Naofumi; Umeta, Kohei</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2017, 2020: 29-34</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/231736</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the theory of Laplace hyperfunctions in several variables

By

NAOFUMI HONDA* and KOHEI UMETA**

Abstract

We survey the theory of Laplace hyperfunctions in several variables in [1, 2, 9]. A Laplace hyperfunction in one variable was first introduced by H. Komatsu ([3]-[8]) to consider the Laplace transform for a hyperfunction. We here construct Laplace hyperfunctions in several variables and their Laplace transform.

§1. A vanishing theorem of cohomology groups for the sheaf of holomorphic functions of exponential type

We briefly recall the vanishing theorem of cohomology groups on a Stein open subset with coefficients in holomorphic functions of exponential type and the edge of the wedge theorem for them.

Let \(n \) be a natural number, and let \(M \) be an \(n \)-dimensional \(\mathbb{R} \)-vector space. Let \(E \) be the complexification of \(M \). We denote by \(\mathbb{D}_E \) the radial compactification of \(E \) which is defined by

\[
\mathbb{D}_E := E \cup (E \setminus \{0\})/\mathbb{R}_+.\infty.
\]

Let \(U \) be an open subset in \(\mathbb{D}_E \). A holomorphic function \(f(z) \) in \(U \cap E \) is said to be of exponential type if, for any compact subset \(K \) in \(U \), there exist positive constants \(C_K \) and \(H_K \) such that

\[
|f(z)| \leq C_K e^{H_K|z|} \quad (z \in K \cap E).
\]

We denote by \(\mathcal{O}_{\mathbb{D}_E}^{\exp} \) the sheaf of holomorphic functions of exponential type on \(\mathbb{D}_E \).

2010 Mathematics Subject Classification(s): 32A45, 44A10.

Key Words: Laplace transform, hyperfunctions, sheaves.

Supported by JSPS KAKENHI Grant Number 15K04887

*Department of mathematics Hokkaido University, Sapporo 060-0810, Japan.
**Department of mathematics Hokkaido University, Sapporo 060-0810, Japan.
To recall the vanishing theorem of cohomology groups on a Stein open subset for $\mathcal{O}_{\mathbb{C}^2}^{\text{exp}}$, we give the definition of the regularity condition at ∞ for an open subset in $\mathbb{D}_{\mathbb{C}^2}$. We denote by E_{∞} the set $\mathbb{D}_{\mathbb{C}^2} \setminus E$. For a subset V in $\mathbb{D}_{\mathbb{C}^2}$, we define the set $\text{clos}^1_{\infty}(V) \subset E_{\infty}$ as follows. A point $z_{\infty} \in E_{\infty}$ belongs to $\text{clos}^1_{\infty}(V)$ if and only if there exist points $\{z_k\}_{k \in \mathbb{N}}$ in $V \cap E$ which satisfy $z_k \to z_{\infty}$ in $\mathbb{D}_{\mathbb{C}^2}$ and $|z_{k+1}|/|z_k| \to 1$ ($k \to \infty$). Set

$(1.2) \quad N^1_{\infty}(V) := E_{\infty} \setminus \text{clos}^1_{\infty}(E \setminus V)$.

Definition 1.1. An open subset U in $\mathbb{D}_{\mathbb{C}^2}$ is said to be regular at ∞ if $N^1_{\infty}(U) = U \cap E_{\infty}$ is satisfied.

Note that this condition is equivalent to saying $E_{\infty} \setminus U = \text{clos}^1_{\infty}(E \setminus U)$.

Theorem 1.2 ([2], Theorem 3.7). Let U be an open subset in $\mathbb{D}_{\mathbb{C}^2}$. Assume that $U \cap E$ is pseudo-convex in E and U is regular at ∞, then we have

$(1.3) \quad H^k(U, \mathcal{O}_{\mathbb{D}_{\mathbb{C}^2}}^{\text{exp}}) = 0 \quad (k \neq 0)$.

The regularity condition of U at ∞ plays an essential role in our vanishing theorem of cohomology groups for $\mathcal{O}_{\mathbb{D}_{\mathbb{C}^2}}^{\text{exp}}$ as the following shows.

Example 1.3 ([2], Example 3.17). We consider the radial compactification $\mathbb{D}_{\mathbb{R}}$ of \mathbb{C}^2. Let $(1,0)_{\infty} \in \mathbb{D}_{\mathbb{C}^2} \setminus \mathbb{C}^2$. Set

$V := \left\{ (z_1, z_2) \in \mathbb{C}^2; |\arg(z_1)| < \frac{\pi}{4}, |z_2| < |z_1| \right\}$,

$U := \left(\overline{V} \right)^\circ \setminus \{(1,0)_{\infty}\} \subset \mathbb{D}_{\mathbb{C}^2}$.

It is easy to check that $U \cap E = V$ is pseudo-convex in \mathbb{C}^2 and U is not regular at ∞. In this case, we have $H^1(U, \mathcal{O}_{\mathbb{D}_{\mathbb{C}^2}}^{\text{exp}}) \neq 0$.

Furthermore, by showing a Martineau type theorem for $\mathcal{O}_{\mathbb{D}_{\mathbb{C}^2}}^{\text{exp}}$, we have the following theorem, which is a kind of the edge of the wedge type theorem for $\mathcal{O}_{\mathbb{D}_{\mathbb{C}^2}}^{\text{exp}}$. Let \overline{M} be the closure of M in $\mathbb{D}_{\mathbb{C}^2}$.

Theorem 1.4 ([1], Corollary 3.16). The closed subset $\overline{M} \subset \mathbb{D}_{\mathbb{C}^2}$ is purely n-codimensional relative to the sheaf $\mathcal{O}_{\mathbb{D}_{\mathbb{C}^2}}^{\text{exp}}$, i.e.,

$(1.4) \quad \mathcal{H}^k_M(\mathcal{O}_{\mathbb{D}_{\mathbb{C}^2}}^{\text{exp}}) = 0 \quad (k \neq n)$.

§ 2. Laplace hyperfunctions and their Laplace transform

In this section we construct Laplace transform for Laplace hyperfunctions with support in an $\mathbb{R}_+\text{-conic}$ closed convex cone in \overline{M} and their inverse Laplace transforms. We first recall the definition of Laplace hyperfunctions:
Definition 2.1. The sheaf of Laplace hyperfunctions on \overline{M} is defined by

\[(2.1) \quad \mathcal{B}^\text{exp}_M := \mathcal{H}^n_M(O_D^\text{exp}) \otimes_{Z^n_M} \omega_M.\]

Here ω_M is the orientation sheaf $\mathcal{H}^n_M(Z_D^\text{exp})$ and Z_D^exp is the constant sheaf on D_E having stalk \mathbb{Z}.

Let $a \in M$ and K be an \mathbb{R}^+-conic closed convex cone in M. Let us denote by K_a the set $\{z + a; z \in K\}$ and denote by $\overline{K_a}$ the closure of K_a in \overline{M}. We first get the representation of $\Gamma_{\overline{K_a}}(\overline{M}, B^\text{exp}_M)$ by the relative Čech cohomology groups with coefficients in O_D^exp.

Let us prepare some notation and the proposition below. For a subset $Z \subset D_E$, set

\[(2.2) \quad N_\infty(Z) := E_\infty \setminus (E \setminus Z).\]

For an open subset $U \subset E$, define

\[(2.3) \quad \hat{U} := U \cup N_\infty(U).\]

Definition 2.2. Let Ω be an open subset in \overline{M} and Γ an \mathbb{R}^+-conic open cone in M. Let U be an open subset in D_E. We call U a wedge of the type $\Omega \times \sqrt{-1} \Gamma$ if U satisfies the following conditions.

1. $U \subset (\Omega \times \sqrt{-1} \Gamma),$
2. For any open proper subcone Γ' of Γ, there exists an open neighborhood V of Ω in D_E such that

\[(2.4) \quad (M \times \sqrt{-1} \Gamma') \cap V \subset U.\]

We have the following proposition.

Proposition 2.3. Let K be an \mathbb{R}^+-conic closed cone in M and Γ a proper open cone in M. Assume that Γ is given by the intersection of finite number of half-spaces in M. Then there exist an open neighborhood Ω of \overline{K} in \overline{M} and an open subset U in D_E such that the following conditions are satisfied.

1. U is a wedge of the type $\Omega \times \sqrt{-1} \Gamma$.
2. U is Stein and regular at ∞.
3. U is an open neighborhood of $\Omega \setminus \overline{K}$ in D_E.

Now let us consider the representation of $\Gamma_{K_a}(\overline{M}, B^\text{exp}_M)$ by the relative Čech cohomology with coefficients in O_D^exp. Choose vectors $\gamma_0, \ldots, \gamma_n \in S^{n-1}$. By Proposition 2.3, we can take an open neighborhood Ω of $\overline{K_a}$ in \overline{M} and an open subset $U_j \subset D_E$ which is the wedge of the type $\Omega \times \sqrt{-1} \gamma_j^\alpha$, Stein and regular at ∞, and furthermore,
an open neighborhood of \(\Omega \setminus \overline{K_a} \). Here \(\gamma_j^o \) denotes the polar set \(\{ y \in M; y \gamma_j > 0 \} \) of \(\gamma_j \). We also take a neighborhood \(U \) of \(\overline{K_a} \) in \(D_E \) which is Stein and regular at \(\infty \). Then \(\Omega = \{ U, U_0, \ldots, U_n \} \) and \(\Omega' = \{ U_0, \ldots, U_n \} \) give a relative open covering of the pair \((U, U \setminus \overline{K_a})\). Hence we have

\[
\Gamma_{K_a}(\overline{M}, B_{M}^{\exp}) = \frac{\text{Ker}\{ \bigoplus_{j=0}^{n} O_{D_E}^{\exp}(\bigcap_{l \neq j} U_l) \} \to O_{D_E}^{\exp}(\bigcap_{l=0}^{n} U_l) \}}{\text{Im}\{ \bigoplus_{j \neq k} O_{D_E}^{\exp}(\bigcap_{l \neq j, k} U_l) \to \bigoplus_{j=0}^{n} O_{D_E}^{\exp}(\bigcap_{l \neq j} U_l) \} \}}.
\]

Let us define the Laplace transform for an element \(f = \bigoplus_{j=0}^{n} F_j \) of the above representation of \(\Gamma_{K_a}(\overline{M}, B_{M}^{\exp}) \). Set, for \(j = 0, 1, \ldots, n \),

\[
D_j := \{ x + \sqrt{-1}y \in E; x \in \Gamma, y = \varphi(x) \gamma \},
\]

where we take an appropriate closed cone \(\Gamma \subset \Omega \) which contains \(K \) and a point \(\gamma \in \bigcap_{l \neq j} \gamma_l^o \). Further, the continuous function \(\varphi: \Gamma \rightarrow \mathbb{R}_+ \cup \{0\} \) is chosen to satisfy the following conditions: (1) \(\varphi(x) = 0 \) in \(\partial \Gamma \), (2) \(\overline{D_j} \cap \overline{K_a} = \emptyset \), (3) \(\overline{D_j} \subset U_j \). Note that such \(\Gamma, \gamma \) and \(\varphi \) always exist for each \(j \).

Definition 2.4. Under the above situation, the Laplace transform of \(f = \bigoplus_{j=0}^{n} F_j \in \Gamma_{K_a}(\overline{M}, B_{M}^{\exp}) \) is defined by the integral

\[
\mathcal{L}(f)(\lambda) := \sum_{j=0}^{n} \sigma_j \int_{D_j} F_j(z) e^{-\lambda z} dz,
\]

where \(\sigma_j := \text{sgn} \left(\det(\omega_0, \cdots, \omega_{j-1}, \omega_{j+1}, \cdots, \omega_n) \right) \).

Note that the Laplace transform does not depend on the choice of \(\Gamma, \gamma \) and \(\varphi \).

Definition 2.5. Let \(\Omega \) be an open subset in \(D_E \). The set \(O_{D_E}^{a,\inf}(\Omega) \) consists of a holomorphic function \(f(z) \) on \(\Omega \cap E \) such that, for any compact subset \(K \subset \Omega \) and \(\epsilon > 0 \), \(f(z) \) satisfies

\[
|e^{az} f(z)| \leq C_{K, \epsilon} e^{\epsilon |z|}, \quad z \in K \cap E.
\]

with a positive constant \(C_{K, \epsilon} \).

Then we find that the Laplace transform gives the following morphism.

\[
\mathcal{L} : \Gamma_{K_a}(\overline{M}, B_{M}^{\exp}) \longrightarrow O_{D_E}^{a,\inf}(N_{\infty}(K^o)).
\]

Here \(K^o \) denotes the dual open cone of \(K \) in \(E \). Since the above morphism does not depend on the representation of \(\Gamma_{K_a}(\overline{M}, B_{M}^{\exp}) \), \(\mathcal{L} \) is well-defined.

Definition 2.6. Let \(T \) be an open subset in \(E_\infty \), and \(U \) an open subset in \(D_E \). We say that \(U \) has the opening wider than or equal to \(T \) at \(\infty \) if \(T \subset N_{\infty}(U) \) is satisfied.
We have the following lemma which plays an important role in establishing the inverse Laplace transform.

Lemma 2.7. The following conditions are equivalent:

1. \(f \in \mathcal{O}_{D_E}^{a, \text{inf}}(N_{\infty}(K^o)) \).
2. There exists an open subset \(U \) in \(E \) whose opening is wider than or equal to \(N_{\infty}(K^o) \) such that \(f \) is holomorphic on \(U \) and, for any compact subset \(K \) in \(\tilde{U} \), there exists an infra-linear function \(\phi_K(s) \) satisfying
 \[
 |e^{az}f(z)| \leq e^{\phi_K(|z|)}, \quad z \in K \cap E.
 \]
3. There exists an infra-linear function \(\phi(s) \) and an open subset \(U \) in \(E \) whose opening is wider than or equal to \(N_{\infty}(K^o) \) such that \(f \) is holomorphic on \(U \) with
 \[
 |e^{az}f(z)| \leq e^{\phi(|z|)}, \quad z \in U.
 \]

Let us define the inverse Laplace transform.

Definition 2.8. We define the morphism

\[
\mathcal{S} : \mathcal{O}_{D_E}^{a, \text{inf}}(N_{\infty}(K^o)) \rightarrow \mathcal{B}_{\frac{\mathrm{e}\mathrm{x}}{M}}^\text{p}(\overline{M})
\]

by

\[
\mathcal{S}(f) = \bigoplus_{0 \leq k \leq n} \sigma_k f_k, \quad f \in \mathcal{O}_{D_E}^{a, \text{inf}}(N_{\infty}(K^o)).
\]

Here \(f_k \) is given by the integral

\[
f_k(z) := \frac{1}{(2\pi \sqrt{-1})^n} \int_{T_k} f(\lambda)e^{\lambda z}d\lambda.
\]

The path of the integration \(T_k \) is given as follows. Set

\[
\Sigma_k := \{ \eta \in M; \eta = \sum_{j \neq k} t_j \gamma_j, t_j \geq 0 \}.
\]

Let \(\psi \) be an infra-linear function, and let \(\hat{\xi} \) be a point in the dual open cone of \(K \) in \(M \). Then we put

\[
T_k := \left\{ \lambda = \xi + \sqrt{-1}\eta \in E ; \eta \in \Sigma_k, \quad \xi = \psi(|\eta|)\hat{\xi} \right\}.
\]

Note that the integral \(f_k \) does not depend on the choice of \(\psi \) and \(\hat{\xi} \) if \(\psi \) is rapidly increasing. We can see that \(f_k \) is a holomorphic function of exponential type on \((M \times \sqrt{-1}\cap_{j \neq k} \gamma_j^o) \) by Lemma 2.7.

Furthermore, we have:
Lemma 2.9. \(\text{supp}(\mathcal{S}(f)) \subset \overline{K_a} \) for \(f \in \mathcal{O}^a_{D_E}^{\inf}(N_{\infty}(K^o)) \).

Hence we have the inverse Laplace transform, and we can show that it satisfies the following theorem.

Theorem 2.10. \(\mathcal{S} \circ \mathcal{L} = \text{id}_{\mathcal{O}^a_{D_E}^{\inf}(N_{\infty}(K^o))} \), \(\mathcal{L} \circ \mathcal{S} = \text{id}_{\Gamma_{\overline{K_a}}(\overline{M}, B_{\text{ex}}^N)} \).

References