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Boundary value problem for Hyperfunction solutions
to Fuchsian systems

By

Susumu YAMAZAKI*

Abstract

In the framework of algebraic analysis, a general boundary value morphism is defined for any
hyperfunction solutions to the Fuchsian system of analytic linear partial differential equations
in derived category, and the injectivity of this morphism in zero-th cohomologies (that is, the
Holmgren type theorem) is proved. Moreover, under a kind of hyperbolicity condition, it is
proved that this morphism is surjective (that is, the solvability). These results extend that of
H. Tahara and Laurent-Monteiro Fernandes to general Fuchsian systems.

Introduction

In this article, we announce of results about boundary value problems for hyper-
function solutions along an initial boundary to the Fuchsian system of analytic linear
differential equations in the framework of Algebraic Analysis.

Fuchsian partial differential operator was first defined by Baouendi-Goulaouic [1],
and Tahara [22] defined a Fuchsian Volevié system as a generalization of Fuchsian partial
differential operator. Moreover Laurent-Monteiro Fernandes [10] defined a Fuchsian Z-
Module. Here and in what follows, we shall write a Ring or a Module etc: with capital
letters, instead of a sheaf of rings or a sheaf of left modules etc. We remark that the
notion of Fuchsian Zy-Modules includes Fuchsian Volevi¢ systems.

For Cauchy problem in the framework of hyperfunctions on the real domain, we
refer to Tahara [22], Oaku [16] and Oaku-Yamazaki [19] and Yamazaki [24]. For a
boundary value problems for hyperfunction solutions, Laurent-Monteiro Fernandes [11]
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give a general framework, and using results of [9], for any regular-specializable system
(i.e. Fuchsian with constant characteristic exponents case), they defined an injective
boundary value morphism (see also [14], [15]), and discussed solvability. For a microlocal
counterpart, see Yamazaki [23].

In this paper, along the line of [11] and [23], we shall define an injective boundary
value morphism for hyperfunction solutions to general Fuchsian system and state the
unique solvability theorem for the boundary value problem in the category of hyper-
functions. For this purpose, by using precise analysis due to Tahara [22] and an idea of
Oaku [18], we shall define a sort of nearby cycles for general Fuchsian Modules.

The contents of this article are appeared in RIMS Kokytroku Bessatsu B57, and
details will be appeared in a forthcoming paper [25].

§ 1. Preliminaries

In this section, we shall fix the notation and recall known results used in later
sections. Our main reference is Kashiwara-Schapira [7].

We denote by Z, R and C the sets of all the integers, real numbers and complex
numbers respectively. Moreover we set N := {n € Z;n > 1} C N, := NU {0},
R :={r e R; r > 0} and C* := C . {0}.

In this paper, all the manifolds are assumed to be paracompact. Let Z be a manifold.
For a subset A C Z, we denote by Int A and Cl A the interior and the closure of A
respectively. Let A be a Ring on Z. We denote by A°P the opposed Ring, and we
regard right A-Modules as (left) A°°-Modules. We denote by 9100(.A) the category
of A-Modules, and by €ob(A) the full subcategory of 9od(A) consisting of coherent
A-Modules. Further we denote by D°(A) the bounded derived category of complexes
of A-Modules, and by D", (A) the full subcategory of D°(A) consisting of objects
with coherent cohomologies. We set D®(Z) := D®(C,) etc. for short. Set *®% :=

* é® * etc. We denote by oz, the orientation sheaf. Let f: W — Z be a continuous
z
mapping between manifolds. Then the relative orientation sheaf is defined by 22y, :=

ory, ® f “or, . Further Wy, z = ety z[dim W —dim Z] denotes the dualizing complex,
and w{?ﬁé = MW/Z[fiimZ — dim W] its dual. If 7: E — Z is a vector bundle over a
manifold Z, we set E := E \ Z and 7 the restriction of 7 to E. Let n: E* — Z the
dual bundle.

Let F be an object of D?(Z), and T*Z — Z the cotangent bundle of Z. We denote
by SS(F) the microsupport of F due to Kashiwara-Schapira (see [7]). SS(F) is a closed
conic involutive subset of T Z and described as follows: Let p be a point of 7" Z. Then
P ¢ SS(F) if the following condition holds: there exists a neighborhood U of p in T*Z
such that for any 2 € Z and any real valued real analytic function 7 defined on a
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sufficiently small neighborhood of # satisfying (2; dy(2)) € U, it follows that

RT3 (F): =0

Note that SS(F)NT,Z = supp F.
Next, let Z be a complex manifold with a local coordinate system z = z + /=1 y,
we use the following identifications as in {20, Chapter I:

TZ 3 (2;(v,9,)) © (z,y; (Rev,9,) + (Imv,9,)) € TZR,
T*Z 3 (7 (¢,d2)) ¢ (z,9; (Re(, dz) — (Im(, dy)) € T*Z,

where Z® denotes the underlying real manifold of Z. Thus, for the complex dual
inner product (x,%): TZ ; T*Z — C, the corresponding real dual inner product is
Re(x,*): TZ;T*Z - R.

Let M be an (n + 1)-dimensional real analytic manifold and N a one-codimensional
closed real analytic submanifold of M. Let X and Y be complexifications of M and
N respectively such that Y is a closed submanifold of X and that Y N M = N. Let
Z = Z+4+/=1 § be a local coordinate system of X such that Z is a local coordinate system
of M. We assume that there exists a (2n + 1)-dimensional real analytic submanifold L
of X containing both M and Y such that the triplet (N, M, L) is locally isomorphic to
the triplet ({(z,0) € R" x {0}},{(z,t) € R""'},{(2,t) € C" xR}) by a local coordinate
system Z = (z,7) with £ = (z,,...,2,,t) = (z,t), 2=+ V=Tyand 7 =t+/=Ts
around each’point of NV (i.e. L is a partial complexification). We say such a local
coordinate system admissible, and under this local coordinate system, we have:

N=RZx{O}Lf§>%—_—R;‘xRt
(11) b ,

Y =C} x{0}*= L=C} xR,
f

X=C} xC

T

Then we identify o2y, with fﬁlmM/L. Let 7oy: TyM — N and 7y : TyyM — N be
the normal and the conormal bundles to N in M respectively. By an admissible local
coordinate system, we often identify normal bundles with base spaces; for example,
Ty X =X, Ty X =X, TyM = M etc. (i.e. we identify (z;t) € Ty M with (z,t) € M).

We denote by
(1.2) (%2)=(z,1; 2", ™) =+ V1§ +vV-17")
) =(z+ vVTyt+v-1sz* +vV=Ty" t"+v=Ts*)

the associated local coordinate system of T X with the local coordinate system in (1.1).
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The mapping f induces mappings:

| %
O / >y x TMX;) 5 X
TY: = ;\L;r o Al/fm

where 7, 7, and 7 are canonical projections, i, ¢, and % are zero-section embeddings,
and O means that the square is Cartesian. Assume that N = ¢~1(0) for an analytic
function ¢ such that we may choose that ¢(Z) = t. We use the same symbol ¢: X — C
to stand for the complexification, and we may assume that ¢(Z) = 7. Then dy induces
¢: Ty X — C, and we denote by 6: Y — TYX the section of T}, X — C given by
¢ (1), and by *5: Y — T;}X the section of Ty, X — C given by dy. In the same way,
dy induces ¢: TyM — R, and we can define mappings §: N — TNM and *§: N —
V=T TNM =Ty X N Ty X. Under the local coordinate system in (1.1), we have

N

N

6(2) = (2,1), *6(2)=(z1-dr), &)= (z,1), *(z)= (z;v=Tdt).
We set
TyM* :=RT§(N) = {(z,t); t >0} C TyM ™ := TyMT UTyN =~ {(,t); t > 0},
7MY = %w S(N) ~ {(&;£"); £* > O}.

As usual, let v, and p, be specialization and microlocalization functors respectively.
We write M N\ N = 2, LI (2_, where each {2, is an open subset and 92, = N. We set

M

4+ = §2, UN. By an admissible local coordinate system, we can write

2, ={(z,t) e M;t>0} C M, ={(z,t) € M;t >0}

+

Next, we denote by M, w and iY the normal deformations of N and Y in M and L
respectively and regard M, as a closed submanifold of L,,. We have the following

commutative diagram:

Ty M2 3 My 2 O0
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Using an admissible local coordinate system, we can write:

pL: EY ={(z,t;7); r € R, (2,7t) € L} 3 (2,t;7) > (2,7t) € L,
Dyt MN = {(z,t;7); r €R, (z,rt) € M} > (z,t;7) — (z,7t) € M,

TYL=Z_YFI{(z,t;r); r=0}, 2, =Eyﬂ{(z,t;r); r > 0},
TyM = MN N{(z,t;r); r =0}, 2, = MN N{(z,t;r); r > 0}.

The mappings 7: Ty L = Y, p;: fy = L, s;: T,y L — ZY and ¢g: Y — L induce
natural mappings:

N XTHL s TRY o= TyM XTRY —5 T3, Ty L

M N
lg"’" ’LdTI
* kY3 * ~ * T * T
TML (-pL—" MN;} TML p—Ld) TﬁNLY (T TNM—ENTMNLY ,

and by these mappings we use the following identifications:

N

and we denote by

TN T;NMTYL =TyM o TNY = T;NMTYL —TyM,

s Tap Ly = MNﬁTglL - My,
the natural projectioné. T3, L N\ TyY has t§v0 components with respect to its fiber. We
denote by T3 L™ one of them as TyM+ = T}, L* N Ty M and represent by fixing a local

coordinate system
Ty Lt = {(2,t) e Ty L; t > 0}

(in this case we choose ¢(Z) = 7). Define open embeddings i, and iy_ by:
. iy
Ty Lt<* 5T, L

J
Ty MY ToM.

We regard TNM + 1>\<; TxY as an open set of T}N m Ty L. Moreover i, induces mappings:

* F ~ T * ; bt *
T e Ty LY = Ty M X Ty (T LS Ty, Ty L
N

. +|2 iN+x]1 ll
TyM* X TRY —— Ty M XTyY.
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Hence we identify 77 3+ Ty Lt with T\ M+ x TyY,and i, with iy, x 1. We set

Foy = Tp0d, TNM+]>\<IT]\‘,Y - TxY.

w
Next, we recall the definition of the near-hyperbolicity condition:

1.1. Definition ([11, Definition 1.3.1]). Let F € D®(X). Then we say that F is
near-hyperbolic at & € N in the edt-codirection (e = %) if there exist positive constants
C and ¢, such that

SS(F)N{(z,7;2%,7*) € T*X; |2 — &| < &q, |7| < &;,et > 0}
C{(z, 752", 7%) € T°X; [t7] < C((lyl + [sDly™| + =)}

holds by the local coordinate system (z,7;2*,7*) of T*X in (1.2).

§ 2. Operators of Infinite Order

We inherit the notation from the preceding section. For a set (or a sheaf) S with a
suitable algebraic structure, we denote by Matm,n(S) the set of matrices of size m x n
whose components belong to . We set Mat,, (S) := Mat,, ,.,(S), and denote by 1,
the identity matrix of size m. For the theory of 9-Modules, we refer to Bjork [2],
Kashiwara [3].  We denote by &, and 2, the Rings of holomorphic functions and
holomorphic partial differential operators on X. Let £25 be the sheaf of the holomorphic
forms with mazximal degree on X, and .(2592‘1 = %mﬁx(ﬂx,ﬁx). Let 2y _,x =

Oy ®f Dy and Dy =2y @ Dy_, 5 ® f 028" be the transfer (25 ® f "1 D%)-
10 Oy 10
and (f _1@3}1’ ® Dy-)-Modules associated with f:Y < X respectively. For any A4 €

D"(2y), we denote by

Dfy = gy_,xféj; “ly = ﬁyélfﬁ “\y, Df‘# = DyDf*Dy.N,

the inverse image and the extraordinary inverse image respectively in 2-Module theory.
Here for a complex manifold Z and .Z € Db(@Z), we set

.
D, % := Ritorm g (£, D) @ 227 '[dim Z] (dim Z is the complex dimension of Z).
z

Under the local coordinate system in (1.1), we set 9 := 79, (or tJ, in real case).

2.1. Definition. Let .# € €oh(Py). We say that .4 is near-hyperbolic at £ € N
in the edt-codirection if so0 is R g (M, 0 'y) in the sense of Definition 1.1.
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2.2. Definition. Let m € N and w € Ny with w < m. Then we say that P
is a Fuchsian partial differential operator of weight (m,w) in the sense of Baouendi-
Goulaouic [1] if P can be written in the following form:

P(z,7,0,,0,) = T’"'"’B"‘+ZP 2,7,0,) T3} +Z P,(z,1,0,)0;
t=w
where P, € Py (m—i) with [P,,7] =0 (0 <4 < m), and P,(2,0,0,) € 05 (w <i<m).
We say that P is Fuchsian hyperbolic in the sense of Tahara [22] if the pr1n01pal
symbol is written as o,,(P)(z,7,2%,7%) = 7" ¥p(z, 7, 2%, 7*), and p(z, T, 2%, 7") satisfies
the following;:

2.1) {If (z,t;z*) are real, all the roots to the equation p(z,t,z*,7*) = 0 with respect
' to 7" are real.

Then Py /P P is near-hyperbolic in the +dt-codirections (see [11, Lemma 1.3.2]).

Note that a Fuchsian partial differential operator of weight (m, 0) is called an operator
with regular singularity along Y in a weak sense in Kashiwara-Oshima [6], and if the
weight of P is (m,m), then Y is non-characteristic for 2, /2, P

2.3. Definition. We call a matrix P = ¢ — A(z,7,08,) € Mat_,(Zy) is a Puchsian
Volevi¢ system of size m due to Tahara [22] if the following hold: Let A,;(z,7,9,) be
the (4, j)-component of A(z,7,0,).

(1) There exists {n;};*; C Zsuchthat A,;(2,7,0,) < Dx(n,—n,+1) forany 1 <4,j < m.
(2) [A;;,7]=0and Am(z 0, 82)663, for any 1<14,j<m <
Moreover we say that P is Fuchsian hyperbolic in the sense of Tahara [22] if

det[r7*1,, — o(A)(2,7,2%)] = 7"p(2, 7, 2%, 7"),

and p(z,7,2*,7*) satisfies the condition (2.1). Then 2y'/9y'P satisfies the near-
hyperbolicity condition. Here we set 0(A)(z,7,2%) 1= (0, _,, +1(4;;)(2,7,2)) 4
i ] ».

Let Fy (Zx) C €oh(ZPx) denote the subcategory of Fuchsian Zy-Modules along Y
due to Laurent-Monteiro Fernandes [10].

2.4. Example. (1) If P is a Fuchsian partial differential operator, we can see that
Dx|DxP € Fy(Dx).

(2) If P is a Fuchsian Volevi¢ system of size m, then 25" /2P € Fy (Px).

2.5. Proposition. Let //{ € Cob(_@x) Then A € Fy(Px) if and only if locally
there exists an epimorphism @ Dy / Dy P, - M, where each P, is a Fuchsian differen-

tial operator with weight (m )
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2.6. Proposition. Let 0 — #' — M4 — #" — 0 be an ezact sequence in
Coh(Zyx). Then M € Fy(Dy) if and only if #', #" € Fy(Dy).

2.7. Definition. We take the admissible local coordinate system in (1.1), and write
X x X = {(2,7,w,7’)} on a neighborhood of Y x Y = {(2,0,w,0) € X x X}. We set
(see [18])
Ayy ={(z,nw,7) e X x X;7=7"} = {(z,w,7)}.
Then we regard Y x Y as a closed subset of Ay ;. Let Ay CY x Y be the diagonal
set. We have closed embeddings

4
Y Y x
e
é
X Ay y S X x X

where 6: X 3 (2,7) = (2,2,7) € Ay)y, 0x/y: Axyy 3 (z,w,7) = (z,7,w,7) € X x X
ete. ’

2.8. Remark. Under the assumption of the existence of a partial complexification L,
we can show that Ay y (resp. Ay, N (M x M)) does not depend on the choice of
admissible local coordinate systems on a neighborhood of Y X Y (resp. N x N).

We set 0 = ﬁXXX_?qz_l.QX = .QXXX_(IX)ql_l.Q?}_l, where ¢;: X x X — X is
51

92 Ux X

the i-th projection, and set 6’,&0;’{,) in the same way. Further we set

ﬁéo’") = 2,

—-1nH®—-1
X/Y X/Y @1171 QX ’
P (73

X
where p; :=¢q; 00y /y: Ax;y — X. Under the admissible local coordinate system, we
see that OV = Oy, x dwdr’, 6{53) = Oy y dw and 67 = O4,,, 4w, where
dw :=dw; A--- Ndw, etc. Let Ay C X x X be the diagonal set. Then

9% = H3 (0078Y) = BRI, (027 )n +1]

is the Ring on X of holomorphic partial differential operators of infinite order. By the
tangent mapping ¢6': Ty, X < TyyyAxy of6: X = Ay /v, we regard Ty, X as a closed
subset of TYXYAX/Y.

2.9. Theorem. The object RI'n x(vy,y(RI,
gree n+ 1.

X/ Y( Ox«x))) is concentrated in de-

For the proof, we use the abstract edge of the wedge theorem due to Kashiwara (see

[5])-
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2.10. Definition. We define

D% x = RTy x(vy .y (RT, (0550 +1]

X/Y

= H;yx(VYxY(HZX/y(ﬁ)({OQ?l))))-

2.11. Remark. Let = (3,7) € Ty X ~C™ x C. For p, § > 0, we set
n
D,(2) :={z€C" |z, — 2| <p}, Bs:={r€C|r| <}
i=1

Then P = P(z,7,0,,0,) = 023 a, (2,7)070] € é’i’/’yx’ﬁ is given as follows:

(a) Assume that # = 0. Then there exist an open neighborhood V of £inY and § > 0
such that a, ;(2,7) € I'(V x Dj; Ox), and there exists a function Rt 3em6(e) €
10,4 satisfying the following: for any Z € V' and ¢, ¢, > 0, there exists C;, cep > 0
such that ny

Z,s,eoE @ 6‘01

alil

(b) Assume that ¥ # 0. Then there exist an open a neighborhood V of Z in Y and
8, p > 0 such that a, ;(z,7) € I'(V x S5 ,(7); Ox), and there exists a function
R* 3 e §(e) €]0,d[ satisfying the following: for any Z € V and ¢, £, > 0 and
S’ € Sys), p(7), there exists Cz 5 . > 0 such that

sup{la, ;(2,7)l; (z,7) € Z x Dy} <

16,

Czs e 8la|50i
sup{lagi(z, )l (2,7) € 2 x 8} < 2o O
Set 7y 1= fory Ty X = X.

2.12: Remark. (1) @{,ﬁy x is a Ring with formal adjoints, and 7y 'y Z¥ is a Subring
of @;Y x, compatible with formal adjoints.
(2) vy (Oy) is a @{,’,Y x-Module.

2.13. Definition (Tahara [22]). We take the admissible local coordinate system in

(1.1). Let 2 € Y. Form € N, we define P(2,7,0,) = eZN a,(z,7)0) € @lej as follows:
a€Ng

(a) There exist p, §, > 0 such that a,(z,7) € I'(Cl[D,(2) x ]BJO]; Oyx),
(b) there exist A, m > 0 satisfying the following: for any 0 < & < d,, there exists
C;s > 0 such that

C’J(Adl/"‘)'""

max{la,(z,7)|; (z,7) € ClD,(2) x B;]} < =

We can see that .@le, @) C @;yxﬂ'y @ C é;yx’ﬁ for any p € Ty, X.
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2.14. Definition. We set

T, XY = H;YX(Vny(ﬁz(&jz,)) RI7, X(Vny(ﬁgi{?z,))[n]

Then 9T Xy isa (.@T x ® 75 H(25°)°P)-Module, and under an admissible local coor-

dinate system we have an exact sequence 0 — @Ty x —) ?ZTY x = @Ty xoy — 0.
2.15. Remark. %%, y_yly = 0%y, is defined by Oaku [18, Definition 2.3
2.16. Definition. (1) For any & € Db(é; x), We set

By(F) i= Rotomg, (T x 31 5).

~ ..
Then ¥y, (F) is represented by # —— F under an admissible local coordinate system.
(2) For any # € D2, (2y), we set

TZ(A) =Ty (D, xmz LN, BR(N) =T ().

XYX

2.17. Proposition. Let A € €ob(Dy). Then H'W®(AN) = 0 holds fori ¢ [-n, 1],
and ¥y° (A') is represented by a bounded complex of Dy -Modules.

2.18. Example (1) Wy(yy(ﬁx)) ~ 730y

2 T;IQY = Wy(-@T xv):
(3) TP (D | D D) = U2 (D | D.D,) ~ D
(4) If A € Cobh(Py) satisfies that supp.# C Y, then ¥p°(A) =

§3. Holomorphic Solutions to Fuchsian Systems

We inherit the notation from the preceding section.

3.1. Theorem. Let P = ¥ — A(z,7,0,) be a Fuchsian Volevi¢ system of size m.
Then for any p € TYX , the following hold:

T (DR | DR Py = By (D7 x5y )y = (P, o)™
For the proof, we use the results of Tahara [22].

3.2. Proposition. (1) If P is a Fuchsian operator of weight (m,w), then locally
g[l{f(@x/gxp) ~(Zy)" _
(2) If # € Fy(Dy), then H'EP (M) = 0 holds for i ¢ [-n,0].
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3.3. Remark. Let .# € Fy(Zx). Then Wy°(#) is represented by
0= (FF) [(BF~1Q = (BF)nms = - = (FF) = (FF)™,

where r; € N and Q € Mat, .

l,rn(@?’o)'
For any £ € D°(9§7), we set DEZ i= Rotorn gp (£, F) & 297 0],
. |

3.4. Proposition. Let # € Fy, (D). Then there exist the following the following
isomorphisms:

V(D M) = DPUE( M), TE(M) = DETE(Dy ).
3.5. Proposition. (1) For any A4 € €oh(Dy ), there exists a natural morphism
L
TP (AN) — 9§°g>DfW.
Y
(2) For any # € Fy(Py), there exists a natural morphism
L 1
Dy QDf M — VP (MH).
Dy _
As usual, ‘f&l x 1= H'py(Ox) = py(Ox)[1] denotes the sheaf of hol_omorphié mi-
crofunctions on Ty X. Then %5y = %}H}|X|Y = Hy(Oy) = R} (6y)[1] is the sheaf
of holomorphic hyperfunctions.

3.6. Theorem. For any # € Fy(Py), there exist the following isomorphisms
between distinguished triangles:

f T RHom g (M,Ox) === R%mgy(f fi#,0y)
3
R%m_@x(-//ﬂ:&_ll/y(ﬁx)) == RHern geo ({;o(///)’ Oy)
Ry (M,"67 6y\x) == Rtomy (M,"67 5 x),
1+ 1+

R%mgx(f//, B x) == Riterm g (D f/// Oy)[-1]

R%m@,((/ﬁ/, CaRME R%’”@x(‘/j{’ AR

Ritorn g (M,6 vy (Ox)) == Ritem goo (W (M), Oy).
I [
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3.7. Remark. Let .# = 9y /9D P, where P is a Fuchsian partial differential opera-
tor of weight (m,w), or A = 97"/ D5 P, where P is a Fuchsian Volevi¢ system of size
m. Then locally .%mgx(ﬂ 67y (O)) ~ OF™ (see Mandai [12] or Mandai-Tahara

[13]).

Let Ry (2y) be the subcategory of €oh(ZPy ) consisting of regular-specializable 2 -
Modules, and W, (.#) (resp. @y (.#)) denotes the nearby cycle (resp. the vanishing
cycle) of .#. We remark that # € Ry (Zx) if and only if the following holds: for any
u € A, locally there exists P € Py such that Pu = 0, where P is of the following form:

P=9" 55,0 + 7% a, (57)0%% (b, €C).

=0 la|+i<m
For any .# € Ry(9Py), we have the following distinguished triangles (see [9]):
f-lR%m@X(/{, Oy) =—— R%mgy(f f#,6,)
+
R%ﬂ@@x(‘”, *&_1%3’)() B R%ﬂ@@y(@y(-ﬂ), ﬁy),
RS i+
R%mgx(f/z, B x) == RHorn 4 (D f/// 0y)[-1]
R%mg"(//f’ T x) = R%mgy(qiy(ﬂ), Oy)
R%mg,x(/zl 6" vy (Ox)) == Ritorn o (Uy (M), Oy).
+1

1+

L
3.8. Theorem. If # € Ry (Dx), then Uy (M) ~ 9{’,"5) Uy (A). In particular, if
L
Y is non-characteristic for A, then U3° (M) ~ Dy° 59 D f*//ly.
Y

§4. Boundary Values for Hyperfunction Solutions

We denote by #,, and €, the sheaves of hyperfunctions on M and of microfunctions
on T3, X respectively.

4.1. Definition ([4], [5]). We define the sheaf on /=T T\, M of second hyperfunc-
tions by

‘@?/ZTT;,M = H%T;,M(%xn}])()@ ornyy =2 RE o (1y (Ox)) @ o2y v [0+ 2]
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By Holmgren type theorem for hyperfunctions and [4], [5], we have monomorphisms

I"Mi_(.@MHN R 1% ’_’*A_lg,/—rT*M

Hence we obtain

4.2. Theorem. Let # € Fy (D). Then there exists the following morphism be-
tween distinguished triangles:

R%m@X(./l, FN('@M)) ® N M T R%mgy(Df!-/ﬂ» ‘%N)[—l]

{
Rtormg (M, Ty (By)) |y ® otz — Rtorn g (M, 8 TB e ) ® 22y

1
Rtorny (M, Fn (Ba)ly —————— Ritorn 55 (0 (M), By).
1+

4.3. Definition. Let .4 € Fy,(2y). By Theorem 4.2 we can define
(4.1) V4 RAon g (M, T (By))ly = RHor g (y" (M), By)-
Taking cohomologies, we have
4.4. Proposition. Let # € Fy,(Py). Then (4.1) induces a monomorphism
Vi Hoor g (M Lo (Br)ly = Ko gir (HOUF (M), By)

Next, we recall definitions of several sheaves attached to the boundary due to Oaku
[18]. Note that in Oaku [18] these sheaves are defined on cosphere bundles; so we
shall present definitions on cotangent bundles along the line of Oaku-Yamazaki [19).
Although only the higher-codimensional case is treated in [19], the same arguments also

work in the one-codimensional case.
4.5. Definition. We set:
Cnim = Six i, (RI, (PZlRFL(ﬁx))) ® 221/ x 0],
%ﬂN|M = pr, vy (RIL(O))) ® o2 x 1],
’%N|M = %N|M|TN
Then @y, and ‘KNl wm are concentrated in degree zero, and vy (%)) = Cy rlr, -

4.6. Proposition ((18]). (1) Cyypr and %N, um are concentrated in degree zero; that
is, ‘KNI M and ‘KNI M are regarded as sheaves on TT mIyL.
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(2) There exists a canonical monomorphism syt Cnipr — ‘gNl M
(3) vy (Brr) = Enpaelr, aer and there exists the following commutative diagram with
exact rows on Ty M:

0— Vy(ﬂﬁLNTNM —vn(By) — ﬁNlM*(gN]M —0

0— VY(%L)ITNM —)@NlM — erlM*‘ENlM — 0.

Here %0, := Hi(ﬁx)®”L/X ~ RI(Oy)®ecey x[1]. Note that vy (%0,) is con-
centrated in degree zero.

4.7. Definition. Let .# € 7y, (Zx). Then we can define the morphism =, :
iy Rotorn g (M, Crias) = i BRI gy (M, C1p)
~_1ngoo W‘(;O(.ﬂ) ffN)

The restriction of v . to the zero-section TNM of T}N M+TYL coincides with the
boundary value morphism (4.1).

We can obtain the following Holmgren type theorem:

4.8. Theorem. Let # € Fy(Px). Then the morphism v, gives a monomorphism
i Horn g (M, Crip) = T Horn g (HOUF (M), Cy).

4.9. Remark. Theorem 4.8 gives another proof of Proposition 4.4.

4.10. Theorem. Let # € Fy(Py). Assume that A is near-hyperbolic at & € N
in the dt-codirection. Then, for any p* = (8(2);vV=-17") € T}N wm+ Ty LT, there ezists
an isomorphism

Here py :=7,(p*) = (&; V=1 ¢") € TyY. In particular, there exists an isomorphism
Yyt R%m_@x(///, FnJr(‘@M))i = R%mgx(%, Un(Bu))sa)
2t Rorn goo (Wy (M), B) ;-

We consider the mappings:

Tp X +—— L NxT*X—)de VY

;{Dkfmf

T*X<f—Y§T*X—>T*
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Then the sheaf of microfunction with a real analytic parameter t on TNY is defined by
(fN[M = del FuaCy = H P (KT RSy, [ pkorn (Cyp, Ox) ® o px)-

The sheaf ‘fN M, of mild microfunctions on TxY is defined by Kataoka [8], and refor-
mulated by Schaplra,-Zamplen as [21]

%N|M+ = H"(Rfy f;  uhom(Cqy_, Ox) ® ot 3y/x).
Then we have natural monomorphisms ([17], [19]):
~—1c8A
T1r+1<gN|M = Ty (gNIM = z7r+cgN]M )
and restricting to IV, we have natural monomorphisms
ﬂz'erw = 'g;N|M+ = 5wy (By) = Fn+('@M)1N'

Here Q;N[ M+ denotes the sheaf of mild hyperfunctions. Setting Df*# := H°Df*#, we
can obtain a monomorphism

Horng (DM, Cy) > Hom g (HOUS (M), B ).

For any .# € Fy,(Z), by construction and [24], we obtain the following:
(1) There exist the following commutative diagrams:

~_1R%m9 (A, %NlM)

| T

| (4.2) “1R%m@ (A, ‘me )—ﬁ—lmm@ (Dft,Cy)

l l

_ T+ L
ixy Ry (M, Cripr) — 5 7 R e (O (//{) Ey)
Rt g (M, Biyir) i
(4.3) RAorn g (M, 'g;N|M+) T RAerng (DM, By)

v.
Ritem g (M, Tq (By))|y —— Ritorm g (W5 (M), By).

Moreover (4.2) and (4.3) induce the following monomorphisms:

%ﬂllg%wzgx(./ﬂ, cg;v‘llM) 740
A
fﬂlm%(/fz,ﬁw )>—>T ‘Ao (DF M, Ey)
A " I
i 2, (A Cyin) >—>T T o g (HOUS (M), )
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%MQX(%, L@l[\lflM) 'YA’O
° 20
Horn g (M, Byg,) ———— Hom g (DM, By)

,YO
Ko g (M,To (Bg))|y »—— Hom gz (HUF (M), By).

(2) Let p* = (8(z); v-19") € TT M+TYL Assume that ./ is near-hyperbolic at
# € N in the +dt-codirections. Then 4, % and « 4 are isomorphisms at p* in (4.2)
(resp. at £ in (4.3)).

4.11. Example. Consider P = H(ﬂ a,(z))" such that a;(0), o, (0) o;(0) ¢ Z
(i # 7). Then w(z,t) € Horny (QX/.@XP Ig, (Bys))o is written as

u(z,t) = %, Eum (z) £ (log t)7~

i=1 j=1
and 7Y (u) = {u;;(2); 1 <i<m, 1 <j<v,}. Futher Hem g (Dx/Dx P, '%Jj\t’lM)O =0.

4.12. Example. Assume n = 1 (hence z € N = R). For any P € Py, we set
Mp =Dy | Dy P

(1) Let P := 9 —i—z (i € N) and u(z,t) € %m@X(J/ZP,FnJr(%M))O. Then
we have Ww(./ﬂp) ~ P, u(z,t) = uy(z)t""™, and 79 (v) = uy(z). In addition if
u(z,t) € ‘%NlMO’ we have zuy(z) = 0, hence zuy(z) = Cé(x), where C € C. In this
case we have C3(z)t'+® = Co(z)t’, and v*°(u) = Cé(x).

(2) Let P:= (¥ — a;)(¥ — ap) — xtd and u(z,t) € %m@X(///P,FQ+(<@M))O.

(i) If (o, 5) = (—1,0), we have

u(z,t) = u_,(z) (% - zti% — zlog(t + \/:TO)) + uy(z),

and 'y+(u) {u_,(z),uq(x)}. In addition if u(z,t) € '%NlMOa we have u_,(z) =0 and
70 (w) = uy(2).
(if) If (o, ay) = (0,1), we have

u(e,t) = (o) +u(0) 1

and u(z,t) € .@ﬁlM’O, hence 73_ (u) = v*°(u) = {uy(z),u,(z)}. Note that in this case,
we have P = t*(97 — z9,), and Y is non-characteristic for 9,> — 28, .
(iii) If (o, oy) = (1,1), we have

u(z,t) = yy(z) €'t — u, (z) t( § i: (:ct)’ + uy () e log(t + \/IO)),
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and 75 (u) = {uy(z),u,(z)}. In addition if u(z,t) € ‘%113|M,0’ we have u,(z) = 0, and
Y0 (w) = up(2).
(iv) If (o, ) = (1,2), we have

( )z+1

u(z,t) = ul(x)t(l s z

+ e®*xtlog(t + \/_0)) + uy(z)e™t?,
1—1]
and 73_(11.) = {u,(z),uy(z)}. In addition if u(z,t) € 33}?,] 00 We have zu, (z) = 0, hence
“1 (z) = Cé(z). Thus

u(z,t) = C6(x) t + uy(z)e™t?,

and 74 (u) = {C4(z), uy(z)}-
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