<table>
<thead>
<tr>
<th>Title</th>
<th>On the theory of Laplace hyperfunctions in several variables (Algebraic analytic methods in complex partial differential equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Honda, Naofumi; Umeta, Kohei</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2017), 2020: 29-34</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/231736</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository
京都大学
On the theory of Laplace hyperfunctions in several variables

By

NAOFUMI HONDA* and KOHEI UMETA**

Abstract

We survey the theory of Laplace hyperfunctions in several variables in [1, 2, 9]. A Laplace hyperfunction in one variable was first introduced by H. Komatsu ([3]-[8]) to consider the Laplace transform for a hyperfunction. We here construct Laplace hyperfunctions in several variables and their Laplace transform.

§ 1. A vanishing theorem of cohomology groups for the sheaf of holomorphic functions of exponential type

We briefly recall the vanishing theorem of cohomology groups on a Stein open subset with coefficients in holomorphic functions of exponential type and the edge of the wedge theorem for them.

Let n be a natural number, and let M be an n-dimensional \mathbb{R}-vector space. Let E be the complexification of M. We denote by \mathbb{D}_E the radial compactification of E which is defined by

$$\mathbb{D}_E := E \cup ((E \setminus \{0\})/\mathbb{R}_+) \infty.$$

Let U be an open subset in \mathbb{D}_E. A holomorphic function $f(z)$ in $U \cap E$ is said to be of exponential type if, for any compact subset K in U, there exist positive constants C_K and H_K such that

$$(1.1) \quad |f(z)| \leq C_K e^{H_K |z|} \quad (z \in K \cap E).$$

We denote by $\mathcal{O}_{\mathbb{D}_E}^{\exp}$ the sheaf of holomorphic functions of exponential type on \mathbb{D}_E.

2010 Mathematics Subject Classification(s): 32A45, 44A10.

Key Words: Laplace transform, hyperfunctions, sheaves.

Supported by JSPS KAKENHI Grant Number 15K04887

*Department of mathematics Hokkaido University, Sapporo 060-0810, Japan.

**Department of mathematics Hokkaido University, Sapporo 060-0810, Japan.
To recall the vanishing theorem of cohomology groups on a Stein open subset for $\mathcal{O}_{\mathbb{D}_{E}}^\exp$, we give the definition of the regularity condition at ∞ for an open subset in \mathbb{D}_{E}. We denote by E_∞ the set $\mathbb{D}_{E} \setminus E$. For a subset V in \mathbb{D}_{E}, we define the set $\text{clos}_\infty^1(V) \subset E_\infty$ as follows. A point $z_\infty \in E_\infty$ belongs to $\text{clos}_\infty^1(V)$ if and only if there exist points $\{z_k\}_{k \in \mathbb{N}}$ in $V \cap E$ which satisfy $z_k \to z_\infty$ in \mathbb{D}_{E} and $|z_{k+1}|/|z_k| \to 1 \ (k \to \infty)$. Set

$$N_\infty^1(V) := E_\infty \setminus \text{clos}_\infty^1(E \setminus V).$$

Definition 1.1. An open subset U in \mathbb{D}_{E} is said to be regular at ∞ if $N_\infty^1(U) = U \cap E_\infty$ is satisfied.

Note that this condition is equivalent to saying $E_\infty \setminus U = \text{clos}_\infty^1(E \setminus U)$.

Now we state our vanishing theorem of cohomology groups for $\mathcal{O}_{\mathbb{D}_{E}}^\exp$.

Theorem 1.2 ([2], Theorem 3.7). Let U be an open subset in \mathbb{D}_{E}. Assume that $U \cap E$ is pseudo-convex in E and U is regular at ∞, then we have

$$H^k(U, \mathcal{O}_{\mathbb{D}_{E}}^\exp) = 0 \ (k \neq 0).$$

The regularity condition of U at ∞ plays an essential role in our vanishing theorem of cohomology groups for $\mathcal{O}_{\mathbb{D}_{E}}^\exp$ as the following shows.

Example 1.3 ([2], Example 3.17). We consider the radial compactification $\mathbb{D}_{\mathbb{C}^2}$ of \mathbb{C}^2. Let $(1,0)\infty \in \mathbb{D}_{\mathbb{C}^2} \setminus \mathbb{C}^2$. Set

$$V := \left\{(z_1, z_2) \in \mathbb{C}^2; |\arg(z_1)| < \frac{\pi}{4}, |z_2| < |z_1|\right\},$$

$$U := (\overline{V})^\circ \setminus \{(1,0)\infty\} \subset \mathbb{D}_{\mathbb{C}^2}.$$

It is easy to check that $U \cap E = V$ is pseudo-convex in \mathbb{C}^2 and U is not regular at ∞. In this case, we have $H^1(U, \mathcal{O}_{\mathbb{D}_{E}}^\exp) \neq 0$.

Furthermore, by showing a Martineau type theorem for $\mathcal{O}_{\mathbb{D}_{E}}^\exp$, we have the following theorem, which is a kind of the edge of the wedge type theorem for $\mathcal{O}_{\mathbb{D}_{E}}^\exp$. Let \overline{M} be the closure of M in \mathbb{D}_{E}.

Theorem 1.4 ([1], Corollary 3.16). The closed subset $\overline{M} \subset \mathbb{D}_{E}$ is purely n-codimensional relative to the sheaf $\mathcal{O}_{\mathbb{D}_{E}}^\exp$, i.e.,

$$\mathcal{H}^k_M(\mathcal{O}_{\mathbb{D}_{E}}^\exp) = 0 \ (k \neq n).$$

§ 2. Laplace hyperfunctions and their Laplace transform

In this section we construct Laplace transform for Laplace hyperfunctions with support in an $\mathbb{R}_+\text{-conic}$ closed convex cone in \overline{M} and their inverse Laplace transforms. We first recall the definition of Laplace hyperfunctions:
Definition 2.1. The sheaf of Laplace hyperfunctions on \overline{M} is defined by

$$\mathcal{B}_{\frac{\text{ex}}{M}} := \mathcal{H}^m_{\overline{M}}(\mathcal{O}^\text{exp}_{D_E}) \otimes \omega_{\overline{M}}.$$ (2.1)

Here $\omega_{\overline{M}}$ is the orientation sheaf $\mathcal{H}^m_{\overline{M}}(Z_{D_E})$ and Z_{D_E} is the constant sheaf on D_E having stalk \mathbb{Z}.

Let $a \in M$ and K be an \mathbb{R}_+-conic closed convex cone in M. Let us denote by K_a the set $\{z + a; z \in K\}$ and denote by \overline{K}_a the closure of K_a in \overline{M}. We first get the representation of $\Gamma_{\overline{K}_a}(\overline{M}, \mathcal{B}_{\frac{\text{ex}}{M}})$ by the relative Čech cohomology groups with coefficients in $\mathcal{O}^\text{exp}_{D_E}$.

Let us prepare some notation and the proposition below. For a subset $Z \subset D_E$, set

$$N_\infty(Z) := E_\infty \setminus (E \setminus Z).$$ (2.2)

For an open subset $U \subset E$, define

$$\widehat{U} := U \cup N_\infty(U).$$ (2.3)

Definition 2.2. Let Ω be an open subset in \overline{M} and Γ an \mathbb{R}^+-conic open cone in M. Let U be an open subset in D_E. We call U a wedge of the type $\Omega \times \sqrt{-1} \Gamma$ if U satisfies the following conditions.

1. $U \subset (\Omega \times \sqrt{-1} \Gamma)$,
2. For any open proper subcone Γ' of Γ, there exists an open neighborhood V of Ω in D_E such that

$$\left(M \times \sqrt{-1} \Gamma'\right) \cap V \subset U.$$ (2.4)

We have the following proposition.

Proposition 2.3. Let K be an \mathbb{R}_+-conic closed cone in M and Γ a proper open cone in M. Assume that Γ is given by the intersection of finite number of half-spaces in M. Then there exist an open neighborhood Ω of \overline{K} in \overline{M} and an open subset U in D_E such that the following conditions are satisfied.

1. U is a wedge of the type $\Omega \times \sqrt{-1} \Gamma$.
2. U is Stein and regular at ∞.
3. U is an open neighborhood of $\Omega \setminus \overline{K}$ in D_E.

Now let us consider the representation of $\Gamma_{\overline{K}_a}(\overline{M}, \mathcal{B}_{\frac{\text{ex}}{M}})$ by the relative Čech cohomology with coefficients in $\mathcal{O}^\text{exp}_{D_E}$. Choose vectors $\gamma_0, \ldots, \gamma_n \in S^{n-1}$. By Proposition 2.3, we can take an open neighborhood Ω of \overline{K}_a in \overline{M} and an open subset $U_j \subset D_E$ which is the wedge of the type $\Omega \times \sqrt{-1} \gamma_j^\circ$, Stein and regular at ∞, and furthermore,
an open neighborhood of $\Omega \setminus \overline{K_a}$. Here γ_j^o denotes the polar set $\{ y \in M; y\gamma_j > 0 \}$ of γ_j. We also take a neighborhood U of $\overline{K_a}$ in \mathbb{D}_E which is Stein and regular at ∞. Then $\mathcal{U} = \{ U, U_0, \ldots, U_n \}$ and $\mathcal{U}' = \{ U_0, \ldots, U_n \}$ give a relative open covering of the pair $(U, U \setminus \overline{K_a})$. Hence we have

$$\Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\frac{\text{e}m}{M}}^\exp) = \frac{\text{Ker}\{ \bigoplus_{j=0}^n \mathcal{O}_{\mathbb{D}_E}^{\exp}(\bigcap_{l \neq j} U_l) \to \mathcal{O}_{\mathbb{D}_E}^{\exp}(\bigcap_{l=0}^n U_l) \}}{\text{Im}\{ \bigoplus_{j \neq k} \mathcal{O}_{\mathbb{D}_E}^{\exp}(\bigcap_{l \neq j, k} U_l) \to \bigoplus_{j=0}^n \mathcal{O}_{\mathbb{D}_E}^{\exp}(\bigcap_{l \neq j} U_l) \}}.$$

Let us define the Laplace transform for an element $f = \bigoplus_{j=0}^n F_j$ of the above representation of $\Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\frac{\text{e}m}{M}}^\exp)$. Set, for $j = 0, 1, \ldots, n$,

$$D_j := \{ x + \sqrt{-1}y \in E; x \in \Gamma, y = \varphi(x) \gamma \},$$

where we take an appropriate closed cone $\Gamma \subset \Omega$ which contains K and a point $\gamma \in \bigcap_{l \neq j} \gamma_l^o$. Further, the continuous function $\varphi : \Gamma \to \mathbb{R}_+ \cup \{0\}$ is chosen to satisfy the following conditions: (1) $\varphi(x) = 0$ in $\partial \Gamma$, (2) $\overline{D}_j \cap \overline{K_a} = \emptyset$, (3) $\overline{D}_j \subset U_j$. Note that such Γ, γ and φ always exist for each j.

Definition 2.4. Under the above situation, the Laplace transform of $f = \bigoplus_{j=0}^n F_j \in \Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\frac{\text{e}m}{M}}^\exp)$ is defined by the integral

$$\mathscr{L}(f)(\lambda) := \sum_{j=0}^n \sigma_j \int_{D_j} F_j(z) e^{-\lambda z} dz,$$

where $\sigma_j := \text{sgn} \left(\det(\omega_0, \cdots, \omega_{j-1}, \omega_{j+1}, \cdots, \omega_n) \right)$.

Note that the Laplace transform does not depend on the choice of Γ, γ and φ.

Definition 2.5. Let Ω be an open subset in \mathbb{D}_E. The set $\mathcal{O}_{\mathbb{D}_E}^{a, \inf}(\Omega)$ consists of a holomorphic function $f(z)$ on $\Omega \cap E$ such that, for any compact subset $K \subset \Omega$ and $\epsilon > 0$, $f(z)$ satisfies

$$|e^{\epsilon z} f(z)| \leq C_{K, \epsilon} e^{\epsilon |z|}, \quad z \in K \cap E.$$

with a positive constant $C_{K, \epsilon}$.

Then we find that the Laplace transform gives the following morphism.

$$\mathscr{L} : \Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\frac{\text{e}m}{M}}^\exp) \to \mathcal{O}_{\mathbb{D}_E}^{a, \inf}(N_{\infty}(K^o)).$$

Here K^o denotes the dual open cone of K in E. Since the above morphism does not depend on the representation of $\Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\frac{\text{e}m}{M}}^\exp)$, \mathscr{L} is well-defined.

Definition 2.6. Let T be an open subset in E_∞, and U an open subset in \mathbb{D}_E. We say that U has the opening wider than or equal to T at ∞ if $T \subset N_{\infty}(U)$ is satisfied.
We have the following lemma which plays an important role in establishing the inverse Laplace transform.

Lemma 2.7. The following conditions are equivalent:
1. \(f \in \mathcal{O}_{\mathrm{D}_{E}}^{a,\inf}(N_{\infty}(K^{o})) \).
2. There exists an open subset \(U \) in \(E \) whose opening is wider than or equal to \(N_{\infty}(K^{o}) \) such that \(f \) is holomorphic on \(U \) and, for any compact subset \(K \) in \(\hat{U} \), there exists an infra-linear function \(\phi_{K}(s) \) satisfying
 \[
 |e^{az}f(z)| \leq e^{\phi_{K}(|z|)}, \quad z \in K \cap E.
 \]
3. There exists an infra-linear function \(\phi(s) \) and an open subset \(U \) in \(E \) whose opening is wider than or equal to \(N_{\infty}(K^{o}) \) such that \(f \) is holomorphic on \(U \) with
 \[
 |e^{az}f(z)| \leq e^{\phi(|z|)}, \quad z \in U.
 \]

Let us define the inverse Laplace transform.

Definition 2.8. We define the morphism

\[
\mathcal{S} : \mathcal{O}_{\mathrm{D}_{E}}^{a,\inf}(N_{\infty}(K^{o})) \rightarrow \mathcal{B}_{\frac{\mathrm{e}\mathrm{x}}{M}}^{\mathrm{p}}(\overline{M})
\]

by

\[
\mathcal{S}(f) = \bigoplus_{0 \leq k \leq n} \sigma_{k}f_{k}, \quad f \in \mathcal{O}_{\mathrm{D}_{E}}^{a,\inf}(N_{\infty}(K^{o})).
\]

Here \(f_{k} \) is given by the integral

\[
f_{k}(z) := \frac{1}{(2\pi\sqrt{-1})^{n}} \int_{T_{k}} f(\lambda)e^{\lambda z}d\lambda.
\]

The path of the integration \(T_{k} \) is given as follows. Set

\[
\Sigma_{k} := \{ \eta \in M; \eta = \sum_{j \neq k} t_{j}\gamma_{j}, t_{j} \geq 0 \}.
\]

Let \(\psi \) be an infra-linear function, and let \(\hat{\xi} \) be a point in the dual open cone of \(K \) in \(M \). Then we put

\[
T_{k} := \left\{ \lambda = \xi + \sqrt{-1}\eta \in E ; \eta \in \Sigma_{k}, \quad \xi = \psi(|\eta|)\hat{\xi} \right\}.
\]

Note that the integral \(f_{k} \) does not depend on the choice of \(\psi \) and \(\hat{\xi} \) if \(\psi \) is rapidly increasing. We can see that \(f_{k} \) is a holomorphic function of exponential type on \((M \times \sqrt{-1}\cup_{j \neq k} \gamma_{j}^{o}) \) by Lemma 2.7.

Furthermore, we have:
Lemma 2.9. $\text{supp}(\mathcal{S}(f)) \subset \overline{K_a}$ for $f \in \mathcal{O}_{\mathcal{D}_E}^{a,\inf}(N_{\infty}(K^\circ))$.

Hence we have the inverse Laplace transform, and we can show that it satisfies the following theorem.

Theorem 2.10. $\mathcal{I} \circ \mathcal{L} = \text{id}_{\Gamma_{\overline{K_a}}(\overline{M}, B_{\text{exp}}^\mathbb{M})}$, $\mathcal{L} \circ \mathcal{I} = \text{id}_{\mathcal{O}_{\mathcal{D}_E}^{a,\inf}(N_{\infty}(K^\circ))}$.

References