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k-summability of formal solutions for certain partial
differential equations and the method of successive
approximation

By

Kunio ICHINOBE*

Abstract

We study the k-summability of divergent formal solutions to the Cauchy problem of certain
linear partial differential operators of the first order with respect to ¢ whose coefficients are
polynomial in ¢. In order to prove the k-summability of divergent solutions, we employ the
method of successive approximation for a construction of divergent solutions and the analysis
of convolution equations associated with divergent solutions. We give a proof of the existence
and uniqueness of local holomorphic solutions for the convolution equations.

8 1. Result

" Let linear partial differential operators L with polynomial coefficients in ¢ be given
by
(1.1) L=208,-P(t,8:), P(t0:;)= Y aa(t)d2,
a:finite
where (t,z) € C2, (0;,0,) = (8/0t,8/0z) and a(t) € C[t] for all a.
We consider the following Cauchy problem for L

{LU(t, z) = (8, — P(t,8,)) U(t,z) = 0

(12) U(0,2) = p(a) € Oy,

where O, denotes the set of holomorphic functions in a neighborhood of the origin
z = 0. The Cauchy problem (1.2) has a unique formal solution of the form
tn

(13) Ut2) =Y Un(@)=, Us(a) = ().
=0 :
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We assume that for the operator P = P(t,0,)
(A-1) o = max{a; aq(t) # 0} > 2,

which is called non-Kowalevskian condition. In this case, the formal solution is divergent
in generé.l.

Our purpose in this paper is to study the k-summability of this divergent solution
under some conditions for L. In order to explain the conditions we define the Newton
polygon of L.

Let i(cx) be the order of zero of a,(t) at t = 0. We define a domain N(«a) by

N(a) := {(z,y) €R*} z < a, y>i(a)} for as(t) #0,
and N(a) := ¢ for an(t) = 0. Then the Newton polygon N(L) is defined by
(1.4) N(L) := Ch {N(l, ~nulJ N(a)} ,

where Ch{:--} denotes the convex hull of the set N(1,-1) U U,N(e), and N(1,-1)

={(z,y); <1, y>-1}.
We assume that

0<a<ax

(A-2) the Newton polygon N(L) has only one side of a positive slope with two end points
(1,-1) and (o, i(ax)).
94

NN

CRLCH)

N(L)

(1,-1

We put i. := i(c). Then we assume that the indices « of the operator P satisfy the

following inequality.

(8% Oy

A- < .

(4-3) o) +1 7 4 +1

We call this number ., /(i. + 1) the modified order of L and we put
: o p

i+l g

(1.5) , (o) =1
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Moreover, we assume that for any o,

(A-4) aalt) = 3 a1,
i(a)<i<ia, i+1€qNp

where Ny denotes the set of the nonnegative integers. Especially, we have
aq,(t) = ag*a*)ti*.
In order to state our result, we give the definition of a characteristic equation for L
(1.6) a{®)z —1=0.

Let z, (n=1,2,...,a,) be the roots of the characteristic equation.

Finally, e ‘prepare the notation S(d,B,p). Forde R, >0 and p(0 < p < o0), we
define a sector S = S(d, 8, p) by '

S(d, B,p) = {t € C;|d — argt| < 5/2,0 < [t| < p},

where d, 3 and p are called the direction, the opening angle and the radius of S, respec-
tively. We write S(d, 8, 0) = S(d, 8) for short.

Under the above preparations, our result is stated as follows.

Theorem 1.1. We suppoée the assumptions (A-1)-(A-4). Let d € R be fized and we
put d, = qd/p—argz, forn=1,2,... .. Let

e+ 1
o, —1°

(1.7) k=

We assume that the Cauchy data p(x) € Oy can be analytically continued in the region
Unr18(dn,€) for some positive e, and has the following exponential growth estimate

(1.8) le(@)| < Cpexp (B,lalo=T), z e[ Sldme),

for some positive constants Cy, and 6,. Then the divergent solution U(t, ) of the Cauchy
problem (1.2) is k-summable in d direction.

We may assume that k& > 1, which is only needed for the analysis of the convolution
equations, without loss of generality by a change of variable, e.g. t1/(@~1) =7,
We remark that the roots of the characteristic equation are given by

an = (@) VU (=1, a),

where w, = €27/,
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The k-summability of divergent solutions of non-Kowalevskian equations with con-
stant coefficients has been developed by many mathematicians (e.g. [8] for the heat
equation, [11] for the operator 8] — 84, (p < q), [2] for general equations, [9] for moment
partial differential equations). But, there are not many study of k-summability of diver-
gent solutions for equations with variable coefficients yet. In the papers [4] and [5], we
treated the equations whose coefficients are monomial in ¢. In the paper [7], we treated
the equations of the first order with respect to ¢ whose coefficients are polynomial in
t and modified order is equal to one. In this paper, we consider the equations of the
first order with respect to ¢ whose coeflicients are polynomial in ¢ and modified order
is general, and in the paper [6], we treated the higher order case. In the following, we
will give an outline of a proof of Theorem 1.1. Especially, we will give the proof of the
local-existence and uniqueness of holomorphic solutions for the convolution equations
associated with L, which were admitted without proof in the papers [6] and [7].

§2. Review of k-summability

In this section, we give some notation and definitions in the way of Ramis or Balser
(cf. W. Balser [1] for detail).

Let £k > 0, S = S(d,0) and B(o) := {z € C;|z| < o}. Let v(t z) € O(S x B(0))
which means that v(t,z) is holomorphic in S x B(c). Then we define that v(t,z) €
ExpF(S x B( (o)) if, for any closed subsector S’ of S, there exist some positive constants
C and ¢ such that
(2.1) Hax lu(t,z)| < cefl* tes.

For k > 0, we define that 9(t,z) = 3"  vn(x)t" € Og[[t]]l1/x (we say (¢, z) is a
formal power series of Gevrey order 1/k) if v,(z) are holomorphic on a common closed
disk B(o) for some ¢ > 0 and there exist some positive constants C' and K such that
for any n,

n n
(2.2) max [va(z)| < CK r(1+ k).

Here when v,(z) = v, (constants) for all n, we use the notation C[[t]];/x instead of
Ox[[t]]l/k-

Let k£ > 0, 6(t,x) = >0 vn(z)t™ € Ou[t]]1/x and v(¢,z) be an analytic function
on S(d, 3, p) x B(c). Then we define that
23) o(t,z) = 8(t,z) in S = S(d,B,p),

if for any closed subsector S’ of S, there exist some positive constants C' and K such
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that for any N > 1, we have

N-1
N
. _ n| < Ny N vV 3
(2:4) Irﬁg)‘cr v(t, z) nzzo vp(z)t"| < CKV [T (1+ k)’ te S

For k > 0, d € R and 9(t,z) € Og[[t]]i/x, we say that o(t,z) is k-summable in d
direction, and denote it by (¢, z) € Oy {t}s4, if there exist a sector S = S(d, 8, p) with
B > m/k and an analytic function v(¢,z) on S x B(o) such that v(t,z) = 9(¢,z) in S.

We remark that the function v(t, z) above for a k-summable 0(t,z) is unique if it
exists. Therefore such a function v(t, z) is called the k-sum of 4(t, ) in d direction.

§3. Construction of a formal solution

Decomposition of operator P(t,9,). We give a decomposition of the operator P.
For £ € Ny, we define

Ky = {(ai); £=p(i+1)/q—a, ol #0}

and we put Pp(t,0z) =34 i)ck, a,(“)tiag. Then we obtain
(=%
P(t,0;) = Y _ Pu(t,8z).
£=0
In fact, we have £ = p(i + 1)/q — a < p(ix + 1)/q = a..

_The sequence of Cauchy problems By employing the decomposition of the oper-
ator P, we consider the following sequence of Cauchy problems for v > 0.

min{a.,v}

Oy (t,z) = Z Py(t, O )uy—e(t, ),

(EV) £=0
UV(O, I) — Qa(x) (V = O)’
0 v>1)
For each v, the Cauchy problem (E,) has a unique formal solution of the form
(Sol,) iy (t,3) = Y uyn(@)t™/nl.
n>0

Then U(t,z) = > u>0 Uu(t, x) is the formal power series solution of the original Cauchy
problem (1.2).
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Construction of formal solutions i, (t,z) We give a construction of the formal
solutions 4, (t, z) of the Cauchy problems (E,).

Lemma 3.1. Let v > 0. For each v, we have
(3.1) Uyn(2) = A ()5 (z)  (pn/q—v € No),

and uy n(z) =0 (pn/q—v € Ny). Here {A,(n)} satisfy the following recurrence formula:

min{a.,v}

An+D= 3 Y a®hlidsn—i) (n20),
£=0 K,

(R.)
A,(0) = {1 v

0 (¥=1).
where we interpret as A,(n) =0 for all v if n < 0. Here the notation [n]; is defined by

s = nn—1)n-2)---(n—i+1), i>1,
i = 1, i=0.

By substituting (Sol,) into the equation (E,), we can see that u,,(z) = A,(n)
xp®P*/4=¥)(z), where {A,(n)} satisfy the recurrence formula (R,). Especially, if pn/q—
v € Ny, Ay(n) = 0: We omit the details.

§4. Gevrey order of the formal solution U(t,z)

We give the Gevrey order of the formal solution T)’(t, z). For the purpose, we give a
result of Gevrey order of formal solutions 4, (¢, z) of (E,) without proof (see [7]).

Proposition 4.1. We assume o(z) € O,. For each v, we have i, (¢, z) € Og|[t]]1/k,
k= (ix + 1)/(ax — 1). More ezactly, we have

A )

Uy,n(T)
n!

(4.1) max

lz|<o

by some positive constants A, B and o for any n with pn/q — v € Np.

We can sce that U(t,z) € O[[t]]1 /& by Proposition 4.1 immediately, because of
] — ~ I . ’U/y’n(iL') — Zu qun("L‘) n __. Un(x) n
U(t,z) = Zou,,(t,z) = ZZTt" =Y St = > R

v= v n n n

§5. Preliminaries for proof of Theorem 1.1

In this section, we prepare some results which are employed to prove Theorem 1.1.
First, we give an important lemma for the summability theory (cf. [1], [8]).
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Lemma 5.1. Let k > 0, d € R and 9(t,z) = > 0" vn(z)t™ € Og[[t]]1/x. Then the
following statements are equivalent:

1,) ﬁ(t, z) € Om{t}k,d.

i) We put

Un (37) s,

(5.1) vB(s,z) = (Bid)(s, ) = Z T +n/k)’

which is a formal k-Borel transformation of 5(t, z), that is convergent in a neighborhood
of (s,2) = (0,0). Then vp(s,z) € Exp¥(S(d,e) x B(c)) for some & >0 and o > 0.

Next, we introduce three formal series. For each v > 0, we define

(5.2) A= Y At Z oAl

TLZO,%—VGNO
which is the generating function of {A,(n)}, and

Bn—uv)!
(5.3) au(t) = ZnZOA”(n) %t" € (C[[t]]l/k,

Ep)!
(5.4 EAQPELEAAM(%>Wécwmm

which are called the moment series of f,. We note that we can find §,(t) in @, (¢,z) by
the formal use of the Cauchy integral formula.

i (t, ) = Z;ZoAu(n)w(sn_u)(z)g _ Zim j{ oz + )¢, (Cp%) dc.

Moreover, we have a formal relationship between g, and h,,. For v > 1,
. 1t 17
(5.5) g (t) = 1"(1/)/0 V(1 — 7)Y hy (P %) dr

and §o(t) = ho(t) when v = 0.
Finally, we prepare a lemma for the summability of A, (t) which is given by (5.4),
where an outline of its proof is given in section 7.

Lemma 5.2. Let h,(t) be given by (5.4) and k = (iy +1)/(as — 1). Then, for 6
satisfying

(5.6) 6 £ (—arg agf‘*) +2mm)/(ix +1) (mod 27) (m=0,1,...,4.),
we obtain the following estimates
(5.7) A (s)] < ChKF, exp(énls|®), s € 5(6,¢0),

where positive constants Cp, K, and 8y, are independent of v, and €y > 0.
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We remark that Lemma 5.2 means that &, () € C{t}x ¢ with 8 satisfying (5.6).

§6. Proof of Theorem 1.1

By employing Lemmas 5.1 and 5.2, we obtain the following result without proof (cf.

(71, 81, 9], [10], [11]).

Proposition 6.1. Let d be fired and put u,5(s, z) = (Bii,)(s, ). We assume that
the Cauchy data ¢(z) satisfies the same assumptions as in Theorem 1.1. Then for each
v, we have

V

(6.1) max |uy5(s,7)| < C— exp (d]s|¥), se€ S(d,e)

by some positive constants C, K,d and o, which are independent of v.

We remark that Proposition 6.1 means that 4, (¢,z) € Oz{t},q-

We can immediatly prove Theorem 1.1 by using Proposition 6.1.

Proof. Let U(t,z) = >_u>0 @ (t, ) be the formal solution of original Cauchy problem
(1. 2) Then it is enough to show that Ug(s,z) = (BxU)(s,z) = > u>0UwB(s,) €
Exp¥(S(d,e) x B(o)). Therefore, we obtain the desired estimate of Ug(s, ) for s €
S(d,e).

max |Us(s,2)| < D max uvs(s,2)| < Cexp(dls| Hy i

v>0 |z|<a v2>0

= CeX exp(d]s|¥).

§7. Proof of Lemma 5.2

We shall give the proof of Lemma 5.2. For the purpose, we will obtain the differential
equations of iz,, and the convolution equations of h,p = B’k fz,,. After that, we will prove
Lemma 5.2 by employing the method of successive approximation for the convolution

equations.

§7.1. Differential equation of A,

We recall that

wo-Saetile - 5wl

nZO,%n—uENg
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For n > 0 satisfying pn/q — v € Ny, we put
(7.1) m(n) = (E—n)!/n!.

For n+1,i+ 1 € gNg with n > i > 0, we have by using formula n! = [n];(n = 4)!

m(n+1) [%(n + 1)] B(i+1)
m(n—4)  [n+1in

By multiplying both sides of (R,) by (n + 1)m(n + 1)t"*! and taking sum over n > 0
with p(n +1)/q — v € Ny, we get

min{a.,v}

3 (n+1DA, M+ Dmn+ 1)t = N Zaf”)ti“'

n2>0,p(n41)/g—vENy £=0 K,

Bln+1

)] 2(i+1)
[+ 1]i41

v—e(n —i)ym(n =)™

x Y e+

n20,p(n+1)/q—vENo

Here we notice that (n + 1)[n]i/[n + 1]it1 = 1. After multiplying both sides by t*, we
obtain a differential equation of &, (t).

. min{e.,v} ' p P A
(7.2)  tah,@) = Y Y etk [—5,: o 1)] B —o(t).
) Ko q q B(+1)
§7.2. A canonical form for differential equation of h,

We shall reduce the differential equation of h, (t) to a certain canonical form (cf.
[7]). We give the following lemma without proof.

Lemma 7.1. Leta € R and k > 0. Then for n > 0, we have

(7.3) [ad; + ], Z d[a | 7R (tkg,)™,

m=0
where d([m] =1 and

dif] = qd™

n—1,m—

1+(n—akm)dn 1m 0<m<n

with dgfl_l =d%,  =0(n>0). Then we have d\% = n!,dl% =

n—n

For 0 < £ < a, we put

' i p D,
0= Zaga)tHHk [E(st n 5(7’ " 1)]
K,

B(i41)
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where K; = {(a,4);i(0) <@ < iy, 0 < a=p(i + 1)/q — £}. We write i(a) by i(£). By
using Lemma 7.1, we can write the operator L, into the following form

E(i+1)
Lp= Z az(a)ti+1+k Z dg(i+1),mt_km(tk5t)m
Kg m=0
Qe
: (2(i+1)-0) ; -
— Z Z aiq dg—(i—i—l),mtl—i_l—'_k km(tk‘st)m.
m=0max{i(€),gm/p—1}<i<i. ' ’
Here for £ =0,1,--:,a, and m=0,1,...,a,, we put
, (B(i+1)—9) i _
A7[ﬁ (t) = aiq d%(i+1)’mtz+1+k kem

max{i(£),gm/p—1}<i<i.

and for £ > o, we define A (t) = 0 (Vm) for convinience. Then we notice that
O(Ay,i](t)) >0if0<m<a,—1and 0<¢< o, and when m = a,, we have

0 (20 s

because of i +1+k — km > gm/p+ k — km = k(s — m) /.
Therefore we can write the differential equation of h, (t) into the following form

min{a.,v} a,—1

(7.9 [tkat—(ﬂ)a' A8 | h0 =Y 3 A8 e
q £=0 m=0

min{a,,v} .
+ 2 (2) a2 7O (8 8,)% by~ (2)-
=1 9
When v < a., we substitute ho(t) = 1+ ho(t) into the above equation. “After some
calculations we replace ho by ho. Then we obtain the following canonical differential
equation of h,(t) for all v

min{o.,v} a,—1

(1) .- (g) o8 R0 = Y 3 A8 el

£=0 m=0

min{o,v} '™
+4l e+ Y (2) a0 (£%8,) b, (t).
=1

§7.3. Convolution equations

We shall obtain the convolution equations by operating the Borel transform to the
canonical differential equations which are obtained in the previous subsection.
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After operating the formal k-Borel transformation to the equation (7.5) and differen-
tiating the both sides, we substitute Dsh,5(s) = w,(s) or h,p(s) = D; w,(s), where
D, = d/(ds) and D;* = ;. Then by noticing By (t*6;) = kD;'s*D; the convolution
equations for w,(s) are given by the following expressions.

(7.6) [ks* = a2 ((p/a)ks®)™ | wi (s)
min{au v} a,—1

=D, | Y 3 AYL(s) wk DK™ ™Mw, _g(s) + AL (s)

=0 m=0

min{e.,v}

+D71 ST el “((p/q)ks’“)@*w,,_z(@],

£=1

where A%B(s) = (l’;’kA%l])(S) for0<m< ax—1and 0 <{< a,, and A[e]B(s) =0 for
£> a, and all m.

Here the k-convolution a(s) * b(s) with a(0) = b(0) = 0 is defined by the following
integral

(7.7) (@ B)(e) = /0 "o ((sk - uk)l/k> %b(u)dﬁ.

We remark that if a(0) = b(0) = 0, the convolution is commutative. Note that this
formula is same with that in [1, Sec 5.3] although the expression is a little different from
it. ‘

We put

Auls) = [k F- (a*) ((p/q)ks ) ] = ks* [1 — agf"‘) ((p/q)P/q k1/ks)i*+1]

and put

T, (wy)(s) == (the right hand side of (7. 6)>

A()

Then we remark that for each v

Clls]] — C[ls]],

where C[[s]] denotes the set of formal power series, and we can prove that w = T, (w)
has a unique formal power series solution. Therefore for each v, the function w,(s) =
Dshyp(s) = Ds Y50 Av(n)m(n)s®/T(1 + n/k) is a unique holomorphic solution in a
neighborhood of the_origin: for the convolution equation w = T, (w). Let us prove this.

Let 0 < 0 < oy for some o¢ and W (o) be a Banach space of holomorphic functions

on 0 < |s| < ¢ with the norm |lw||, := sup |w(s)| < oo for w(s) € W (o). We assume
0<|s|<e
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that for 0 < |s| < g9

1 B,
. _ < —
) ’A*(s> =Tl

1D, A (s)| < Bslsl®, (a9 ((p/q)k)**| < By

1D, AY 5 (5)] < By|s|Fmtr—km=1 (m £ 0)

with positive constants B;(j = 1,2) for £=0,1,...,a, and all m.

Now, we shall prove that for each v, the convolution equation w = T, (w) has a
unigue holomorphic solution in a neighborhood except s = 0 by induction.

We notice that for A(s) and w(s) with A(0) = 0, we have

(7.9) D, (A(s) " D;lw(s)) - D, /O SA((sk - uk)l/k>w(u)du
gh1 /O ) DSA((sk - uk)l/k) (5% — uFY /5 =Lop()dus
3/01 DSA(s(l - t")l/’“) (1 — tF)YE"Loy(st)dt (u = st).

We first prove that T, : W (o) — W (o) is well-defined for each v.
The case v = 0. Let wo(s) € W(o). Then we have

To(wo)(s)| <

a.—1
1 0 * 0 v
RO [Aui*(s“ > ALp(s) 1 DR wo(s)]

m=0

B,B 1 i
< 22 Ll ol [ 1 ke
a1 q 1 Imtk—km
+ 3 K™ woll,|s) 3 / (1= ) 2 gy |
m=1 0

Therefore we have
[To(wo) (3)] < B [1+ [[wollols| + K lwollo|s? |

, — 1(m—
where we put B := B;Bs and K; := E;;ll kmag( b

implies that Ty : W (o) — W (o) is well-defined.
The case v > 1. We assume that it holds up to v — 1. Let w,(s) € W(o) for

Joy (1 = tky~m/aethmdt. This
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n=20,1,...,v. Then similarly to the case v = 0, we have

min{a.,v} a,—1

1 v - m m
T, (wy)(s)| < mD, AR+ 30 AYL(s) 1 DI M0, _(s)
* 2=0

m=0

min{a.,v}

— Oy
+D; 1 Z agf‘* £) gksk) wy—o(3)

=1
min{a.,v} . min{d,,u} .min{a.,v}
<B|14 Y fwetlelsl Kl Y Nuelolslf 4K D fuelolsl|
£=0 =0 =1

where we put Ky := 0. This implies that T}, : W (o) — W(o) is well-defined.

Let M > B = B;B;. Then we define that W(o, M) := {w € W(o); ||w|ls < M}.

We next prove that T, : W(o, M) — W(o, M) is well-defined for each v. In the
following, we assume % > 1 for the simplicit_y of the proof.

The case v = 0. We put 0y := (M/B ~1)/M(1+ KIlag/p—l). Then we see that for
o with ¢ < min{ey, 01}, Tp is well-defined on W (o, M).

The case v > 1. We put oy := (M/B — 1)/ [M{(a* +1)(1 +IClag/p_1) +a,JC2}].
Then we see that for o with o < min{og, 01,02}, T, is well-defined on W (o, M).

Finally, we prove that T,, becomes a contraction map on W (o, M) for each v.

The case v = 0. Let wg,vo € W(o, M). Then we have

|To(wo)(s) — To(wo)(s)| < B(L+K108*™)wo — volls]-

We put o3 := 1/B(1 + K10¥/?™*). Then we see that for o, < min{o;(i = 0,1,2,3)},
To(wo) = wp has a unique solution in W (o, M).
The case v > 1. Let w,(n < v),v, € W(o, M). Then we have

1T (w,)(8) = T (v,)(s)] < BAL+ K10 ") w, = v, o3,

Therefore we see that for o, < min{o;(: = 0,1,2,3)}, T, (w,) = w, has a unique
solution in W (o, M).

We have to remark that s = 0 is a removable singularity for solutions of the convolu-
tion equations w = T, (w). Moreover, we have to remark that for each v, the solution w,
may be continued analytically on S(6, o) with 6 # (— arg aEf") +27m)/(i«+1) (mod 27)
for m=0,1,--- 4. and £ > 0, because the roots of A.(s) are the only singular points
of the analytic convolution equations w, = T, (w,).

§7.4. Outline of a proof of Lemma 5.2

We shall give an outline of a proof for fact that w,(s) has the exponential growth
estimate of order at most k in a sector with infinite radius. As the consequence, we



48

KUNIO ICHINOBE

see that h,5(s) = D;'w,(s) also has the same exponential growth estimate as that of
wy(s). For the estimate of w,, we consider the convolution equations w = T, (w) on
S1:={s € S(0,e0);|s| > 0«/2}, where 0. appears in the previous subsection (cf. [3]).

Let sp € S1 with |sg| = 0./2. We modify the operator T}, by T, on S; by replacing
in w = T,,(w) the convolutions a *; b by a b, where

= ° k k1K) @
(a%b)(s) := / @ (6 = w1/ bw)du, s € 5.
Then we obtain the convolution equations w, = f’,, (w,) on Sy, where

min{a.,v} a,—1

SN KDy (Al 5 DI s w, ) (s)

£=0 m=1

T, = F,(s)+ m

min{a.,v}

+ Z (a.«—ﬁ) (gksk)o"i w,,_g(s) ’

min{a. v} a,—1

Fus) = 7 De | A5 + > X [ (16 = ) ()

We assume that for s € S5,

1 By 4 otk
70| S TTRRrE [PeAvs ()| < Bala v,
sl s+
1+ [sfiett = 7% Tt =72

with some positive constants By, Bs and B3 for 0 < m < a, —1 and 0 < ¢ < a,. Then
we notice that F,(s) are bounded in S;, because w, _¢(s) are bounded in |s| < |sg].

Finally, by employing the method of successive approximation for the convolution
equation w, = T,,(w,,) on S; for each v, we obtain the desired exponential estimate for
wy(s) (for the detail, see a forthcoming paper [6]).
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