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A unified family of Pj-hierarchies (J=L1I,1V, 34)
with a large parameter

By

Yoko UMETA*

Abstract

The purpose of this note is to give a unified family of Pj-hierarchies (J=I,1I,1V, 34) with a

large parameter. This note is a short summary of papers [18] and [19].

§1. A unified family of Pj-hierarchies (J=I,1I,1IV, 34)

92

The P, Pir; Py and Psg-hierarchies were studied by Kudryashov ([11],[12]), Gordoa

and Pickering ([4]), Shimomura ([13],[14]), Gordoa, Joshi and Pickering ([5]), Clarkson,

Joshi and Pickering ([3]). To establish connection formulas for solutions of the higher

order Painlevé equations is one of important subjects in algebraic analysis of singular
perturbation theory. In the series of papers by Kawai, Koike, Nishikawa and Takei,
they introduced a large parameter 7 to Py-hierarchies (J = I,1IL, 1V, 34) ([6], [9], [10])
and many important results have been established from a view point of the exact WKB

analysis. (See [6], [7], [8], [15], [16], [17] and etc). In what follows, we give a unified

family of Pj-hierarchies (J = I,1I,1V, 34) with a large parameter 7.

Let m be an arbitrary natural number. Let U, V and C denote generating functions

of unknown functions uy, vy (k =1, 2, ..., m) and constants ci as follows.

m+1 m+1 m )
U©) ==Y wd*, V(0):= > wbt, C(0) = cib*.
k=1 k=1 k=1

Here 6 denotes an independent variable, 4,,+1 and v,,41 are arbitrary holomorphic
functions of t. Throughout the note, the notation A = B means that A — B is zero
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modulo §™%2. Let us consider the system of non-linear ordinary differential equations
with a large parameter n for these generating functions:

. d (U8 0-1 OH 0
g (vo) (2) S (1 o‘) (5—%) * (——)

where H(U, V) is a polynomial in U and V with arbitrary complex constants p; of the
following form

H(U, V) := (01U? + p2V?)0 4 psUV + psCU + psCV + pgU + p7V + psC + pe,
and fi, fo are defined by

fii=pr+ (our +pscr) 0+ (1 + (v1va +2)6)6™,
f2 1= =B — (2Bu1 + a1 +ec1) 0 + (21 + (22101 — y1v1 + 22)0) 6™.

Here y;, z; are arbitrary holomorphic functions of ¢ and a, 3, £ are given by
a:=p3+pr, B:=ps+py and ¢€:=ps+ps,

respectively.

If p;, yi, 2; are determined as follows, then (1.1) is same as the general member
(Py)m of Py-hierarchy with 7 (See [19]).
o If pp =—1,ps =2, pg =1, 2, = 2t, the others = 0 = (P).
o Ifpy=—1,pg =2, pg =1, 21 = 29t (y #0), 22 = 4ytco, the others = 0 = (P34)m-
e If po =1, p3 =2, ps = 2, the others = 0 — (PII)m.
o Ifpp =1, p3 =2, p5s =2, y1 = —27t (v # 0), the others = 0 = (Prv)m.

§2. The existence of general formal solutions of (1.1)

We can apply the method given in [2] to the cases I, II:
Casel: a=p3s+pr#0, p3#0.
CaseIl: a=p3+pr=0, B=ps+ps#0, p2#0
and we have the following theorem. (For more precise statements, see [19].)

Theorem 2.1. In the cases I, II, we have formal solutions with 2m free parameters
called instanton-type solutions for (1.1).
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§3. Lax pair for (1.1)

Theorem 3.1. Let us determine py, Um+1 and vme1 of (1.1) so that they satisfy
the following conditions.

P1= 07 D2 7é 07
Y0852 =~ 167 + (3,07 + 6™ ),
28" + (zyu1 — y1v1 + 2)0™ 4 (2B sy + vy )0+ 48652 = 0.
Here ulm 11 denotes the derivative of umy1 with respect to t, 7y is a non-zero constant,

and k is determined by the above conditions. Then our system (1.1) is equivalent to the
compatibility condition of the following equations:

O (wg-na)ve.o-0 @ (g- nB) (6, 8)=0

where :
N (1-U)6 0, 1
A= B:=
(&) s=(3)
with 10H 1
p m m o m
Ayi= =5 = 5 (L= U) + 5007 +300™) = Sum 6™,

60H H(U,V
Ds i =pg X ( 507 1(__ U) — (210™ + (z3u1 — Y11 + 22)

9m+1)
- (2Bums1 + avm+1)9m+1),
1
0, = —%(a+ (cuy + pscy)b),
O, := —%(,@ + (2Buy + owy + ec1)9).

The Lax pair associated with (1.1) plays an important role in analyzing the Stoke
geometry of (1.1) (See [18]).
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